版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2022屆山西省呂梁市交城縣中考猜題數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場(chǎng)、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫(xiě)在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫(xiě)在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫(xiě)在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.若一個(gè)圓錐的底面半徑為3cm,母線長(zhǎng)為5cm,則這個(gè)圓錐的全面積為()A.15πcm2 B.24πcm2 C.39πcm2 D.48πcm22.如圖顯示了用計(jì)算機(jī)模擬隨機(jī)投擲一枚圖釘?shù)哪炒螌?shí)驗(yàn)的結(jié)果.下面有三個(gè)推斷:①當(dāng)投擲次數(shù)是500時(shí),計(jì)算機(jī)記錄“釘尖向上”的次數(shù)是308,所以“釘尖向上”的概率是0.616;②隨著試驗(yàn)次數(shù)的增加,“釘尖向上”的頻率總在0.618附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)“釘尖向上”的概率是0.618;③若再次用計(jì)算機(jī)模擬此實(shí)驗(yàn),則當(dāng)投擲次數(shù)為1000時(shí),“釘尖向上”的頻率一定是0.1.其中合理的是()A.① B.② C.①② D.①③3.如圖,G,E分別是正方形ABCD的邊AB,BC上的點(diǎn),且AG=CE,AE⊥EF,AE=EF,現(xiàn)有如下結(jié)論:①BE=DH;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH.其中,正確的結(jié)論有()A.4個(gè) B.3個(gè) C.2個(gè) D.1個(gè)4.若正比例函數(shù)y=kx的圖象上一點(diǎn)(除原點(diǎn)外)到x軸的距離與到y(tǒng)軸的距離之比為3,且y值隨著x值的增大而減小,則k的值為()A.﹣ B.﹣3 C. D.35.如圖,分別以等邊三角形ABC的三個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑畫(huà)弧,得到的封閉圖形是萊洛三角形,若AB=2,則萊洛三角形的面積(即陰影部分面積)為()A. B. C.2 D.26.若x>y,則下列式子錯(cuò)誤的是()A.x﹣3>y﹣3 B.﹣3x>﹣3y C.x+3>y+3 D.7.方程的解為()A.x=4 B.x=﹣3 C.x=6 D.此方程無(wú)解8.如圖,夜晚,小亮從點(diǎn)A經(jīng)過(guò)路燈C的正下方沿直線走到點(diǎn)B,他的影長(zhǎng)y隨他與點(diǎn)A之間的距離x的變化而變化,那么表示y與x之間的函數(shù)關(guān)系的圖象大致為()A. B.C. D.9.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧交AB于M、AC于N,再分別以M、N為圓心,大于12MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于D①AD是∠BAC的平分線;②∠ADC=60°;③點(diǎn)D在AB的中垂線上;④S△ACD:S△ACB=1:1.其中正確的有()A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④10.如圖,在平面直角坐標(biāo)系中,等腰直角三角形ABC的頂點(diǎn)A、B分別在x軸、y軸的正半軸上,∠ABC=90°,CA⊥x軸,點(diǎn)C在函數(shù)y=(x>0)的圖象上,若AB=2,則k的值為()A.4 B.2 C.2 D.11.如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個(gè)數(shù)是()A.1 B.2 C.3 D.412.如圖,平行四邊形ABCD中,E,F(xiàn)分別為AD,BC邊上的一點(diǎn),增加下列條件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.用一張扇形紙片圍成一個(gè)圓錐的側(cè)面(接縫處不計(jì)),若這個(gè)扇形紙片的面積是90πcm2,圍成的圓錐的底面半徑為15cm,則這個(gè)圓錐的母線長(zhǎng)為_(kāi)____cm.14.計(jì)算:2(a-b)+3b=___________.15.有一組數(shù)據(jù):3,5,5,6,7,這組數(shù)據(jù)的眾數(shù)為_(kāi)____.16.正五邊形的內(nèi)角和等于______度.17.已知a+b=1,那么a2-b2+2b=________.18.如圖,BD是⊙O的直徑,∠CBD=30°,則∠A的度數(shù)為_(kāi)____.