版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
第05講橢圓(精講)目錄第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第二部分:課前自我評(píng)估測(cè)試第三部分:典型例題剖析題型一:橢圓定義的應(yīng)用角度1:利用橢圓定義求軌跡方程角度2:利用橢圓定義解決焦點(diǎn)三角形問題角度3:利用橢圓定義求最值題型二:橢圓的標(biāo)準(zhǔn)方程題型三:橢圓的簡(jiǎn)單幾何性質(zhì)角度1:橢圓的長(zhǎng)軸、短軸、焦距角度2:求橢圓的離心率角度3:與橢圓幾何性質(zhì)有關(guān)的最值(范圍)問題第四部分:高考真題感悟第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶第一部分:知識(shí)點(diǎn)精準(zhǔn)記憶知識(shí)點(diǎn)一:橢圓的定義平面內(nèi)一個(gè)動(dòng)點(diǎn)SKIPIF1<0到兩個(gè)定點(diǎn)SKIPIF1<0、SKIPIF1<0的距離之和等于常數(shù)SKIPIF1<0,這個(gè)動(dòng)點(diǎn)SKIPIF1<0的軌跡叫橢圓.這兩個(gè)定點(diǎn)(SKIPIF1<0,SKIPIF1<0)叫橢圓的焦點(diǎn),兩焦點(diǎn)的距離(SKIPIF1<0)叫作橢圓的焦距.說明:若SKIPIF1<0,SKIPIF1<0的軌跡為線段SKIPIF1<0;若SKIPIF1<0,SKIPIF1<0的軌跡無圖形定義的集合語(yǔ)言表述集合SKIPIF1<0.知識(shí)點(diǎn)二:橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)1、橢圓的標(biāo)準(zhǔn)方程焦點(diǎn)位置焦點(diǎn)在SKIPIF1<0軸上焦點(diǎn)在SKIPIF1<0軸上標(biāo)準(zhǔn)方程SKIPIF1<0(SKIPIF1<0)SKIPIF1<0(SKIPIF1<0)圖象焦點(diǎn)坐標(biāo)SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0的關(guān)系SKIPIF1<0范圍SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0頂點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0軸長(zhǎng)短軸長(zhǎng)=SKIPIF1<0,長(zhǎng)軸長(zhǎng)=SKIPIF1<0焦點(diǎn)SKIPIF1<0SKIPIF1<0焦距SKIPIF1<0對(duì)稱性對(duì)稱軸:SKIPIF1<0軸、SKIPIF1<0軸對(duì)稱中心:原點(diǎn)離心率SKIPIF1<0,SKIPIF1<0知識(shí)點(diǎn)三:常用結(jié)論1、與橢圓SKIPIF1<0SKIPIF1<0共焦點(diǎn)的橢圓方程可設(shè)為:SKIPIF1<0SKIPIF1<02、有相同離心率:SKIPIF1<0(SKIPIF1<0,焦點(diǎn)在SKIPIF1<0軸上)或SKIPIF1<0(SKIPIF1<0,焦點(diǎn)在SKIPIF1<0軸上)3、橢圓SKIPIF1<0的圖象中線段的幾何特征(如下圖):(1)SKIPIF1<0;(2)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(4)橢圓通經(jīng)長(zhǎng)=SKIPIF1<0第二部分:課前自我評(píng)估測(cè)試第二部分:課前自我評(píng)估測(cè)試1.(2022·江蘇·高二)P是橢圓SKIPIF1<0上一點(diǎn),SKIPIF1<0,SKIPIF1<0是該橢圓的兩個(gè)焦點(diǎn),且SKIPIF1<0,則SKIPIF1<0(
)A.1 B.3 C.5 D.9【答案】A解:對(duì)橢圓方程SKIPIF1<0變形得SKIPIF1<0,易知橢圓長(zhǎng)半軸的長(zhǎng)為4,由橢圓的定義可得SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0.故選:A.2.(2022·湖南·周南中學(xué)高二期末)已知橢圓C:SKIPIF1<0的左右焦點(diǎn)分別為F1、F2,過左焦點(diǎn)F1,作直線交橢圓C于A、B兩點(diǎn),則三角形ABF2的周長(zhǎng)為(
)A.10 B.15 C.20 D.25【答案】C由題意橢圓的長(zhǎng)軸為SKIPIF1<0,由橢圓定義知SKIPIF1<0∴SKIPIF1<0故選:C3.(2022·浙江紹興·模擬預(yù)測(cè))已知橢圓SKIPIF1<0,則該橢圓的離心率SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C解:因?yàn)闄E圓SKIPIF1<0的方程為SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0.故選:C.4.(2022·上海靜安·二模)已知橢圓SKIPIF1<0SKIPIF1<0的一個(gè)焦點(diǎn)坐標(biāo)為SKIPIF1<0,則SKIPIF1<0__________.【答案】SKIPIF1<0由焦點(diǎn)坐標(biāo)SKIPIF1<0知焦點(diǎn)在SKIPIF1<0軸上,且SKIPIF1<0,解得SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0.5.(2022·上海黃浦·模擬預(yù)測(cè))已知橢圓SKIPIF1<0的左焦點(diǎn)為F,若A?B是橢圓上兩動(dòng)點(diǎn),且SKIPIF1<0垂直于x軸,則SKIPIF1<0周長(zhǎng)的最大值為___________.