版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2021-2022高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知是雙曲線的兩個(gè)焦點(diǎn),過點(diǎn)且垂直于軸的直線與相交于兩點(diǎn),若,則的內(nèi)切圓半徑為()A. B. C. D.2.由實(shí)數(shù)組成的等比數(shù)列{an}的前n項(xiàng)和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件3.設(shè)復(fù)數(shù),則=()A.1 B. C. D.4.已知x,,則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件5.已知函數(shù),其圖象關(guān)于直線對(duì)稱,為了得到函數(shù)的圖象,只需將函數(shù)的圖象上的所有點(diǎn)()A.先向左平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變B.先向右平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變C.先向右平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)伸長為原來的2倍,縱坐標(biāo)保持不變D.先向左平移個(gè)單位長度,再把所得各點(diǎn)橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變6.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點(diǎn),直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點(diǎn),設(shè)λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣127.執(zhí)行如圖所示的程序框圖,當(dāng)輸出的時(shí),則輸入的的值為()A.-2 B.-1 C. D.8.已知角的頂點(diǎn)為坐標(biāo)原點(diǎn),始邊與軸的非負(fù)半軸重合,終邊上有一點(diǎn),則().A. B. C. D.9.由曲線y=x2與曲線y2=x所圍成的平面圖形的面積為()A.1 B. C. D.10.如圖,雙曲線的左,右焦點(diǎn)分別是直線與雙曲線的兩條漸近線分別相交于兩點(diǎn).若則雙曲線的離心率為()A. B.C. D.11.若時(shí),,則的取值范圍為()A. B. C. D.12.《周易》歷來被人們視作儒家群經(jīng)之首,它表現(xiàn)了古代中華民族對(duì)萬事萬物的深刻而又樸素的認(rèn)識(shí),是中華人文文化的基礎(chǔ),它反映出中國古代的二進(jìn)制計(jì)數(shù)的思想方法.我們用近代術(shù)語解釋為:把陽爻“-”當(dāng)作數(shù)字“1”,把陰爻“--”當(dāng)作數(shù)字“0”,則八卦所代表的數(shù)表示如下:卦名符號(hào)表示的二進(jìn)制數(shù)表示的十進(jìn)制數(shù)坤0000震0011坎0102兌0113依此類推,則六十四卦中的“屯”卦,符號(hào)“”表示的十進(jìn)制數(shù)是()A.18 B.17 C.16 D.15二、填空題:本題共4小題,每小題5分,共20分。13.曲線在點(diǎn)處的切線方程為______.14.已知為拋物線:的焦點(diǎn),過作兩條互相垂直的直線,,直線與交于、兩點(diǎn),直線與交于、兩點(diǎn),則的最小值為__________.15.已知平面向量,,滿足||=1,||=2,,的夾角等于,且()?()=0,則||的取值范圍是_____.16.