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19.(6分)已知四邊形ABCD是⊙O的內(nèi)接四邊形,AC是⊙O的直徑,DE⊥AB,垂足為E(1)延長(zhǎng)DE交⊙O于點(diǎn)F,延長(zhǎng)DC,F(xiàn)B交于點(diǎn)P,如圖1.求證:PC=PB;(2)過(guò)點(diǎn)B作BG⊥AD,垂足為G,BG交DE于點(diǎn)H,且點(diǎn)O和點(diǎn)A都在DE的左側(cè),如圖2.若AB=,DH=1,∠OHD=80°,求∠BDE的大?。?0.(6分)“垃圾不落地,城市更美麗”.某中學(xué)為了了解七年級(jí)學(xué)生對(duì)這一倡議的落實(shí)情況,學(xué)校安排政教處在七年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生,并針對(duì)學(xué)生“是否隨手丟垃圾”這一情況進(jìn)行了問(wèn)卷調(diào)查,統(tǒng)計(jì)結(jié)果為:A為從不隨手丟垃圾;B為偶爾隨手丟垃圾;C為經(jīng)常隨手丟垃圾三項(xiàng).要求每位被調(diào)查的學(xué)生必須從以上三項(xiàng)中選一項(xiàng)且只能選一項(xiàng).現(xiàn)將調(diào)查結(jié)果繪制成以下來(lái)不辜負(fù)不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)以上信息,解答下列問(wèn)題:(1)補(bǔ)全上面的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖;(2)所抽取學(xué)生“是否隨手丟垃圾”情況的眾數(shù)是;(3)若該校七年級(jí)共有1500名學(xué)生,請(qǐng)你估計(jì)該年級(jí)學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有多少人?談?wù)勀愕目捶ǎ?1.(6分)某中學(xué)為了提高學(xué)生的消防意識(shí),舉行了消防知識(shí)競(jìng)賽,所有參賽學(xué)生分別設(shè)有一、二、三等獎(jiǎng)和紀(jì)念獎(jiǎng),獲獎(jiǎng)情況已繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中所經(jīng)信息解答下列問(wèn)題:(1)這次知識(shí)競(jìng)賽共有多少名學(xué)生?(2)“二等獎(jiǎng)”對(duì)應(yīng)的扇形圓心角度數(shù),并將條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)小華參加了此次的知識(shí)競(jìng)賽,請(qǐng)你幫他求出獲得“一等獎(jiǎng)或二等獎(jiǎng)”的概率.22.(8分)小王是“新星廠”的一名工人,請(qǐng)你閱讀下列信息:信息一:工人工作時(shí)間:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生產(chǎn)甲、乙兩種產(chǎn)品的件數(shù)與所用時(shí)間的關(guān)系見(jiàn)下表:生產(chǎn)甲產(chǎn)品數(shù)(件)生產(chǎn)乙產(chǎn)品數(shù)(件)所用時(shí)間(分鐘)10103503020850信息三:按件計(jì)酬,每生產(chǎn)一件甲種產(chǎn)品得1.50元,每生產(chǎn)一件乙種產(chǎn)品得2.80元.信息四:該廠工人每月收入由底薪和計(jì)酬工資兩部分構(gòu)成,小王每月的底薪為1900元,請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:(1)小王每生產(chǎn)一件甲種產(chǎn)品,每生產(chǎn)一件乙種產(chǎn)品分別需要多少分鐘;(2)2018年1月工廠要求小王生產(chǎn)甲種產(chǎn)品的件數(shù)不少于60件,則小王該月收入最多是多少元?此時(shí)小王生產(chǎn)的甲、乙兩種產(chǎn)品分別是多少件?23.(8分)如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A()和B(4,m),點(diǎn)P是線段AB上異于A、B的動(dòng)點(diǎn),過(guò)點(diǎn)P作PC⊥x軸于點(diǎn)D,交拋物線于點(diǎn)C.(1)B點(diǎn)坐標(biāo)為,并求拋物線的解析式;(2)求線段PC長(zhǎng)的最大值;(3)若△PAC為直角三角形,直接寫(xiě)出此時(shí)點(diǎn)P的坐標(biāo).24.(10分)如圖,經(jīng)過(guò)原點(diǎn)的拋物線y=﹣x2+2mx(m>0)與x軸的另一個(gè)交點(diǎn)為A,過(guò)點(diǎn)P(1,m)作直線PA⊥x軸于點(diǎn)M,交拋物線于點(diǎn)B.