【答案】12如圖.設(shè)SKIPIF1<0與x軸相交于點(diǎn)C,橢圓SKIPIF1<0右焦點(diǎn)為SKIPIF1<0,連接SKIPIF1<0,所以SKIPIF1<0周長(zhǎng)為SKIPIF1<0故SKIPIF1<0的周長(zhǎng)的最大值為12,故答案為:12.第三部分:典型例題剖析第三部分:典型例題剖析題型一:橢圓定義的應(yīng)用角度1:利用橢圓定義求軌跡方程典型例題例題1.(2022·全國(guó)·高二課時(shí)練習(xí))SKIPIF1<0中,SKIPIF1<0為動(dòng)點(diǎn),SKIPIF1<0,SKIPIF1<0且滿足SKIPIF1<0,則SKIPIF1<0點(diǎn)的軌跡方程為______.【答案】SKIPIF1<0.根據(jù)正弦定理,由SKIPIF1<0,所以點(diǎn)A點(diǎn)的軌跡是以SKIPIF1<0,SKIPIF1<0為焦點(diǎn)的橢圓,不包括兩點(diǎn)SKIPIF1<0,由SKIPIF1<0,所以A點(diǎn)的軌跡方程為SKIPIF1<0,故答案為:SKIPIF1<0.例題2.(2022·全國(guó)·高二專題練習(xí))方程SKIPIF1<0化簡(jiǎn)的結(jié)果是___________.【答案】SKIPIF1<0解:∵SKIPIF1<0,故令SKIPIF1<0,SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,∴方程表示的曲線是以SKIPIF1<0,SKIPIF1<0為焦點(diǎn),長(zhǎng)軸長(zhǎng)SKIPIF1<0的橢圓,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴方程為SKIPIF1<0.故答案為:SKIPIF1<0.例題3.(2022·河北·深州長(zhǎng)江中學(xué)高二期末)已知SKIPIF1<0,SKIPIF1<0是圓SKIPIF1<0上一動(dòng)點(diǎn),線段SKIPIF1<0的垂直平分線交SKIPIF1<0于SKIPIF1<0,則動(dòng)點(diǎn)SKIPIF1<0的軌跡方程為______________.【答案】SKIPIF1<0如圖所示,圓SKIPIF1<0的圓心坐標(biāo)為SKIPIF1<0,半徑SKIPIF1<0,因?yàn)镾KIPIF1<0是線段SKIPIF1<0的垂直平分線上的點(diǎn),所以SKIPIF1<0,則SKIPIF1<0,根據(jù)橢圓的定義可知,點(diǎn)SKIPIF1<0的軌跡為以SKIPIF1<0為焦點(diǎn)的橢圓,其中SKIPIF1<0,SKIPIF1<0,則有SKIPIF1<0,故點(diǎn)P的軌跡方程為SKIPIF1<0.故答案為:SKIPIF1<0.例題4.(2022·山西·懷仁市第一中學(xué)校高二期中(文))已知兩圓SKIPIF1<0,動(dòng)圓SKIPIF1<0在圓SKIPIF1<0內(nèi)部且和圓SKIPIF1<0相內(nèi)切.和圓SKIPIF1<0相外切,則動(dòng)圓圓心SKIPIF1<0的軌跡方程為_________.【答案】SKIPIF1<0圓SKIPIF1<0,圓心SKIPIF1<0,圓SKIPIF1<0,圓心SKIPIF1<0,動(dòng)圓SKIPIF1<0設(shè)圓心SKIPIF1<0,半徑為r,動(dòng)圓M在圓SKIPIF1<0內(nèi)部,且動(dòng)圓M與圓SKIPIF1<0相內(nèi)切,與圓SKIPIF1<0相外切,所以SKIPIF1<0,①+②可得SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,則動(dòng)點(diǎn)M滿足橢圓定義,SKIPIF1<0,焦點(diǎn)SKIPIF1<0,SKIPIF1<0所以橢圓方程為SKIPIF1<0.故答案為:SKIPIF1<0同類題型歸類練1.(2022·廣東·廣州市第六十五中學(xué)高二期中)已知定圓SKIPIF1<0,動(dòng)圓C滿足與SKIPIF1<0外切且與SKIPIF1<0內(nèi)切,則動(dòng)圓圓心C的軌跡方程為__________.【答案】SKIPIF1<0由圓SKIPIF1<0:SKIPIF1<0可得圓心SKIPIF1<0,半徑SKIPIF1<0,由圓SKIPIF1<0:SKIPIF1<0可得圓心SKIPIF1<0,半徑SKIPIF1<0,設(shè)圓SKIPIF1<0的半徑為SKIPIF1<0,因?yàn)閯?dòng)圓SKIPIF1<0同時(shí)與圓SKIPIF1<0外切和圓SKIPIF1<0內(nèi)切,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0,SKIPIF1<0為焦點(diǎn),SKIPIF1<0的橢圓,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以動(dòng)圓的圓心SKIPIF1<0的軌跡方程為:SKIPIF1<0,故答案為:SKIPIF1<0.2.(2022·安徽·六安一中高二期中)已知圓SKIPIF1<0:SKIPIF1<0和圓SKIPIF1<0:SKIPIF1<0,動(dòng)圓SKIPIF1<0同時(shí)與圓SKIPIF1<0外切和圓SKIPIF1<0內(nèi)切,則動(dòng)圓的圓心SKIPIF1<0的軌跡方程為________.