版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年廣東省深圳外國語校中考聯(lián)考數(shù)學(xué)試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,在平面直角坐標(biāo)系xOy中,菱形AOBC的一個頂點O在坐標(biāo)原點,一邊OB在x軸的正半軸上,sin∠AOB=,反比例函數(shù)y=在第一象限內(nèi)的圖象經(jīng)過點A,與BC交于點F,則△AOF的面積等于()A.30 B.40 C.60 D.802.若二元一次方程組的解為則的值為()A.1 B.3 C. D.3.下列圖形中,既是中心對稱圖形又是軸對稱圖形的是()A. B.C. D.4.下列運算正確的是()A.a(chǎn)4+a2=a4 B.(x2y)3=x6y3C.(m﹣n)2=m2﹣n2 D.b6÷b2=b35.如圖,在正八邊形ABCDEFGH中,連接AC,AE,則的值是()A.1 B. C.2 D.6.若一組數(shù)據(jù)2,3,4,5,x的平均數(shù)與中位數(shù)相等,則實數(shù)x的值不可能是()A.6 B.3.5 C.2.5 D.17.將拋物線y=A.y=-12C.y=-128.如圖,反比例函數(shù)(x>0)的圖象經(jīng)過矩形OABC對角線的交點M,分別于AB、BC交于點D、E,若四邊形ODBE的面積為9,則k的值為()A.1 B.2 C.3 D.49.據(jù)國土資源部數(shù)據(jù)顯示,我國是全球“可燃冰”資源儲量最多的國家之一,海、陸總儲量約為39000000000噸油當(dāng)量,將39000000000用科學(xué)記數(shù)法表示為()A.3.9×1010 B.3.9×109 C.0.39×1011 D.39×10910.-10-4的結(jié)果是()A.-7B.7C.-14D.13二、填空題(共7小題,每小題3分,滿分21分)11.計算:2tan12.如圖,定長弦CD在以AB為直徑的⊙O上滑動(點C、D與點A、B不重合),M是CD的中點,過點C作CP⊥AB于點P,若CD=3,AB=8,PM=l,則l的最大值是13.如圖,半徑為5的半圓的初始狀態(tài)是直徑平行于桌面上的直線b,然后把半圓沿直線b進(jìn)行無滑動滾動,使半圓的直徑與直線b重合為止,則圓心O運動路徑的長度等于_____.14.因式分解:=_______________.15.如圖,在直角三角形ABC中,∠ACB=90°,CA=4,點P是半圓弧AC的中點,連接BP,線段即把圖形APCB(指半圓和三角形ABC組成的圖形)分成兩部分,則這兩部分面積之差的絕對值是_____.16.如圖,已知正六邊形ABCDEF的外接圓半徑為2cm,則正六邊形的邊心距是__________cm.17.在平面直角坐標(biāo)系的第一象限內(nèi),邊長為1的正方形ABCD的邊均平行于坐標(biāo)軸,A點的坐標(biāo)為(a,a),如圖,若曲線y=(x>0)與此正方形的邊有交點,則a的取值范圍是_______.三、解答題(共7小題,滿分69分)18.(10分)頂點為D的拋物線y=﹣x2+bx+c交x軸于A、B(3,0),交y軸于點C,直線y=﹣x+m經(jīng)過點C,交x軸于E(4,0).求出拋物線的解析式;如圖1,點M為線段BD上不與B、D重合的一個動點,過點M作x軸的垂線,垂足為N,設(shè)點M的橫坐標(biāo)為x,四邊形OCMN的面積為S,求S與x之間的函數(shù)關(guān)系式,并求S的最大值;點P為x軸的正半軸上一個動點,過P作x軸的垂線,交直線y=﹣x+m于G,交拋物線于H,連接CH,將△CGH沿CH翻折,若點G的對應(yīng)點F恰好落在y軸上時,請直接寫出點P的坐標(biāo).19.(5分)如圖,將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,點C的對應(yīng)點C′恰好落在CB的延長線上,邊AB交邊C′D′于點E.(1)求證:BC=BC′;(2)若AB=2,BC=1,求AE的長.20.