記點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C(點(diǎn)B、C不重合),連接CB、CP.(I)當(dāng)m=3時(shí),求點(diǎn)A的坐標(biāo)及BC的長(zhǎng);(II)當(dāng)m>1時(shí),連接CA,若CA⊥CP,求m的值;(III)過(guò)點(diǎn)P作PE⊥PC,且PE=PC,當(dāng)點(diǎn)E落在坐標(biāo)軸上時(shí),求m的值,并確定相對(duì)應(yīng)的點(diǎn)E的坐標(biāo).25.(10分)如圖,拋物線y=ax2+2x+c與x軸交于A、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).(1)求該拋物線的解析式;(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)Q,使得以A、C、Q為頂點(diǎn)的三角形為直角三角形?若存在,試求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.26.(12分)如圖,小明今年國(guó)慶節(jié)到青城山游玩,乘坐纜車(chē),當(dāng)?shù)巧嚼|車(chē)的吊箱經(jīng)過(guò)點(diǎn)A到達(dá)點(diǎn)B時(shí),它經(jīng)過(guò)了200m,纜車(chē)行駛的路線與水平夾角∠α=16°,當(dāng)纜車(chē)?yán)^續(xù)由點(diǎn)B到達(dá)點(diǎn)D時(shí),它又走過(guò)了200m,纜車(chē)由點(diǎn)B到點(diǎn)D的行駛路線與水平面夾角∠β=42°,求纜車(chē)從點(diǎn)A到點(diǎn)D垂直上升的距離.(結(jié)果保留整數(shù))(參考數(shù)據(jù):sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)27.(12分)已知二次函數(shù)y=x2-4x-5,與y軸的交點(diǎn)為P,與x軸交于A、B兩點(diǎn).(點(diǎn)B在點(diǎn)A的右側(cè))(1)當(dāng)y=0時(shí),求x的值.(2)點(diǎn)M(6,m)在二次函數(shù)y=x2-4x-5的圖像上,設(shè)直線MP與x軸交于點(diǎn)C,求cot∠MCB的值.
參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解析】試題分析:底面積是:9πcm1,底面周長(zhǎng)是6πcm,則側(cè)面積是:×6π×5=15πcm1.則這個(gè)圓錐的全面積為:9π+15π=14πcm1.故選B.考點(diǎn):圓錐的計(jì)算.2、B【解析】①當(dāng)頻數(shù)增大時(shí),頻率逐漸穩(wěn)定的值即為概率,500次的實(shí)驗(yàn)次數(shù)偏低,而頻率穩(wěn)定在了0.618,錯(cuò)誤;②由圖可知頻數(shù)穩(wěn)定在了0.618,所以估計(jì)頻率為0.618,正確;③.這個(gè)實(shí)驗(yàn)是一個(gè)隨機(jī)試驗(yàn),當(dāng)投擲次數(shù)為1000時(shí),釘尖向上”的概率不一定是0.1.錯(cuò)誤,故選B.【點(diǎn)睛】本題考查了利用頻率估計(jì)概率,能正確理解相關(guān)概念是解題的關(guān)鍵.3、C【解析】
由∠BEG=45°知∠BEA>45°,結(jié)合∠AEF=90°得∠HEC<45°,據(jù)此知HC<EC,即可判斷①;求出∠GAE+∠AEG=45°,推出∠GAE=∠FEC,根據(jù)SAS推出△GAE≌△CEF,即可判斷②;求出∠AGE=∠ECF=135°,即可判斷③;求出∠FEC<45°,根據(jù)相似三角形的判定得出△GBE和△ECH不相似,即可判斷④.【詳解】解:∵四邊形ABCD是正方形,∴AB=BC=CD,∵AG=GE,∴BG=BE,∴∠BEG=45°,∴∠BEA>45°,∵∠AEF=90°,∴∠HEC<45°,∴HC<EC,∴CD﹣CH>BC﹣CE,即DH>BE,故①錯(cuò)誤;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中,∵AG=CE,∠GAE=∠CEF,AE=EF,∴△GAE≌△CEF(SAS)),∴②正確;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正確;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④錯(cuò)誤;故選:C.【點(diǎn)睛】本題考查了正方形的性質(zhì),等腰三角形的性質(zhì),全等三角形的性質(zhì)和判定,相似三角形的判定,勾股定理等知識(shí)點(diǎn)的綜合運(yùn)用,綜合比較強(qiáng),難度較大.4、B【解析】