【答案】SKIPIF1<0由圓SKIPIF1<0:SKIPIF1<0可得圓心SKIPIF1<0,半徑SKIPIF1<0,由圓SKIPIF1<0:SKIPIF1<0可得圓心SKIPIF1<0,半徑SKIPIF1<0,設(shè)圓SKIPIF1<0的半徑為SKIPIF1<0,因?yàn)閯?dòng)圓SKIPIF1<0同時(shí)與圓SKIPIF1<0外切和圓SKIPIF1<0內(nèi)切,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0,SKIPIF1<0為焦點(diǎn),SKIPIF1<0的橢圓,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以動(dòng)圓的圓心SKIPIF1<0的軌跡方程為:SKIPIF1<0,故答案為:SKIPIF1<0.3.(2022·浙江·金華市江南中學(xué)高二期中)已知點(diǎn)SKIPIF1<0是圓SKIPIF1<0:SKIPIF1<0上動(dòng)點(diǎn),SKIPIF1<0.若線段SKIPIF1<0的中垂線交SKIPIF1<0于點(diǎn)SKIPIF1<0,則點(diǎn)SKIPIF1<0的軌跡方程為____________.【答案】SKIPIF1<0如圖所示,圓SKIPIF1<0:SKIPIF1<0,可得圓心SKIPIF1<0,半徑SKIPIF1<0,因?yàn)榫€段SKIPIF1<0的中垂線交SKIPIF1<0于點(diǎn)SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,根據(jù)橢圓的定義,可得N是以SKIPIF1<0,SKIPIF1<0為焦點(diǎn)的橢圓,且SKIPIF1<0,即SKIPIF1<0,可得SKIPIF1<0,所以點(diǎn)SKIPIF1<0的軌跡方程為SKIPIF1<0.故答案為:SKIPIF1<0.4.(2022·全國(guó)·高二課時(shí)練習(xí))已知三角形ABC的周長(zhǎng)是8,頂點(diǎn)B,C的坐標(biāo)分別為SKIPIF1<0,(1,0),則頂點(diǎn)A的軌跡方程為________.【答案】SKIPIF1<0SKIPIF1<0設(shè)SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,即點(diǎn)SKIPIF1<0是以頂點(diǎn)SKIPIF1<0為焦點(diǎn)的橢圓,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,所以橢圓方程SKIPIF1<0,因?yàn)槿c(diǎn)SKIPIF1<0不能共線,所以SKIPIF1<0,則頂點(diǎn)A的軌跡方程為SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0SKIPIF1<0角度2:利用橢圓定義解決焦點(diǎn)三角形問題典型例題例題1.(2022·安徽省亳州市第一中學(xué)高二期末)設(shè)SKIPIF1<0是橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),SKIPIF1<0是橢圓上一點(diǎn),且SKIPIF1<0.則SKIPIF1<0的面積為(
)A.6 B.SKIPIF1<0 C.8 D.SKIPIF1<0【答案】B解:由橢圓SKIPIF1<0的方程可得SKIPIF1<0,所以SKIPIF1<0,得SKIPIF1<0且SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0中,由余弦定理可得SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,而SKIPIF1<0,所以,SKIPIF1<0,又因?yàn)?,SKIPIF1<0,所以SKIPIF1<0,所以,SKIPIF1<0故選:B例題2.(2022·全國(guó)·高二專題練習(xí))已知橢圓SKIPIF1<0的左、右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0,點(diǎn)SKIPIF1<0為橢圓上動(dòng)點(diǎn),則SKIPIF1<0的值是______;SKIPIF1<0的取值范圍是______.【答案】
SKIPIF1<0
SKIPIF1<0對(duì)橢圓SKIPIF1<0,其SKIPIF1<0,焦點(diǎn)坐標(biāo)分別為SKIPIF1<0,由橢圓定義可得:SKIPIF1<0SKIPIF1<0;設(shè)點(diǎn)SKIPIF1<0的坐標(biāo)為SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0,故SKIPIF1<0SKIPIF1<0,又SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0的取值范圍為:SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.例題3.(2022·青海青?!じ叨谀ㄎ模┮阎獧E圓的方程為SKIPIF1<0,過橢圓中心的直線交橢圓于SKIPIF1<0、SKIPIF1<0兩點(diǎn),SKIPIF1<0是橢圓的右焦點(diǎn),則SKIPIF1<0的周長(zhǎng)的最小值為______.【答案】10解:橢圓的方程為SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,連接SKIPIF1<0,SKIPIF1<0,則由橢圓的中心對(duì)稱性可得SKIPIF1<0的周長(zhǎng)SKIPIF1<0,當(dāng)AB位于短軸的端點(diǎn)時(shí),SKIPIF1<0取最小值,最小值為SKIPIF1<0,SKIPIF1<0.故答案為:10同類題型歸類練1.(2022·江蘇·高二)已知橢圓SKIPIF1<0的左、右焦點(diǎn)分別為SKIPIF1<0,點(diǎn)SKIPIF1<0在橢圓上,若SKIPIF1<0,則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C解:由題意,橢圓方程SKIPIF1<0,可得SKIPIF1<0,所以焦點(diǎn)SKIPIF1<0,又由橢圓的定義,可得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,在SKIPIF1<0中,由余弦定理可得SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,又由SKIPIF1<0,所以SKIPIF1<0.