(8分)如圖,菱形ABCD的邊長為20cm,∠ABC=120°,對角線AC,BD相交于點O,動點P從點A出發(fā),以4cm/s的速度,沿A→B的路線向點B運動;過點P作PQ∥BD,與AC相交于點Q,設(shè)運動時間為t秒,0<t<1.(1)設(shè)四邊形PQCB的面積為S,求S與t的關(guān)系式;(2)若點Q關(guān)于O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N,當(dāng)t為何值時,點P、M、N在一直線上?(3)直線PN與AC相交于H點,連接PM,NM,是否存在某一時刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請說明理由.21.(10分)如圖,在平面直角坐標(biāo)系中,以直線為對稱軸的拋物線與直線交于,兩點,與軸交于,直線與軸交于點.(1)求拋物線的函數(shù)表達(dá)式;(2)設(shè)直線與拋物線的對稱軸的交點為,是拋物線上位于對稱軸右側(cè)的一點,若,且與的面積相等,求點的坐標(biāo);(3)若在軸上有且只有一點,使,求的值.22.(10分)春節(jié)期間,收發(fā)微信紅包已經(jīng)成為各類人群進(jìn)行交流聯(lián)系、增強感情的一部分,小王在2017年春節(jié)共收到紅包400元,2019年春節(jié)共收到紅包484元,求小王在這兩年春節(jié)收到紅包的年平均增長率.23.(12分)如圖,某高速公路建設(shè)中需要確定隧道AB的長度.已知在離地面1500m高度C處的飛機上,測量人員測得正前方A、B兩點處的俯角分別為60°和45°.求隧道AB的長(≈1.73).24.(14分)在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長為1,格點三角形(頂點是網(wǎng)格線的交點的三角形)的頂點、的坐標(biāo)分別為,.請在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;請作出關(guān)于軸對稱的;點的坐標(biāo)為.的面積為.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、B【解析】
過點A作AM⊥x軸于點M,設(shè)OA=a,通過解直角三角形找出點A的坐標(biāo),結(jié)合反比例函數(shù)圖象上點的坐標(biāo)特征即可求出a的值,再根據(jù)四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出結(jié)論.【詳解】過點A作AM⊥x軸于點M,如圖所示.設(shè)OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA?sin∠AOB=a,OM==a,∴點A的坐標(biāo)為(a,a).∵點A在反比例函數(shù)y=的圖象上,∴a?a=a2=48,解得:a=1,或a=-1(舍去).∴AM=8,OM=6,OB=OA=1.∵四邊形OACB是菱形,點F在邊BC上,∴S△AOF=S菱形OBCA=OB?AM=2.故選B.【點睛】本題考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是找出S△AOF=S菱形OBCA.2、D【解析】
先解方程組求出,再將代入式中,可得解.【詳解】解:,得,所以,因為所以.故選D.【點睛】本題考查二元一次方程組的解,解題的關(guān)鍵是觀察兩方程的系數(shù),從而求出a-b的值,本題屬于基礎(chǔ)題型.3、D【解析】