設(shè)該點(diǎn)的坐標(biāo)為(a,b),則|b|=1|a|,利用一次函數(shù)圖象上的點(diǎn)的坐標(biāo)特征可得出k=±1,再利用正比例函數(shù)的性質(zhì)可得出k=-1,此題得解.【詳解】設(shè)該點(diǎn)的坐標(biāo)為(a,b),則|b|=1|a|,∵點(diǎn)(a,b)在正比例函數(shù)y=kx的圖象上,∴k=±1.又∵y值隨著x值的增大而減小,∴k=﹣1.故選:B.【點(diǎn)睛】本題考查了一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征以及正比例函數(shù)的性質(zhì),利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,找出k=±1是解題的關(guān)鍵.5、D【解析】【分析】萊洛三角形的面積是由三塊相同的扇形疊加而成,其面積=三塊扇形的面積相加,再減去兩個(gè)等邊三角形的面積,分別求出即可.【詳解】過(guò)A作AD⊥BC于D,∵△ABC是等邊三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面積為BC?AD==,S扇形BAC==,∴萊洛三角形的面積S=3×﹣2×=2π﹣2,故選D.【點(diǎn)睛】本題考查了等邊三角形的性質(zhì)和扇形的面積計(jì)算,能根據(jù)圖形得出萊洛三角形的面積=三塊扇形的面積相加、再減去兩個(gè)等邊三角形的面積是解此題的關(guān)鍵.6、B【解析】根據(jù)不等式的性質(zhì)在不等式兩邊加(或減)同一個(gè)數(shù)(或式子),不等號(hào)的方向不變;不等式兩邊乘(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變;不等式兩邊乘(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變即可得出答案:A、不等式兩邊都減3,不等號(hào)的方向不變,正確;B、乘以一個(gè)負(fù)數(shù),不等號(hào)的方向改變,錯(cuò)誤;C、不等式兩邊都加3,不等號(hào)的方向不變,正確;D、不等式兩邊都除以一個(gè)正數(shù),不等號(hào)的方向不變,正確.故選B.7、C【解析】
先把分式方程化為整式方程,求出x的值,代入最簡(jiǎn)公分母進(jìn)行檢驗(yàn).【詳解】方程兩邊同時(shí)乘以x-2得到1-(x-2)=﹣3,解得x=6.將x=6代入x-2得6-2=4,∴x=6就是原方程的解.故選C【點(diǎn)睛】本題考查的是解分式方程,熟知解分式方程的基本步驟是解答此題的關(guān)鍵.8、A【解析】設(shè)身高GE=h,CF=l,AF=a,當(dāng)x≤a時(shí),在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴,∵a、h、l都是固定的常數(shù),∴自變量x的系數(shù)是固定值,∴這個(gè)函數(shù)圖象肯定是一次函數(shù)圖象,即是直線;∵影長(zhǎng)將隨著離燈光越來(lái)越近而越來(lái)越短,到燈下的時(shí)候,將是一個(gè)點(diǎn),進(jìn)而隨著離燈光的越來(lái)越遠(yuǎn)而影長(zhǎng)將變大.故選A.9、D【解析】
①根據(jù)作圖過(guò)程可判定AD是∠BAC的角平分線;②利用角平分線的定義可推知∠CAD=10°,則由直角三角形的性質(zhì)來(lái)求∠ADC的度數(shù);③利用等角對(duì)等邊可以證得△ADB是等腰三角形,由等腰三角形的“三合一”性質(zhì)可以證明點(diǎn)D在AB的中垂線上;④利用10°角所對(duì)的直角邊是斜邊的一半,三角形的面積計(jì)算公式來(lái)求兩個(gè)三角形面積之比.【詳解】①根據(jù)作圖過(guò)程可知AD是∠BAC的角平分線,①正確;②如圖,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分線,∴∠1=∠2=12∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正確;③∵∠1=∠B=10°,∴AD=BD,∴點(diǎn)D在AB的中垂線上,③正確;④如圖,∵在直角△ACD中,∠2=10°,∴CD=12AD,∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC?CD=14AC?AD.∴S△ABC=12AC?BC=12AC?32AD=3【點(diǎn)睛】本題主要考查尺規(guī)作角平分線、角平分線的性質(zhì)定理、三角形的外角以及等腰三角形的性質(zhì),熟練掌握有關(guān)知識(shí)點(diǎn)是解答的關(guān)鍵.10、A【解析】【分析】作BD⊥AC于D,如圖,先利用等腰直角三角形的性質(zhì)得到AC=AB=2,BD=AD=CD=,再利用AC⊥x軸得到C(,2),然后根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征計(jì)算k的值.【詳解】作BD⊥AC于D,如圖,∵△ABC為等腰直角三角形,∴AC=AB=2,∴BD=AD=CD=,∵AC⊥x軸,∴C(,2),把C(,2)代入y=得k=×2=4,故選A.