故選:C.2.(多選)(2022·廣東·仲元中學(xué)高二期中)雙曲線SKIPIF1<0的左,右焦點(diǎn)分別為SKIPIF1<0,SKIPIF1<0,點(diǎn)P在C上.若SKIPIF1<0是直角三角形,則SKIPIF1<0的面積為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.4 D.2【答案】AC解:由雙曲線SKIPIF1<0可得SKIPIF1<0.根據(jù)雙曲線的對(duì)稱性只需考慮SKIPIF1<0或SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),將SKIPIF1<0代入SKIPIF1<0可得SKIPIF1<0,所以SKIPIF1<0的面積為SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),由雙曲線的定義可知,SKIPIF1<0,由勾股定理可得SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,此時(shí)SKIPIF1<0的面積為SKIPIF1<0綜上所述,SKIPIF1<0的面積為4或SKIPIF1<0.故選:SKIPIF1<0.3.(2022·重慶八中模擬預(yù)測(cè))已知SKIPIF1<0分別為橢圓SKIPIF1<0的左、右焦點(diǎn),直線SKIPIF1<0與橢圓交于P,Q兩點(diǎn),則SKIPIF1<0的周長(zhǎng)為______.【答案】SKIPIF1<0解:橢圓SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0、SKIPIF1<0,直線SKIPIF1<0過左焦點(diǎn)SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0;故答案為:SKIPIF1<04(2022·全國(guó)·高三專題練習(xí))已知SKIPIF1<0分別為橢圓SKIPIF1<0的左右焦點(diǎn),傾斜角為SKIPIF1<0的直線SKIPIF1<0經(jīng)過SKIPIF1<0,且與橢圓交于SKIPIF1<0兩點(diǎn),則△SKIPIF1<0的周長(zhǎng)為___.【答案】20由橢圓方程知:SKIPIF1<0,而SKIPIF1<0SKIPIF1<0,又△ABF2的周長(zhǎng)是SKIPIF1<0SKIPIF1<0.故答案為:20.7.(2022·全國(guó)·高二專題練習(xí))已知點(diǎn)SKIPIF1<0在焦點(diǎn)為SKIPIF1<0、SKIPIF1<0的橢圓SKIPIF1<0上,若SKIPIF1<0,則SKIPIF1<0的值為______.【答案】SKIPIF1<0在橢圓SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,由橢圓的定義可得SKIPIF1<0,因?yàn)镾KIPIF1<0,則SKIPIF1<0,所以,SKIPIF1<0.故答案為:SKIPIF1<0.角度3:利用橢圓定義求最值典型例題例題1.(2022·四川遂寧·高二期末(理))已知SKIPIF1<0是橢圓SKIPIF1<0的左焦點(diǎn),SKIPIF1<0為橢圓SKIPIF1<0上任意一點(diǎn),點(diǎn)SKIPIF1<0坐標(biāo)為SKIPIF1<0,則SKIPIF1<0的最大值為(
)A.3 B.5 C.SKIPIF1<0 D.13【答案】B因?yàn)闄E圓SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,則橢圓的右焦點(diǎn)為SKIPIF1<0,由橢圓的定義得:SKIPIF1<0,當(dāng)點(diǎn)P在點(diǎn)SKIPIF1<0處,取等號(hào),所以SKIPIF1<0的最大值為5,故選:B.例題2.(2022·全國(guó)·高三專題練習(xí)(文))已知點(diǎn)SKIPIF1<0,且SKIPIF1<0是橢圓SKIPIF1<0的左焦點(diǎn),SKIPIF1<0是橢圓上任意一點(diǎn),則SKIPIF1<0的最小值是(
)A.6 B.5 C.4 D.3【答案】DSKIPIF1<0,設(shè)橢圓的右焦點(diǎn)為SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,當(dāng)SKIPIF1<0在SKIPIF1<0的正上方時(shí),等號(hào)成立.故選:D例題3.(2022·全國(guó)·高二專題練習(xí))設(shè)SKIPIF1<0是橢圓SKIPIF1<0上一點(diǎn),SKIPIF1<0、SKIPIF1<0是橢圓的兩個(gè)焦點(diǎn),則SKIPIF1<0的最小值是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A在橢圓SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,由橢圓定義可得SKIPIF1<0,SKIPIF1<0,由余弦定理可得SKIPIF1<0SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),等號(hào)成立,因此,SKIPIF1<0的最小值為SKIPIF1<0.故選:A.同類題型歸類練1.(2022·全國(guó)·高二課時(shí)練習(xí))已知SKIPIF1<0是橢圓SKIPIF1<0的左焦點(diǎn),P是此橢圓上的動(dòng)點(diǎn),SKIPIF1<0是一定點(diǎn),則SKIPIF1<0的最大值為______.