已知復(fù)數(shù)z是純虛數(shù),則實(shí)數(shù)a=_____,|z|=_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)棉花的纖維長度是評(píng)價(jià)棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實(shí)驗(yàn)地分別種植某品種的棉花,為了評(píng)價(jià)該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取21根棉花纖維進(jìn)行統(tǒng)計(jì),結(jié)果如下表:(記纖維長度不低于311的為“長纖維”,其余為“短纖維”)纖維長度甲地(根數(shù))34454乙地(根數(shù))112116(1)由以上統(tǒng)計(jì)數(shù)據(jù),填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過1.125的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.甲地乙地總計(jì)長纖維短纖維總計(jì)附:(1);(2)臨界值表;1.111.151.1251.1111.1151.1112.7163.8415.1246.6357.87911.828(2)現(xiàn)從上述41根纖維中,按纖維長度是否為“長纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測,在這8根纖維中,記乙地“短纖維”的根數(shù)為,求的分布列及數(shù)學(xué)期望.18.(12分)已知數(shù)列{an}滿足條件,且an+2=(﹣1)n(an﹣1)+2an+1,n∈N*.(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;(Ⅱ)設(shè)bn=,Sn為數(shù)列{bn}的前n項(xiàng)和,求證:Sn.19.(12分)在直角坐標(biāo)系中,直線l過點(diǎn),且傾斜角為,以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.求直線l的參數(shù)方程和曲線C的直角坐標(biāo)方程,并判斷曲線C是什么曲線;設(shè)直線l與曲線C相交與M,N兩點(diǎn),當(dāng),求的值.20.(12分)如圖,為坐標(biāo)原點(diǎn),點(diǎn)為拋物線的焦點(diǎn),且拋物線上點(diǎn)處的切線與圓相切于點(diǎn)(1)當(dāng)直線的方程為時(shí),求拋物線的方程;(2)當(dāng)正數(shù)變化時(shí),記分別為的面積,求的最小值.21.(12分)三棱柱中,平面平面,,點(diǎn)為棱的中點(diǎn),點(diǎn)為線段上的動(dòng)點(diǎn).(1)求證:;(2)若直線與平面所成角為,求二面角的正切值.22.(10分)已知矩形中,,E,F(xiàn)分別為,的中點(diǎn).沿將矩形折起,使,如圖所示.設(shè)P、Q分別為線段,的中點(diǎn),連接.(1)求證:平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
首先由求得雙曲線的方程,進(jìn)而求得三角形的面積,再由三角形的面積等于周長乘以內(nèi)切圓的半徑即可求解.【詳解】由題意將代入雙曲線的方程,得則,由,得的周長為,設(shè)的內(nèi)切圓的半徑為,則,故選:B【點(diǎn)睛】本題考查雙曲線的定義、方程和性質(zhì),考查三角形的內(nèi)心的概念,考查了轉(zhuǎn)化的思想,屬于中檔題.2.C【解析】
根據(jù)等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義進(jìn)行判斷即可.【詳解】解:若{an}是等比數(shù)列,則,
若,則,即成立,
若成立,則,即,
故“”是“”的充要條件,
故選:C.【點(diǎn)睛】本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的通項(xiàng)公式是解決本題的關(guān)鍵.3.A【解析】
根據(jù)復(fù)數(shù)的除法運(yùn)算,代入化簡即可求解.【詳解】復(fù)數(shù),則故選:A.【點(diǎn)睛】本題考查了復(fù)數(shù)的除法運(yùn)算與化簡求值,屬于基礎(chǔ)題.4.D【解析】
,不能得到,成立也不能推出,即可得到答案.【詳解】因?yàn)閤,,當(dāng)時(shí),不妨取,,故時(shí),不成立,當(dāng)時(shí),不妨取,則不成立,綜上可知,“”是“”的既不充分也不必要條件,故選:D【點(diǎn)睛】本題主要考查了充分條件,必要條件的判定,屬于容易題.5.D【解析】