【點(diǎn)睛】本題考查了等腰直角三角形的性質(zhì)以及反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征,熟知反比例函數(shù)y=(k為常數(shù),k≠0)的圖象是雙曲線,圖象上的點(diǎn)(x,y)的橫縱坐標(biāo)的積是定值k,即xy=k是解題的關(guān)鍵.11、C【解析】分析:過(guò)O1、O2作直線,以O(shè)1O2上一點(diǎn)為圓心作一半徑為2的圓,將這個(gè)圓從左側(cè)與圓O1、圓O2同時(shí)外切的位置(即圓O3)開(kāi)始向右平移,觀察圖形,并結(jié)合三個(gè)圓的半徑進(jìn)行分析即可得到符合要求的圓的個(gè)數(shù).詳解:如下圖,(1)當(dāng)半徑為2的圓同時(shí)和圓O1、圓O2外切時(shí),該圓在圓O3的位置;(2)當(dāng)半徑為2的圓和圓O1、圓O2都內(nèi)切時(shí),該圓在圓O4的位置;(3)當(dāng)半徑為2的圓和圓O1外切,而和圓O2內(nèi)切時(shí),該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個(gè).故選C.點(diǎn)睛:保持圓O1、圓O2的位置不動(dòng),以直線O1O2上一個(gè)點(diǎn)為圓心作一個(gè)半徑為2的圓,觀察其從左至右平移過(guò)程中與圓O1、圓O2的位置關(guān)系,結(jié)合三個(gè)圓的半徑大小即可得到本題所求答案.12、B【解析】
由四邊形ABCD是平行四邊形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四邊形BFDE是平行四邊形,則可證得BE//DF,利用排除法即可求得答案.【詳解】四邊形ABCD是平行四邊形,
∴AD//BC,AD=BC,
A、∵AE=CF,∴DE=BF,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項(xiàng)能判定BE//DF;
B、∵BE=DF,
四邊形BFDE是等腰梯形,
本選項(xiàng)不一定能判定BE//DF;
C、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,四邊形BFDE是平行四邊形,∴BE//DF,故本選項(xiàng)能判定BE//DF;
D、∵AD//BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠BED=∠BFD,∴∠EBF=∠FDE,∴四邊形BFDE是平行四邊形,∴BE//DF,故本選項(xiàng)能判定BE//DF.
故選B.【點(diǎn)睛】本題考查了平行四邊形的判定與性質(zhì),注意根據(jù)題意證得四邊形BFDE是平行四邊形是關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、1【解析】
設(shè)這個(gè)圓錐的母線長(zhǎng)為xcm,利用圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng)和扇形面積公式得到?2π?15?x=90π,然后解方程即可.【詳解】解:設(shè)這個(gè)圓錐的母線長(zhǎng)為xcm,根據(jù)題意得?2π?15?x=90π,解得x=1,即這個(gè)圓錐的母線長(zhǎng)為1cm.故答案為1.【點(diǎn)睛】本題考查了圓錐的計(jì)算:圓錐的側(cè)面展開(kāi)圖為一扇形,這個(gè)扇形的弧長(zhǎng)等于圓錐底面的周長(zhǎng),扇形的半徑等于圓錐的母線長(zhǎng).14、2a+b.【解析】
先去括號(hào),再合并同類項(xiàng)即可得出答案.【詳解】原式=2a-2b+3b=2a+b.故答案為:2a+b.15、1【解析】
根據(jù)眾數(shù)的概念進(jìn)行求解即可得.【詳解】在數(shù)據(jù)3,1,1,6,7中1出現(xiàn)次數(shù)最多,所以這組數(shù)據(jù)的眾數(shù)為1,故答案為:1.【點(diǎn)睛】本題考查了眾數(shù)的概念,熟知一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù)是解題的關(guān)鍵.16、540【解析】
過(guò)正五邊形五個(gè)頂點(diǎn),可以畫(huà)三條對(duì)角線,把五邊形分成3個(gè)三角形∴正五邊形的內(nèi)角和=3180=540°17、1【解析】
解:∵a+b=1,∴原式=故答案為1.【點(diǎn)睛】本題考查的是平方差公式的靈活運(yùn)用.18、60°【解析】解:∵BD是⊙O的直徑,∴∠BCD=90°(直徑所對(duì)的圓周角是直角),∵∠CBD=30°,∴∠D=60°(直角三角形的兩個(gè)銳角互余),∴∠A=∠D=60°(同弧所對(duì)的圓周角相等);故答案是:60°三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.19、(1)詳見(jiàn)解析;(2)∠BDE=20°.【解析】