【答案】SKIPIF1<0##SKIPIF1<0根據(jù)題意橢圓方程為SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0,如圖,根據(jù)橢圓定義可得:SKIPIF1<0,當(dāng)SKIPIF1<0點(diǎn)運(yùn)動(dòng)到SKIPIF1<0的延長(zhǎng)線和橢圓交點(diǎn)SKIPIF1<0時(shí),SKIPIF1<0取得最大,此時(shí)SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<02.(2022·全國(guó)·高二專題練習(xí))已知點(diǎn)SKIPIF1<0,SKIPIF1<0是橢圓SKIPIF1<0內(nèi)的兩個(gè)點(diǎn),M是橢圓上的動(dòng)點(diǎn),則SKIPIF1<0的最大值為______.【答案】SKIPIF1<0##SKIPIF1<0依題意,橢圓方程為SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0是橢圓的右焦點(diǎn),設(shè)左焦點(diǎn)為SKIPIF1<0,根據(jù)橢圓的定義可知SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0.故答案為:SKIPIF1<0題型二:橢圓的標(biāo)準(zhǔn)方程典型例題例題1.(2022·全國(guó)·高二專題練習(xí))已知定點(diǎn)SKIPIF1<0、SKIPIF1<0和動(dòng)點(diǎn)SKIPIF1<0.(1)再?gòu)臈l件①、條件②這兩個(gè)條件中選擇一個(gè)作為已知,求:動(dòng)點(diǎn)SKIPIF1<0的軌跡及其方程.條件①:SKIPIF1<0條件②:SKIPIF1<0(2)SKIPIF1<0,求:動(dòng)點(diǎn)SKIPIF1<0的軌跡及其方程.【答案】(1)答案見解析;(2)答案見解析.(1)選擇條件①:SKIPIF1<0,因?yàn)镾KIPIF1<0,故點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0為焦點(diǎn)的橢圓,設(shè)其方程為SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,故其方程為:SKIPIF1<0.即選擇條件①,點(diǎn)SKIPIF1<0的軌跡是橢圓,其方程為SKIPIF1<0;選擇條件②:SKIPIF1<0,因?yàn)镾KIPIF1<0,故點(diǎn)SKIPIF1<0的軌跡是線段SKIPIF1<0,其方程為SKIPIF1<0.(2)因?yàn)镾KIPIF1<0,當(dāng)SKIPIF1<0時(shí),此時(shí)動(dòng)點(diǎn)SKIPIF1<0不存在,沒有軌跡和方程;當(dāng)SKIPIF1<0時(shí),此時(shí)SKIPIF1<0,由(1)可知,此時(shí)動(dòng)點(diǎn)SKIPIF1<0的軌跡是線段SKIPIF1<0,其方程為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),此時(shí)SKIPIF1<0,此時(shí)點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0為焦點(diǎn)的橢圓,其方程為SKIPIF1<0.綜上所述:當(dāng)SKIPIF1<0時(shí),動(dòng)點(diǎn)SKIPIF1<0沒有軌跡和方程;當(dāng)SKIPIF1<0時(shí),動(dòng)點(diǎn)SKIPIF1<0的軌跡是線段SKIPIF1<0,其方程為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),動(dòng)點(diǎn)SKIPIF1<0的軌跡是以SKIPIF1<0為焦點(diǎn)的橢圓,其方程為SKIPIF1<0.例題2.(2022·四川省資中縣球溪高級(jí)中學(xué)高二階段練習(xí)(文))(1)求焦點(diǎn)在SKIPIF1<0軸上,長(zhǎng)軸長(zhǎng)為6,焦距為4的橢圓標(biāo)準(zhǔn)方程;(2)求離心率SKIPIF1<0,焦點(diǎn)在SKIPIF1<0軸,且經(jīng)過點(diǎn)SKIPIF1<0的雙曲線標(biāo)準(zhǔn)方程.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0.(1)設(shè)橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0.由題意知:SKIPIF1<0;SKIPIF1<0.SKIPIF1<0.所以橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)設(shè)雙曲線的標(biāo)準(zhǔn)方程為SKIPIF1<0.則SKIPIF1<0所以雙曲線的標(biāo)準(zhǔn)方程為SKIPIF1<0.例題3.(2022·四川省資中縣球溪高級(jí)中學(xué)高二階段練習(xí)(理))(1)求焦點(diǎn)在SKIPIF1<0軸上,長(zhǎng)軸長(zhǎng)為6,焦距為4的橢圓標(biāo)準(zhǔn)方程;(2)求離心率SKIPIF1<0,經(jīng)過點(diǎn)SKIPIF1<0的雙曲線標(biāo)準(zhǔn)方程.