根據(jù)中心對稱圖形的定義旋轉(zhuǎn)180°后能夠與原圖形完全重合即是中心對稱圖形,以及軸對稱圖形的定義即可判斷出.【詳解】解:A.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;B.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,不是軸對稱圖形,故此選項錯誤;C.∵此圖形旋轉(zhuǎn)180°后不能與原圖形重合,∴此圖形不是中心對稱圖形,是軸對稱圖形,故此選項錯誤;D.∵此圖形旋轉(zhuǎn)180°后能與原圖形重合,∴此圖形是中心對稱圖形,也是軸對稱圖形,故此選項正確.故選:D.【點睛】本題考查了中心對稱圖形與軸對稱圖形的定義,解題的關(guān)鍵是熟練的掌握中心對稱圖形與軸對稱圖形的定義.4、B【解析】分析:根據(jù)合并同類項,積的乘方,完全平方公式,同底數(shù)冪相除的性質(zhì),逐一計算判斷即可.詳解:根據(jù)同類項的定義,可知a4與a2不是同類項,不能計算,故不正確;根據(jù)積的乘方,等于個個因式分別乘方,可得(x2y)3=x6y3,故正確;根據(jù)完全平方公式,可得(m-n)2=m2-2mn+n2,故不正確;根據(jù)同底數(shù)冪的除法,可知b6÷b2=b4,不正確.故選B.點睛:此題主要考查了合并同類項,積的乘方,完全平方公式,同底數(shù)冪相除的性質(zhì),熟記并靈活運用是解題關(guān)鍵.5、B【解析】
連接AG、GE、EC,易知四邊形ACEG為正方形,根據(jù)正方形的性質(zhì)即可求解.【詳解】解:連接AG、GE、EC,則四邊形ACEG為正方形,故=.故選:B.【點睛】本題考查了正多邊形的性質(zhì),正確作出輔助線是關(guān)鍵.6、C【解析】
因為中位數(shù)的值與大小排列順序有關(guān),而此題中x的大小位置未定,故應(yīng)該分類討論x所處的所有位置情況:從小到大(或從大到?。┡帕性谥虚g;結(jié)尾;開始的位置.【詳解】(1)將這組數(shù)據(jù)從小到大的順序排列為2,3,4,5,x,
處于中間位置的數(shù)是4,
∴中位數(shù)是4,
平均數(shù)為(2+3+4+5+x)÷5,
∴4=(2+3+4+5+x)÷5,
解得x=6;符合排列順序;
(2)將這組數(shù)據(jù)從小到大的順序排列后2,3,4,x,5,
中位數(shù)是4,
此時平均數(shù)是(2+3+4+5+x)÷5=4,
解得x=6,不符合排列順序;
(3)將這組數(shù)據(jù)從小到大的順序排列后2,3,x,4,5,
中位數(shù)是x,
平均數(shù)(2+3+4+5+x)÷5=x,
解得x=3.5,符合排列順序;
(4)將這組數(shù)據(jù)從小到大的順序排列后2,x,3,4,5,
中位數(shù)是3,
平均數(shù)(2+3+4+5+x)÷5=3,
解得x=1,不符合排列順序;
(5)將這組數(shù)據(jù)從小到大的順序排列后x,2,3,4,5,
中位數(shù)是3,
平均數(shù)(2+3+4+5+x)÷5=3,
解得x=1,符合排列順序;
∴x的值為6、3.5或1.
故選C.【點睛】考查了確定一組數(shù)據(jù)的中位數(shù),涉及到分類討論思想,較難,要明確中位數(shù)的值與大小排列順序有關(guān),一些學(xué)生往往對這個概念掌握不清楚,計算方法不明確而解答不完整.注意找中位數(shù)的時候一定要先排好順序,然后再根據(jù)奇數(shù)和偶數(shù)個來確定中位數(shù).如果數(shù)據(jù)有奇數(shù)個,則正中間的數(shù)字即為所求;如果是偶數(shù)個,則找中間兩位數(shù)的平均數(shù).7、D【解析】
將拋物線y=12【詳解】由題意得,a=-12設(shè)旋轉(zhuǎn)180°以后的頂點為(x′,y′),則x′=2×0-(-2)=2,y′=2×3-5=1,∴旋轉(zhuǎn)180°以后的頂點為(2,1),∴旋轉(zhuǎn)180°以后所得圖象的解析式為:y=-1故選D.【點睛】本題考查了二次函數(shù)圖象的旋轉(zhuǎn)變換,在繞拋物線某點旋轉(zhuǎn)180°以后,二次函數(shù)的開口大小沒有變化,方向相反;設(shè)旋轉(zhuǎn)前的的頂點為(x,y),旋轉(zhuǎn)中心為(a,b),由中心對稱的性質(zhì)可知新頂點坐標(biāo)為(2a-x,2b-y),從而可求出旋轉(zhuǎn)后的函數(shù)解析式.8、C【解析】