(1)根據(jù)已知條件易證BC∥DF,根據(jù)平行線的性質(zhì)可得∠F=∠PBC;再利用同角的補(bǔ)角相等證得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出結(jié)論;(2)連接OD,先證明四邊形DHBC是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得BC=DH=1,在Rt△ABC中,用銳角三角函數(shù)求出∠ACB=60°,進(jìn)而判斷出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根據(jù)三角形外角的性質(zhì)可得∠OAD=∠DOC=20°,最后根據(jù)圓周角定理及平行線的性質(zhì)即可求解.【詳解】(1)如圖1,∵AC是⊙O的直徑,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四邊形BCDF是圓內(nèi)接四邊形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如圖2,連接OD,∵AC是⊙O的直徑,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四邊形DHBC是平行四邊形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰△DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,設(shè)DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.【點(diǎn)睛】本題考查了圓內(nèi)接四邊形的性質(zhì)、圓周角定理、平行四邊形的判定與性質(zhì)、等腰三角形的性質(zhì)等知識(shí)點(diǎn),解決第(2)問(wèn),作出輔助線,求得∠ODH=20°是解決本題的關(guān)鍵.20、(1)補(bǔ)全圖形見(jiàn)解析;(2)B;(3)估計(jì)該年級(jí)學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有75人,就該年級(jí)經(jīng)常隨手丟垃圾的學(xué)生人數(shù)看出仍需要加強(qiáng)公共衛(wèi)生教育、宣傳和監(jiān)督.【解析】
(1)根據(jù)被調(diào)查的總?cè)藬?shù)求出C情況的人數(shù)與B情況人數(shù)所占比例即可;(2)根據(jù)眾數(shù)的定義求解即可;(3)該年級(jí)學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生=總?cè)藬?shù)×C情況的比值.【詳解】(1)∵被調(diào)查的總?cè)藬?shù)為60÷30%=200人,∴C情況的人數(shù)為200﹣(60+130)=10人,B情況人數(shù)所占比例為×100%=65%,補(bǔ)全圖形如下:(2)由條形圖知,B情況出現(xiàn)次數(shù)最多,所以眾數(shù)為B,故答案為B.(3)1500×5%=75,答:估計(jì)該年級(jí)學(xué)生中“經(jīng)常隨手丟垃圾”的學(xué)生約有75人,就該年級(jí)經(jīng)常隨手丟垃圾的學(xué)生人數(shù)看出仍需要加強(qiáng)公共衛(wèi)生教育、宣傳和監(jiān)督.【點(diǎn)睛】本題考查了眾數(shù)與扇形統(tǒng)計(jì)圖與條形統(tǒng)計(jì)圖,解題的關(guān)鍵是熟練的掌握眾數(shù)與扇形統(tǒng)計(jì)圖與條形統(tǒng)計(jì)圖的相關(guān)知識(shí)點(diǎn).21、(1)200;(2)72°,作圖見(jiàn)解析;(3).【解析】
(1)用一等獎(jiǎng)的人數(shù)除以所占的百分比求出總?cè)藬?shù);(2)用總?cè)藬?shù)乘以二等獎(jiǎng)的人數(shù)所占的百分比求出二等獎(jiǎng)的人數(shù),補(bǔ)全統(tǒng)計(jì)圖,再用360°乘以二等獎(jiǎng)的人數(shù)所占的百分比即可求出“二等獎(jiǎng)”對(duì)應(yīng)的扇形圓心角度數(shù);(3)用獲得一等獎(jiǎng)和二等獎(jiǎng)的人數(shù)除以總?cè)藬?shù)即可得出答案.【詳解】解:(1)這次知識(shí)競(jìng)賽共有學(xué)生=200(名);(2)二等獎(jiǎng)的人數(shù)是:200×(1﹣10%﹣24%﹣46%)=40(人),補(bǔ)圖如下:“二等獎(jiǎng)”對(duì)應(yīng)的扇形圓心角度數(shù)是:360°×=72°;(3)小華獲得“一等獎(jiǎng)或二等獎(jiǎng)”的概率是:=.【點(diǎn)睛】本題主要考查了條形統(tǒng)計(jì)圖以及扇形統(tǒng)計(jì)圖,利用統(tǒng)計(jì)圖獲取信息是解本題的關(guān)鍵.22、(1)生產(chǎn)一件甲產(chǎn)品需要15分,生產(chǎn)一件乙產(chǎn)品需要20分;(2)小王該月最多能得3544元,此時(shí)生產(chǎn)甲、乙兩種產(chǎn)品分別60,555件.【解析】
(1)設(shè)生產(chǎn)一件甲種產(chǎn)品需x分,生產(chǎn)一件乙種產(chǎn)品需y分,利用待定系數(shù)法求出x,y的值.