由函數(shù)的圖象關(guān)于直線對(duì)稱,得,進(jìn)而得再利用圖像變換求解即可【詳解】由函數(shù)的圖象關(guān)于直線對(duì)稱,得,即,解得,所以,,故只需將函數(shù)的圖象上的所有點(diǎn)“先向左平移個(gè)單位長度,得再將橫坐標(biāo)縮短為原來的,縱坐標(biāo)保持不變,得”即可.故選:D【點(diǎn)睛】本題考查三角函數(shù)的圖象與性質(zhì),考查圖像變換,考查運(yùn)算求解能力,是中檔題6.D【解析】
分別聯(lián)立直線與拋物線的方程,利用韋達(dá)定理,可得,,然后計(jì)算,可得結(jié)果.【詳解】設(shè),聯(lián)立則,因?yàn)橹本€經(jīng)過C的焦點(diǎn),所以.同理可得,所以故選:D.【點(diǎn)睛】本題考查的是直線與拋物線的交點(diǎn)問題,運(yùn)用拋物線的焦點(diǎn)弦求參數(shù),屬基礎(chǔ)題。7.B【解析】若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,符合題意;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;若輸入,則執(zhí)行循環(huán)得結(jié)束循環(huán),輸出,與題意輸出的矛盾;綜上選B.8.B【解析】
根據(jù)角終邊上的點(diǎn)坐標(biāo),求得,代入二倍角公式即可求得的值.【詳解】因?yàn)榻K邊上有一點(diǎn),所以,故選:B【點(diǎn)睛】此題考查二倍角公式,熟練記憶公式即可解決,屬于簡單題目.9.B【解析】
首先求得兩曲線的交點(diǎn)坐標(biāo),據(jù)此可確定積分區(qū)間,然后利用定積分的幾何意義求解面積值即可.【詳解】聯(lián)立方程:可得:,,結(jié)合定積分的幾何意義可知曲線y=x2與曲線y2=x所圍成的平面圖形的面積為:.本題選擇B選項(xiàng).【點(diǎn)睛】本題主要考查定積分的概念與計(jì)算,屬于中等題.10.A【解析】
易得,過B作x軸的垂線,垂足為T,在中,利用即可得到的方程.【詳解】由已知,得,過B作x軸的垂線,垂足為T,故,又所以,即,所以雙曲線的離心率.故選:A.【點(diǎn)睛】本題考查雙曲線的離心率問題,在作雙曲線離心率問題時(shí),最關(guān)鍵的是找到的方程或不等式,本題屬于容易題.11.D【解析】
由題得對(duì)恒成立,令,然后分別求出即可得的取值范圍.【詳解】由題得對(duì)恒成立,令,在單調(diào)遞減,且,在上單調(diào)遞增,在上單調(diào)遞減,,又在單調(diào)遞增,,的取值范圍為.故選:D【點(diǎn)睛】本題主要考查了不等式恒成立問題,導(dǎo)數(shù)的綜合應(yīng)用,考查了轉(zhuǎn)化與化歸的思想.求解不等式恒成立問題,可采用參變量分離法去求解.12.B【解析】
由題意可知“屯”卦符號(hào)“”表示二進(jìn)制數(shù)字010001,將其轉(zhuǎn)化為十進(jìn)制數(shù)即可.【詳解】由題意類推,可知六十四卦中的“屯”卦符號(hào)“”表示二進(jìn)制數(shù)字010001,轉(zhuǎn)化為十進(jìn)制數(shù)的計(jì)算為1×20+1×24=1.故選:B.【點(diǎn)睛】本題主要考查數(shù)制是轉(zhuǎn)化,新定義知識(shí)的應(yīng)用等,意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