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0(1)由題意得SKIPIF1<0,故SKIPIF1<0,橢圓標(biāo)準(zhǔn)方程為SKIPIF1<0(2)①若雙曲線焦點(diǎn)在x軸上,設(shè)其方程為SKIPIF1<0,由題意SKIPIF1<0,而SKIPIF1<0故SKIPIF1<0,由SKIPIF1<0解得SKIPIF1<0,故雙曲線標(biāo)準(zhǔn)方程為SKIPIF1<0②若雙曲線焦點(diǎn)在SKIPIF1<0軸上,設(shè)其方程為SKIPIF1<0,同理SKIPIF1<0,此時(shí)將SKIPIF1<0代入后方程無解綜上,雙曲線標(biāo)準(zhǔn)方程為SKIPIF1<0同類題型歸類練1.(2022·江蘇·高二)求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:(1)SKIPIF1<0,SKIPIF1<0;(2)經(jīng)過點(diǎn)SKIPIF1<0,且與橢圓SKIPIF1<0有共同的焦點(diǎn);(3)經(jīng)過SKIPIF1<0,SKIPIF1<0兩點(diǎn).【答案】(1)答案見解析(2)SKIPIF1<0(3)SKIPIF1<0(1)解:當(dāng)SKIPIF1<0,SKIPIF1<0時(shí),SKIPIF1<0,若焦點(diǎn)在SKIPIF1<0軸上,則標(biāo)準(zhǔn)方程為SKIPIF1<0;若焦點(diǎn)在SKIPIF1<0軸上,則標(biāo)準(zhǔn)方程為SKIPIF1<0.(2)解:橢圓SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,故它的焦點(diǎn)為SKIPIF1<0.設(shè)所求橢圓的方程為SKIPIF1<0,SKIPIF1<0,把點(diǎn)SKIPIF1<0代入,SKIPIF1<0,求得SKIPIF1<0,或SKIPIF1<0(舍去),故要求的橢圓的方程為SKIPIF1<0.(3)解:SKIPIF1<0橢圓經(jīng)過SKIPIF1<0,SKIPIF1<0兩點(diǎn),設(shè)所求橢圓的方程為SKIPIF1<0,把點(diǎn)SKIPIF1<0、SKIPIF1<0代入得SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0所求橢圓的方程為SKIPIF1<0.2.(2022·江蘇·高二)求適合下列條件的橢圓的標(biāo)準(zhǔn)方程:(1)長(zhǎng)軸長(zhǎng)為4,短軸長(zhǎng)為2,焦點(diǎn)在y軸上;(2)經(jīng)過點(diǎn)SKIPIF1<0,SKIPIF1<0;(3)一個(gè)焦點(diǎn)為SKIPIF1<0,一個(gè)頂點(diǎn)為SKIPIF1<0;(4)一個(gè)焦點(diǎn)為SKIPIF1<0,長(zhǎng)軸長(zhǎng)為4;(5)一個(gè)焦點(diǎn)為SKIPIF1<0,離心率為SKIPIF1<0;(6)一個(gè)焦點(diǎn)到長(zhǎng)軸的兩個(gè)端點(diǎn)的距離分別為6,2.【答案】(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0;(5)SKIPIF1<0;(6)SKIPIF1<0或SKIPIF1<0.(1)由題設(shè),SKIPIF1<0,又焦點(diǎn)在y軸上,故橢圓標(biāo)準(zhǔn)方程為SKIPIF1<0;(2)設(shè)橢圓方程為SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0在橢圓上,所以SKIPIF1<0,即SKIPIF1<0,故橢圓標(biāo)準(zhǔn)方程為SKIPIF1<0.(3)由題設(shè),SKIPIF1<0,則SKIPIF1<0,又焦點(diǎn)為SKIPIF1<0所以橢圓標(biāo)準(zhǔn)方程為SKIPIF1<0.(4)由題設(shè),SKIPIF1<0,則SKIPIF1<0,又焦點(diǎn)為SKIPIF1<0所以橢圓標(biāo)準(zhǔn)方程為SKIPIF1<0.(5)由題設(shè),SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,又焦點(diǎn)為SKIPIF1<0所以橢圓標(biāo)準(zhǔn)方程為SKIPIF1<0.(6)由題設(shè),SKIPIF1<0,則SKIPIF1<0,故SKIPIF1<0,所以橢圓標(biāo)準(zhǔn)方程為SKIPIF1<0或SKIPIF1<0.題型三:橢圓的簡(jiǎn)單幾何性質(zhì)角度1:橢圓的長(zhǎng)軸、短軸、焦距典型例題例題1.(2022·全國(guó)·高二課時(shí)練習(xí))橢圓SKIPIF1<0的長(zhǎng)軸長(zhǎng)為______.【答案】SKIPIF1<0依題意SKIPIF1<0是橢圓方程,即SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,長(zhǎng)軸的長(zhǎng)為SKIPIF1<0=SKIPIF1<0;故答案為:SKIPIF1<0.例題2.(2022·全國(guó)·高二課時(shí)練習(xí))若橢圓SKIPIF1<0與橢圓SKIPIF1<0焦點(diǎn)相同,則實(shí)數(shù)SKIPIF1<0___________.【答案】SKIPIF1<0由SKIPIF1<0得:SKIPIF1<0,則SKIPIF1<0且焦點(diǎn)在SKIPIF1<0軸上由SKIPIF1<0得:SKIPIF1<0,SKIPIF1<0與SKIPIF1<0共焦點(diǎn),SKIPIF1<0;SKIPIF1<0,解得:SKIPIF1<0.故答案為:SKIPIF1<0.例題3.(2022·河南·新蔡縣第一高級(jí)中學(xué)高二開學(xué)考試(文))已知橢圓SKIPIF1<0,點(diǎn)SKIPIF1<0,SKIPIF1<0為橢圓上一動(dòng)點(diǎn),則SKIPIF1<0的最大值為____.