(2)設(shè)生產(chǎn)甲種產(chǎn)品用x分,則生產(chǎn)乙種產(chǎn)品用(25×8×60-x)分,分別求出甲乙兩種生產(chǎn)多少件產(chǎn)品.【詳解】(1)設(shè)生產(chǎn)一件甲種產(chǎn)品需x分,生產(chǎn)一件乙種產(chǎn)品需y分.由題意得:,解這個(gè)方程組得:,答:生產(chǎn)一件甲產(chǎn)品需要15分,生產(chǎn)一件乙產(chǎn)品需要20分.(2)設(shè)生產(chǎn)甲種產(chǎn)品共用x分,則生產(chǎn)乙種產(chǎn)品用(25×8×60-x)分.則生產(chǎn)甲種產(chǎn)品件,生產(chǎn)乙種產(chǎn)品件.∴w總額=1.5×+2.8×=0.1x+×2.8=0.1x+1680-0.14x=-0.04x+1680,又≥60,得x≥900,由一次函數(shù)的增減性,當(dāng)x=900時(shí)w取得最大值,此時(shí)w=0.04×900+1680=1644(元),則小王該月收入最多是1644+1900=3544(元),此時(shí)甲有=60(件),乙有:=555(件),答:小王該月最多能得3544元,此時(shí)生產(chǎn)甲、乙兩種產(chǎn)品分別60,555件.【點(diǎn)睛】考查了一次函數(shù)和二元一次方程組的應(yīng)用.解題關(guān)鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關(guān)系,列出方程組,再求解.23、(1)(4,6);y=1x1﹣8x+6(1);(3)點(diǎn)P的坐標(biāo)為(3,5)或().【解析】
(1)已知B(4,m)在直線y=x+1上,可求得m的值,拋物線圖象上的A、B兩點(diǎn)坐標(biāo),可將其代入拋物線的解析式中,通過(guò)聯(lián)立方程組即可求得待定系數(shù)的值.(1)要弄清PC的長(zhǎng),實(shí)際是直線AB與拋物線函數(shù)值的差.可設(shè)出P點(diǎn)橫坐標(biāo),根據(jù)直線AB和拋物線的解析式表示出P、C的縱坐標(biāo),進(jìn)而得到關(guān)于PC與P點(diǎn)橫坐標(biāo)的函數(shù)關(guān)系式,根據(jù)函數(shù)的性質(zhì)即可求出PC的最大值.(3)根據(jù)頂點(diǎn)問(wèn)題分情況討論,若點(diǎn)P為直角頂點(diǎn),此圖形不存在,若點(diǎn)A為直角頂點(diǎn),根據(jù)已知解析式與點(diǎn)坐標(biāo),可求出未知解析式,再聯(lián)立拋物線的解析式,可求得C點(diǎn)的坐標(biāo);若點(diǎn)C為直角頂點(diǎn),可根據(jù)點(diǎn)的對(duì)稱性求出結(jié)論.【詳解】解:(1)∵B(4,m)在直線y=x+1上,∴m=4+1=6,∴B(4,6),故答案為(4,6);∵A(,),B(4,6)在拋物線y=ax1+bx+6上,∴,解得,∴拋物線的解析式為y=1x1﹣8x+6;(1)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(n,n+1),則C點(diǎn)的坐標(biāo)為(n,1n1﹣8n+6),∴PC=(n+1)﹣(1n1﹣8n+6),=﹣1n1+9n﹣4,=﹣1(n﹣)1+,∵PC>0,∴當(dāng)n=時(shí),線段PC最大且為.(3)∵△PAC為直角三角形,i)若點(diǎn)P為直角頂點(diǎn),則∠APC=90°.由題意易知,PC∥y軸,∠APC=45°,因此這種情形不存在;ii)若點(diǎn)A為直角頂點(diǎn),則∠PAC=90°.如圖1,過(guò)點(diǎn)A(,)作AN⊥x軸于點(diǎn)N,則ON=,AN=.過(guò)點(diǎn)A作AM⊥直線AB,交x軸于點(diǎn)M,則由題意易知,△AMN為等腰直角三角形,∴MN=AN=,∴OM=ON+MN=+=3,∴M(3,0).設(shè)直線AM的解析式為:y=kx+b,則:,解得,∴直線AM的解析式為:y=﹣x+3①又拋物線的解析式為:y=1x1﹣8x+6②聯(lián)立①②式,解得:或(與點(diǎn)A重合,舍去),∴C(3,0),即點(diǎn)C、M點(diǎn)重合.