本題可從反比例函數(shù)圖象上的點E、M、D入手,分別找出△OCE、△OAD、矩形OABC的面積與|k|的關(guān)系,列出等式求出k值.【詳解】由題意得:E、M、D位于反比例函數(shù)圖象上,則,過點M作MG⊥y軸于點G,作MN⊥x軸于點N,則S□ONMG=|k|.又∵M(jìn)為矩形ABCO對角線的交點,∴S矩形ABCO=4S□ONMG=4|k|,∵函數(shù)圖象在第一象限,k>0,∴.解得:k=1.故選C.【點睛】本題考查反比例函數(shù)系數(shù)k的幾何意義,過雙曲線上的任意一點分別向兩條坐標(biāo)軸作垂線,與坐標(biāo)軸圍成的矩形面積就等于|k|,本知識點是中考的重要考點,同學(xué)們應(yīng)高度關(guān)注.9、A【解析】
用科學(xué)記數(shù)法表示較大的數(shù)時,一般形式為a×10n,其中1≤|a|<10,n為整數(shù),據(jù)此判斷即可.【詳解】39000000000=3.9×1.故選A.【點睛】科學(xué)記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當(dāng)原數(shù)絕對值>10時,n是正數(shù);當(dāng)原數(shù)的絕對值<1時,n是負(fù)數(shù).10、C【解析】解:-10-4=-1.故選C.二、填空題(共7小題,每小題3分,滿分21分)11、3+3【解析】
本題涉及零指數(shù)冪、負(fù)指數(shù)冪、絕對值、特殊角的三角函數(shù)值4個考點.在計算時,需要針對每個考點分別進(jìn)行計算,然后根據(jù)實數(shù)的運算法則求得計算結(jié)果.【詳解】原式=2×3+2﹣3+1,=23+2﹣3+1,=3+3.【點睛】本題主要考查了實數(shù)的綜合運算能力,是各地中考題中常見的計算題型.解決此類題目的關(guān)鍵是熟練掌握負(fù)整數(shù)指數(shù)冪、零指數(shù)冪、特殊角的三角函數(shù)、絕對值等考點的運算12、4【解析】
當(dāng)CD∥AB時,PM長最大,連接OM,OC,得出矩形CPOM,推出PM=OC,求出OC長即可.【詳解】當(dāng)CD∥AB時,PM長最大,連接OM,OC,∵CD∥AB,CP⊥CD,∴CP⊥AB,∵M(jìn)為CD中點,OM過O,∴OM⊥CD,∴∠OMC=∠PCD=∠CPO=90°,∴四邊形CPOM是矩形,∴PM=OC,∵⊙O直徑AB=8,∴半徑OC=4,即PM=4.【點睛】本題考查矩形的判定和性質(zhì),垂徑定理,平行線的性質(zhì),此類問題是初中數(shù)學(xué)的重點和難點,在中考中極為常見,一般以壓軸題形式出現(xiàn),難度較大.13、5π【解析】
根據(jù)題意得出球在無滑動旋轉(zhuǎn)中通過的路程為圓弧,根據(jù)弧長公式求出弧長即可.【詳解】解:由圖形可知,圓心先向前走OO1的長度,從O到O1的運動軌跡是一條直線,長度為圓的周長,然后沿著弧O1O2旋轉(zhuǎn)圓的周長,則圓心O運動路徑的長度為:×2π×5=5π,故答案為5π.【點睛】本題考查的是弧長的計算和旋轉(zhuǎn)的知識,解題關(guān)鍵是確定半圓作無滑動翻轉(zhuǎn)所經(jīng)過的路線并求出長度.14、a(a+b)(a-b).【解析】分析:本題考查的是提公因式法和利用平方差公式分解因式.解析:原式=a(a+b)(a-b).故答案為a(a+b)(a-b).15、4【解析】
連接把兩部分的面積均可轉(zhuǎn)化為規(guī)則圖形的面積,不難發(fā)現(xiàn)兩部分面積之差的絕對值即為的面積的2倍.【詳解】解:連接OP、OB,∵圖形BAP的面積=△AOB的面積+△BOP的面積+扇形OAP的面積,圖形BCP的面積=△BOC的面積+扇形OCP的面積?△BOP的面積,又∵點P是半圓弧AC的中點,OA=OC,∴扇形OAP的面積=扇形OCP的面積,△AOB的面積=△BOC的面積,∴兩部分面積之差的絕對值是點睛:考查扇形面積和三角形的面積,把不規(guī)則圖形的面積轉(zhuǎn)化為規(guī)則圖形的面積是解題的關(guān)鍵.16、【解析】連接OA,作OM⊥AB于點M,∵正六邊形ABCDEF的外接圓半徑為2cm∴正六邊形的半徑為2cm,即OA=2cm在正六邊形ABCDEF中,∠AOM=30°,∴正六邊形的邊心距是OM=cos30°×OA=(cm)故答案為.17、【解析】