對(duì)函數(shù)求導(dǎo),得出在處的一階導(dǎo)數(shù)值,即得出所求切線的斜率,再運(yùn)用直線的點(diǎn)斜式求出切線的方程.【詳解】令,,所以,又,所求切線方程為,即.故答案為:.【點(diǎn)睛】本題考查運(yùn)用函數(shù)的導(dǎo)函數(shù)求函數(shù)在切點(diǎn)處的切線方程,關(guān)鍵在于求出在切點(diǎn)處的導(dǎo)函數(shù)值就是切線的斜率,屬于基礎(chǔ)題.14.16.【解析】由題意可知拋物線的焦點(diǎn),準(zhǔn)線為設(shè)直線的解析式為∵直線互相垂直∴的斜率為與拋物線的方程聯(lián)立,消去得設(shè)點(diǎn)由跟與系數(shù)的關(guān)系得,同理∵根據(jù)拋物線的性質(zhì),拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離∴,同理∴,當(dāng)且僅當(dāng)時(shí)取等號(hào).故答案為16點(diǎn)睛:(1)與拋物線有關(guān)的最值問題,一般情況下都與拋物線的定義有關(guān).利用定義可將拋物線上的點(diǎn)到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離,可以使運(yùn)算化繁為簡.“看到準(zhǔn)線想焦點(diǎn),看到焦點(diǎn)想準(zhǔn)線”,這是解決拋物線焦點(diǎn)弦有關(guān)問題的重要途徑;(2)圓錐曲線中的最值問題,可利用基本不等式求解,但要注意不等式成立的條件.15.【解析】
計(jì)算得到||,||cosα﹣1,解得cosα,根據(jù)三角函數(shù)的有界性計(jì)算范圍得到答案.【詳解】由()?()=0可得()?||?||cosα﹣1×2cos||?||cosα﹣1,α為與的夾角.再由2?1+4+2×1×2cos7可得||,∴||cosα﹣1,解得cosα.∵0≤α≤π,∴﹣1≤cosα≤1,∴1,即||+1≤0,解得||,故答案為.【點(diǎn)睛】本題考查了向量模的范圍,意在考查學(xué)生的計(jì)算能力,利用三角函數(shù)的有界性是解題的關(guān)鍵.16.11【解析】
根據(jù)復(fù)數(shù)運(yùn)算法則計(jì)算復(fù)數(shù)z,根據(jù)復(fù)數(shù)的概念和模長公式計(jì)算得解.【詳解】復(fù)數(shù)z,∵復(fù)數(shù)z是純虛數(shù),∴,解得a=1,∴z=i,∴|z|=1,故答案為:1,1.【點(diǎn)睛】此題考查復(fù)數(shù)的概念和模長計(jì)算,根據(jù)復(fù)數(shù)是純虛數(shù)建立方程求解,計(jì)算模長,關(guān)鍵在于熟練掌握復(fù)數(shù)的運(yùn)算法則.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)在犯錯(cuò)誤概率不超過的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.(2)見解析【解析】試題分析:(1)可以根據(jù)所給表格填出列聯(lián)表,利用列聯(lián)表求出,結(jié)合所給數(shù)據(jù),應(yīng)用獨(dú)立性檢驗(yàn)知識(shí)可作出判斷;(2)寫出的所有可能取值,并求出對(duì)應(yīng)的概率,可列出分布列并進(jìn)一步求出的數(shù)學(xué)期望.試題解析:(Ⅰ)根據(jù)已知數(shù)據(jù)得到如下列聯(lián)表:甲地乙地總計(jì)長纖維91625短纖維11415總計(jì)212141根據(jù)列聯(lián)表中的數(shù)據(jù),可得所以,在犯錯(cuò)誤概率不超過的前提下認(rèn)為“纖維長度與土壤環(huán)境有關(guān)系”.(Ⅱ)由表可知在8根中乙地“短纖維”的根數(shù)為,的可能取值為:1,1,2,3,,,,.∴的分布列為:1123∴.18.(Ⅰ)(Ⅱ)證明見解析【解析】
(Ⅰ)由an+2=(﹣1)n(an﹣1)+2an+1,對(duì)分奇偶討論,即可得;(Ⅱ)由(Ⅰ)得,用錯(cuò)位相減法求出,運(yùn)用分析法證明即可.【詳解】(Ⅰ),當(dāng)為奇數(shù)時(shí),,又由,得,當(dāng)為偶數(shù)時(shí),,又由a2=3,得,;(Ⅱ)由(1)得,則①②①-②可得:,,若證明Sn,則需要證明,又,即證明,即證,又顯然成立,故Sn得證.【點(diǎn)睛】本題主要考查了由遞推公式求通項(xiàng)公式,錯(cuò)位相減法求前項(xiàng)和,分析法證明不等式,考查了分類討論的思想,考查了學(xué)生的運(yùn)算求解與邏輯推理能力.19.(Ⅰ)曲線是焦點(diǎn)在軸上的橢圓;(Ⅱ).【解析】試題分析:(1)由題易知,直線的參數(shù)方程為,(為參數(shù)),;曲線的直角坐標(biāo)方程為,橢圓;(2)將直線代入橢圓得到,所以,解得.