當(dāng)x=3時(shí),y=x+1=5,∴P1(3,5);iii)若點(diǎn)C為直角頂點(diǎn),則∠ACP=90°.∵y=1x1﹣8x+6=1(x﹣1)1﹣1,∴拋物線的對(duì)稱軸為直線x=1.如圖1,作點(diǎn)A(,)關(guān)于對(duì)稱軸x=1的對(duì)稱點(diǎn)C,則點(diǎn)C在拋物線上,且C(,).當(dāng)x=時(shí),y=x+1=.∴P1(,).∵點(diǎn)P1(3,5)、P1(,)均在線段AB上,∴綜上所述,△PAC為直角三角形時(shí),點(diǎn)P的坐標(biāo)為(3,5)或(,).【點(diǎn)睛】本題考查了二次函數(shù)的綜合題,解題的關(guān)鍵是熟練的掌握二次函數(shù)的應(yīng)用.24、(I)4;(II)(III)(2,0)或(0,4)【解析】
(I)當(dāng)m=3時(shí),拋物線解析式為y=-x2+6x,解方程-x2+6x=0得A(6,0),利用對(duì)稱性得到C(5,5),從而得到BC的長(zhǎng);(II)解方程-x2+2mx=0得A(2m,0),利用對(duì)稱性得到C(2m-1,2m-1),再根據(jù)勾股定理和兩點(diǎn)間的距離公式得到(2m-2)2+(m-1)2+12+(2m-1)2=(2m-1)2+m2,然后解方程即可;(III)如圖,利用△PME≌△CBP得到PM=BC=2m-2,ME=BP=m-1,則根據(jù)P點(diǎn)坐標(biāo)得到2m-2=m,解得m=2,再計(jì)算出ME=1得到此時(shí)E點(diǎn)坐標(biāo);作PH⊥y軸于H,如圖,利用△PHE′≌△PBC得到PH=PB=m-1,HE′=BC=2m-2,利用P(1,m)得到m-1=1,解得m=2,然后計(jì)算出HE′得到E′點(diǎn)坐標(biāo).【詳解】解:(I)當(dāng)m=3時(shí),拋物線解析式為y=﹣x2+6x,當(dāng)y=0時(shí),﹣x2+6x=0,解得x1=0,x2=6,則A(6,0),拋物線的對(duì)稱軸為直線x=3,∵P(1,3),∴B(1,5),∵點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C∴C(5,5),∴BC=5﹣1=4;(II)當(dāng)y=0時(shí),﹣x2+2mx=0,解得x1=0,x2=2m,則A(2m,0),B(1,2m﹣1),∵點(diǎn)B關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為C,而拋物線的對(duì)稱軸為直線x=m,∴C(2m﹣1,2m﹣1),∵PC⊥PA,∴PC2+AC2=PA2,∴(2m﹣2)2+(m﹣1)2+12+(2m﹣1)2=(2m﹣1)2+m2,整理得2m2﹣5m+3=0,解得m1=1,m2=,即m的值為;(III)如圖,∵PE⊥PC,PE=PC,∴△PME≌△CBP,∴PM=BC=2m﹣2,ME=BP=2m﹣1﹣m=m﹣1,而P(1,m)∴2m﹣2=m,解得m=2,∴ME=m﹣1=1,∴E(2,0);作PH⊥y軸于H,如圖,易得△PHE′≌△PBC,∴PH=P
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 供暖承包合同
- 裝修總承包合同
- 標(biāo)識(shí)標(biāo)牌制作合同
- 數(shù)據(jù)存儲(chǔ)與分析服務(wù)合同
- 英文服務(wù)合同范本
- 精技術(shù)合作開(kāi)發(fā)合同
- 合同主體變更協(xié)議
- 房屋買(mǎi)賣(mài)居間合同簽訂注意事項(xiàng)
- 關(guān)于固定期限聘用合同
- 公對(duì)公的借款合同正規(guī)范本
- 員工內(nèi)部眾籌方案
- 復(fù)變函數(shù)與積分變換期末考試試卷及答案
- 初中班級(jí)成績(jī)分析課件
- 勞務(wù)合同樣本下載
- 聰明格練習(xí)題(初、中級(jí))
- 血液透析水處理系統(tǒng)演示
- 小批量試制總結(jié)報(bào)告
- 2023年經(jīng)濟(jì)開(kāi)發(fā)區(qū)工作會(huì)議表態(tài)發(fā)言
- YY/T 0216-1995制藥機(jī)械產(chǎn)品型號(hào)編制方法
- 糖尿病足與周?chē)懿?1課件
- 2022年試行林木采伐管理方案
評(píng)論
0/150
提交評(píng)論