因為A點的坐標(biāo)為(a,a),則C(a﹣1,a﹣1),根據(jù)題意只要分別求出當(dāng)A點或C點在曲線上時a的值即可得到答案.【詳解】解:∵A點的坐標(biāo)為(a,a),∴C(a﹣1,a﹣1),當(dāng)C在雙曲線y=時,則a﹣1=,解得a=+1;當(dāng)A在雙曲線y=時,則a=,解得a=,∴a的取值范圍是≤a≤+1.故答案為≤a≤+1.【點睛】本題主要考查反比例函數(shù)與幾何圖形的綜合問題,解此題的關(guān)鍵在于根據(jù)題意找到關(guān)鍵點,然后將關(guān)鍵點的坐標(biāo)代入反比例函數(shù)求得確定值即可.三、解答題(共7小題,滿分69分)18、(1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;當(dāng)x=時,S有最大值,最大值為;(3)存在,點P的坐標(biāo)為(4,0)或(,0).【解析】
(1)將點E代入直線解析式中,可求出點C的坐標(biāo),將點C、B代入拋物線解析式中,可求出拋物線解析式.(2)將拋物線解析式配成頂點式,可求出點D的坐標(biāo),設(shè)直線BD的解析式,代入點B、D,可求出直線BD的解析式,則MN可表示,則S可表示.(3)設(shè)點P的坐標(biāo),則點G的坐標(biāo)可表示,點H的坐標(biāo)可表示,HG長度可表示,利用翻折推出CG=HG,列等式求解即可.【詳解】(1)將點E代入直線解析式中,0=﹣×4+m,解得m=3,∴解析式為y=﹣x+3,∴C(0,3),∵B(3,0),則有,解得,∴拋物線的解析式為:y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),設(shè)直線BD的解析式為y=kx+b,代入點B、D,,解得,∴直線BD的解析式為y=﹣2x+6,則點M的坐標(biāo)為(x,﹣2x+6),∴S=(3+6﹣2x)?x?=﹣(x﹣)2+,∴當(dāng)x=時,S有最大值,最大值為.(3)存在,如圖所示,設(shè)點P的坐標(biāo)為(t,0),則點G(t,﹣t+3),H(t,﹣t2+2t+3),∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|CG==t,∵△CGH沿GH翻折,G的對應(yīng)點為點F,F(xiàn)落在y軸上,而HG∥y軸,∴HG∥CF,HG=HF,CG=CF,∠GHC=∠CHF,∴∠FCH=∠CHG,∴∠FCH=∠FHC,∴∠GCH=∠GHC,∴CG=HG,∴|t2﹣t|=t,當(dāng)t2﹣t=t時,解得t1=0(舍),t2=4,此時點P(4,0).當(dāng)t2﹣t=﹣t時,解得t1=0(舍),t2=,此時點P(,0).綜上,點P的坐標(biāo)為(4,0)或(,0).【點睛】此題考查了待定系數(shù)法求函數(shù)解析式,點坐標(biāo)轉(zhuǎn)換為線段長度,幾何圖形與二次函數(shù)結(jié)合的問題,最后一問推出CG=HG為解題關(guān)鍵.19、(1)證明見解析;(2)AE=.【解析】
(1)連結(jié)AC、AC′,根據(jù)矩形的性質(zhì)得到∠ABC=90°,即AB⊥CC′,根據(jù)旋轉(zhuǎn)的性質(zhì)即可得到結(jié)論;(2)根據(jù)矩形的性質(zhì)得到AD=BC,∠D=∠ABC′=90°,根據(jù)旋轉(zhuǎn)的性質(zhì)得到BC′=AD′,AD=AD′,證得BC′=AD′,根據(jù)全等三角形的性質(zhì)得到BE=D′E,設(shè)AE=x,則D′E=2﹣x,根據(jù)勾股定理列方程即可得到結(jié)論.【詳解】解::(1)連結(jié)AC、AC′,∵四邊形ABCD為矩形,∴∠ABC=90°,即AB⊥CC′,∵將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,∴AC=AC′,∴BC=BC′;(2)∵四邊形ABCD為矩形,∴AD=BC,∠D=∠ABC′=90°,∵BC=BC′,∴BC′=AD′,∵將矩形ABCD繞點A順時針旋轉(zhuǎn),得到矩形AB′C′D′,∴AD=AD′,∴BC′=AD′,在△AD′E與△C′BE中∴△AD′E≌△C′BE,∴BE=D′E,設(shè)AE=x,則D′E=2﹣x,在Rt△AD′E中,∠D′=90°,由勾定理,得x2﹣(2﹣x)2=1,解得x=,∴AE=.