【答案】SKIPIF1<0設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,可得SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,當(dāng)且僅當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最大值SKIPIF1<0.故答案為:SKIPIF1<0.同類題型歸類練1.(2022·全國(guó)·高三專題練習(xí))已知橢圓的長(zhǎng)軸長(zhǎng)為SKIPIF1<0,短軸長(zhǎng)為SKIPIF1<0,則橢圓上任意一點(diǎn)SKIPIF1<0到橢圓中心SKIPIF1<0的距離的取值范圍是(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A不妨設(shè)橢圓的焦點(diǎn)在SKIPIF1<0軸上,則該橢圓的標(biāo)準(zhǔn)方程為SKIPIF1<0,設(shè)點(diǎn)SKIPIF1<0,則SKIPIF1<0,且有SKIPIF1<0,所以,SKIPIF1<0.故選:A.2.(2022·全國(guó)·高三專題練習(xí)(理))已知曲線SKIPIF1<0的焦距為8,則SKIPIF1<0___________.【答案】25或SKIPIF1<0解:由題意知半焦距SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),則曲線C為橢圓,又SKIPIF1<0,所以SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),曲線C為雙曲線,所以SKIPIF1<0,所以SKIPIF1<0.故a的值為25或SKIPIF1<0.故答案為:25或SKIPIF1<03.(2022·江蘇·高二課時(shí)練習(xí))求下列橢圓的長(zhǎng)軸長(zhǎng)、短軸長(zhǎng)、離心率、頂點(diǎn)坐標(biāo)和焦點(diǎn)坐標(biāo):(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0;(4)SKIPIF1<0.【答案】(1)長(zhǎng)軸長(zhǎng)為SKIPIF1<0,短軸長(zhǎng)為SKIPIF1<0,離心率為SKIPIF1<0,頂點(diǎn)坐標(biāo)為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0;(2)長(zhǎng)軸長(zhǎng)為SKIPIF1<0,短軸長(zhǎng)為SKIPIF1<0,離心率為SKIPIF1<0,頂點(diǎn)坐標(biāo)為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0;(3)長(zhǎng)軸長(zhǎng)為10,短軸長(zhǎng)為8,離心率為SKIPIF1<0,頂點(diǎn)坐標(biāo)為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0;(4)長(zhǎng)軸長(zhǎng)為8,短軸長(zhǎng)為4,離心率為SKIPIF1<0,頂點(diǎn)坐標(biāo)為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0.(1)由橢圓方程知,SKIPIF1<0,所以橢圓的長(zhǎng)軸長(zhǎng)為SKIPIF1<0,短軸長(zhǎng)為SKIPIF1<0,離心率為SKIPIF1<0,頂點(diǎn)坐標(biāo)為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0;(2)由橢圓方程知,SKIPIF1<0,所以橢圓的長(zhǎng)軸長(zhǎng)為SKIPIF1<0,短軸長(zhǎng)為SKIPIF1<0,離心率為SKIPIF1<0,頂點(diǎn)坐標(biāo)為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0;(3)橢圓方程可變形為SKIPIF1<0,所以SKIPIF1<0,所以橢圓的長(zhǎng)軸長(zhǎng)為10,短軸長(zhǎng)為8,離心率為SKIPIF1<0,頂點(diǎn)坐標(biāo)為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0;(4)橢圓方程可變形為SKIPIF1<0,所以SKIPIF1<0,所以橢圓的長(zhǎng)軸長(zhǎng)為8,短軸長(zhǎng)為4,離心率為SKIPIF1<0,頂點(diǎn)坐標(biāo)為SKIPIF1<0,焦點(diǎn)坐標(biāo)為SKIPIF1<0.角度2:求橢圓的離心率典型例題例題1.(2022·貴州黔西·高二期末(理))已知橢圓SKIPIF1<0的離心率為SKIPIF1<0,則橢圓SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C解:因?yàn)闄E圓SKIPIF1<0的離心率為SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,則橢圓SKIPIF1<0的離心率SKIPIF1<0.故選:C.例題2.(2022·江西上饒·高二期末(理))已知SKIPIF1<0是橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),SKIPIF1<0為SKIPIF1<0上一點(diǎn),且SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C在橢圓SKIPIF1<0中,由橢圓的定義可得SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,在SKIPIF1<0中,SKIPIF1<0,由余弦定理得SKIPIF1<0,即SKIPIF1<0所以SKIPIF1<0所以SKIPIF1<0的離心率SKIPIF1<0.