試題解析:(Ⅰ)直線的參數(shù)方程為.曲線的直角坐標(biāo)方程為,即,所以曲線是焦點(diǎn)在軸上的橢圓.(Ⅱ)將的參數(shù)方程代入曲線的直角坐標(biāo)方程為得,,得,,20.(1)x2=4y.(2).【解析】試題解析:(Ⅰ)設(shè)點(diǎn)P(x0,),由x2=2py(p>0)得,y=,求導(dǎo)y′=,因?yàn)橹本€PQ的斜率為1,所以=1且x0--√2=0,解得p=2,所以拋物線C1的方程為x2=4y.(Ⅱ)因?yàn)辄c(diǎn)P處的切線方程為:y-=(x-x0),即2x0x-2py-x02=0,∴OQ的方程為y=-x根據(jù)切線與圓切,得d=r,即,化簡得x04=4x02+4p2,由方程組,解得Q(,),所以|PQ|=√1+k2|xP-xQ|=點(diǎn)F(0,)到切線PQ的距離是d=,所以S1==,S2=,而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,所以==+1≥2+1,當(dāng)且僅當(dāng)時(shí)取“=”號(hào),即x02=4+2,此時(shí),p=.所以的最小值為2+1.考點(diǎn):求拋物線的方程,與拋物線有關(guān)的最值問題.21.(1)見解析;(2)【解析】
(1)可證面,從而可得.(2)可證點(diǎn)為線段的三等分點(diǎn),再過作于,過作,垂足為,則為二面角的平面角,利用解直角三角形的方法可求.也可以建立如圖所示的空間直角坐標(biāo)系,利用兩個(gè)平面的法向量來計(jì)算二面角的平面角的余弦值,最后利用同角三角函數(shù)的基本關(guān)系式可求.【詳解】證明:(1)因?yàn)闉橹悬c(diǎn),所以.因?yàn)槠矫嫫矫妫矫嫫矫?,平面,所以平面,而平面,故,又因?yàn)?,所以,則,又,故面,又面,所以.(2)由(1)可得:面在面內(nèi)的射
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國戶外運(yùn)動(dòng)光學(xué)產(chǎn)品行業(yè)并購重組擴(kuò)張戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國智能卡芯片行業(yè)全國市場開拓戰(zhàn)略制定與實(shí)施研究報(bào)告
- 新形勢下風(fēng)機(jī)塔架行業(yè)可持續(xù)發(fā)展戰(zhàn)略制定與實(shí)施研究報(bào)告
- 2025-2030年中國產(chǎn)業(yè)園區(qū)物業(yè)管理行業(yè)營銷創(chuàng)新戰(zhàn)略制定與實(shí)施研究報(bào)告
- 建設(shè)書香校園活動(dòng)方案
- 校園西裝調(diào)查問卷
- 建設(shè)功臣事跡材料
- 2025年教育學(xué)試題答案
- 食品保鮮膜知識(shí)培訓(xùn)課件
- 西藏林芝市2023-2024學(xué)年九年級(jí)上學(xué)期期末考試化學(xué)試題
- 專項(xiàng)債券培訓(xùn)課件
- CNAS-CL01-G001:2024檢測和校準(zhǔn)實(shí)驗(yàn)室能力認(rèn)可準(zhǔn)則的應(yīng)用要求
- 校園重點(diǎn)防火部位消防安全管理規(guī)定(3篇)
- 臨時(shí)施工圍擋安全應(yīng)急預(yù)案
- ICP-網(wǎng)絡(luò)與信息安全保障措施-1.信息安全管理組織機(jī)構(gòu)設(shè)置及工作職責(zé)
- 碼頭安全生產(chǎn)管理制度
- 2024城市河湖底泥污染狀況調(diào)查評(píng)價(jià)技術(shù)導(dǎo)則
- MT-T 1199-2023 煤礦用防爆柴油機(jī)無軌膠輪運(yùn)輸車輛通用安全技術(shù)條件
- C4支持學(xué)生創(chuàng)造性學(xué)習(xí)與表達(dá)作業(yè)1-設(shè)計(jì)方案
- Q∕SY 01330-2020 井下作業(yè)現(xiàn)場監(jiān)督規(guī)范
- 醫(yī)院關(guān)于不合理醫(yī)療檢查專項(xiàng)治理自查自查自糾總結(jié)
評(píng)論
0/150
提交評(píng)論