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),三角形全等的判定和性質(zhì),勾股定理的應(yīng)用等,熟練掌握性質(zhì)定理是解題的關(guān)鍵.20、(1)S=﹣2(0<t<1);(2);(3)見解析.【解析】
(1)如圖1,根據(jù)S=S△ABC-S△APQ,代入可得S與t的關(guān)系式;
(2)設(shè)PM=x,則AM=2x,可得AP=x=4t,計算x的值,根據(jù)直角三角形30度角的性質(zhì)可得AM=2PM=,根據(jù)AM=AO+OM,列方程可得t的值;
(3)存在,通過畫圖可知:N在CD上時,直線PN平分四邊形APMN的面積,根據(jù)面積相等可得MG=AP,由AM=AO+OM,列式可得t的值.【詳解】解:(1)如圖1,∵四邊形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,∴∠OAB=30°,∵AB=20,∴OB=10,AO=10,由題意得:AP=4t,∴PQ=2t,AQ=2t,∴S=S△ABC﹣S△APQ,=,=,=﹣2t2+100(0<t<1);(2)如圖2,在Rt△APM中,AP=4t,∵點Q關(guān)于O的對稱點為M,∴OM=OQ,設(shè)PM=x,則AM=2x,∴AP=x=4t,∴x=,∴AM=2PM=,∵AM=AO+OM,∴=10+10﹣2t,t=;答:當(dāng)t為秒時,點P、M、N在一直線上;(3)存在,如圖3,∵直線PN平分四邊形APMN的面積,∴S△APN=S△PMN,過M作MG⊥PN于G,∴,∴MG=AP,易得△APH≌△MGH,∴AH=HM=t,∵AM=AO+OM,同理可知:OM=OQ=10﹣2t,t=10=10﹣2t,t=.答:當(dāng)t為秒時,使得直線PN平分四邊形APMN的面積.【點睛】考查了全等三角形的判定與性質(zhì),對稱的性質(zhì),三角形和四邊形的面積,二次根式的化簡等知識點,計算量大,解答本題的關(guān)鍵是熟練掌握動點運動時所構(gòu)成的三角形各邊的關(guān)系.21、(1).;(2)點坐標(biāo)為;.(3).【解析】分析:(1)根據(jù)已知列出方程組求解即可;(2)作AM⊥x軸,BN⊥x軸,垂足分別為M,N,求出直線l的解析式,再分兩種情況分別求出G點坐標(biāo)即可;(3)根據(jù)題意分析得出以AB為直徑的圓與x軸只有一個交點,且P為切點,P為MN的中點,運用三角形相似建立等量關(guān)系列出方程求解即可.詳解:(1)由題可得:解得,,.二次函數(shù)解析式為:.(2)作軸,軸,垂足分別為,則.,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 結(jié)題報告中的課程設(shè)計
- 崇州工業(yè)保潔合同范例
- 電梯拆除異地安裝合同范例
- 超市消防合同范例
- 清運垃圾合同范例
- 公路承包混凝土合同范例
- 地皮租賃合同范本范例3篇
- 合同更改增補協(xié)議全解析3篇
- 婚姻破碎出軌的協(xié)議3篇
- 英文合同范例夏荷
- 宣傳片專題片視頻拍攝方案投標(biāo)方案(技術(shù)標(biāo))
- 日間化療病房的運行方案
- 砸墻安全的協(xié)議書(通用)
- 康復(fù)科建設(shè)可行性方案
- 白雪公主 臺詞
- 課題五-車刀簡介(車刀種類及用途)
- 自身免疫性疾病實驗研究
- 檢驗與臨床溝通與案例分析
- 《發(fā)電廠風(fēng)煙系統(tǒng)》課件
- 高二歷史期末復(fù)習(xí)核心知識串講(選擇性必修1第1-10課) 【知識精講精研】高二歷史上學(xué)期期末考點大串講(統(tǒng)編版)
- 地鐵運營公司工務(wù)線路質(zhì)量評定標(biāo)準(zhǔn)
評論
0/150
提交評論