故選:C例題3.(2022·全國(guó)·高二專題練習(xí))橢圓SKIPIF1<0的兩焦點(diǎn)為SKIPIF1<0,若橢圓SKIPIF1<0上存在點(diǎn)SKIPIF1<0使SKIPIF1<0為等腰直角三角形,則橢圓SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】C當(dāng)SKIPIF1<0時(shí),SKIPIF1<0為等腰直角三角形,則點(diǎn)SKIPIF1<0位于橢圓的上下頂點(diǎn),則滿足:SKIPIF1<0,當(dāng)SKIPIF1<0或者SKIPIF1<0時(shí),此時(shí)SKIPIF1<0,SKIPIF1<0為等腰直角三角形,則滿足SKIPIF1<0,故SKIPIF1<0,SKIPIF1<0故選:C例題4.(2022·重慶一中高一期末)已知SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0的左,右焦點(diǎn),點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0為等腰三角形,且頂角為SKIPIF1<0,則SKIPIF1<0的離心率為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0或SKIPIF1<0 D.SKIPIF1<0或SKIPIF1<0【答案】D解:依題意設(shè)橢圓方程為SKIPIF1<0,①若SKIPIF1<0為等腰三角形SKIPIF1<0的頂角,則SKIPIF1<0在橢圓的上(下)頂點(diǎn),如下圖所示:則SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0;②若SKIPIF1<0(或SKIPIF1<0)為等腰三角形SKIPIF1<0的頂角,不妨取SKIPIF1<0為頂角,如下圖所示:即SKIPIF1<0,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0,由余弦定理SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0(舍去)綜上可得SKIPIF1<0或SKIPIF1<0.故選:D.例題5.(2022·廣東汕尾·高二期末)設(shè)SKIPIF1<0,SKIPIF1<0為橢圓SKIPIF1<0的兩個(gè)焦點(diǎn),SKIPIF1<0為橢圓SKIPIF1<0上一點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,則橢圓SKIPIF1<0的離心率SKIPIF1<0_________.【答案】SKIPIF1<0或SKIPIF1<0因?yàn)镾KIPIF1<0,且SKIPIF1<0,故SKIPIF1<0為銳角,所以SKIPIF1<0,由余弦定理SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0,故SKIPIF1<0或SKIPIF1<0故答案為:SKIPIF1<0或SKIPIF1<0同
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年山東淄博市廣播電視臺(tái)青年人才招聘50人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東濟(jì)寧高新區(qū)衛(wèi)生事業(yè)單位招聘8人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東濟(jì)寧市金鄉(xiāng)縣中醫(yī)院及學(xué)校(校醫(yī))招聘?jìng)浒钢迫藛T41人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東濟(jì)南市生態(tài)環(huán)境局平陰分局招聘非在編14人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東惠民縣事業(yè)單位招考總管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東德州市陵城區(qū)事業(yè)單位綜合類崗位招聘工作人員70人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 市場(chǎng)方案七篇
- 2025年山東臨沂河?xùn)|區(qū)部分事業(yè)單位招聘工作人員31人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年山東臨沂市市直事業(yè)單位選聘人員184人歷年管理單位筆試遴選500模擬題附帶答案詳解
- 2025年宿遷市沭陽(yáng)縣南湖公園管理處招考解說員管理單位筆試遴選500模擬題附帶答案詳解
- 分層作業(yè)的教學(xué)設(shè)計(jì)
- 蕭公權(quán)-《中國(guó)政治思想史》第一編第二和第三章內(nèi)容
- 蘇教版四年級(jí)上冊(cè)科學(xué)期末試題(含答案)
- 《鑄造用增碳劑》
- 一年級(jí)上心理健康教育《我是小學(xué)生了》課件PPT
- 水庫(kù)回水計(jì)算(實(shí)用)
- 山東第一醫(yī)科大學(xué)護(hù)理倫理學(xué)期末復(fù)習(xí)題
- 清華物理習(xí)題庫(kù)試題及答案光學(xué)
- 管理供應(yīng)商 供應(yīng)商績(jī)效評(píng)估
- 1000MW機(jī)組鍋爐過渡段T23水冷壁管檢修導(dǎo)則(征求意見稿)
- 國(guó)開本科《商務(wù)英語(yǔ)4》機(jī)考題庫(kù)及答案
評(píng)論
0/150
提交評(píng)論