![2024年浙江省寧波市北侖區(qū)中考數(shù)學(xué)一模試卷_第1頁](http://file4.renrendoc.com/view7/M02/0E/03/wKhkGWbQyDaARSBmAAFGDo8rjcw969.jpg)
![2024年浙江省寧波市北侖區(qū)中考數(shù)學(xué)一模試卷_第2頁](http://file4.renrendoc.com/view7/M02/0E/03/wKhkGWbQyDaARSBmAAFGDo8rjcw9692.jpg)
![2024年浙江省寧波市北侖區(qū)中考數(shù)學(xué)一模試卷_第3頁](http://file4.renrendoc.com/view7/M02/0E/03/wKhkGWbQyDaARSBmAAFGDo8rjcw9693.jpg)
![2024年浙江省寧波市北侖區(qū)中考數(shù)學(xué)一模試卷_第4頁](http://file4.renrendoc.com/view7/M02/0E/03/wKhkGWbQyDaARSBmAAFGDo8rjcw9694.jpg)
![2024年浙江省寧波市北侖區(qū)中考數(shù)學(xué)一模試卷_第5頁](http://file4.renrendoc.com/view7/M02/0E/03/wKhkGWbQyDaARSBmAAFGDo8rjcw9695.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2024年浙江省寧波市北侖區(qū)中考數(shù)學(xué)一模試卷
一、選擇題(每小題3分,共30分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)符合題目要求)
1.(3分)如果把收入2024元記作+2024,那么支出2024元記作(
A.2024B.—」C.|2024|D.-2024
2024
2.(3分)下列圖形中,是中心對(duì)稱圖形的是()
B.D.
3.(3分)據(jù)報(bào)道,第19屆杭州亞運(yùn)會(huì)的參賽運(yùn)動(dòng)員達(dá)到12500人,屬于歷史之最(
A.0.125X105B.1.25X105C.1.25X104D.12.5X103
4.(3分)如圖所示的幾何體是由一個(gè)圓錐體和一個(gè)圓柱體組成的,它的主視圖是()
5.(3分)要從兩名水平相當(dāng)?shù)纳鋼暨\(yùn)動(dòng)員中挑選出成績更穩(wěn)定的選手,應(yīng)關(guān)注的統(tǒng)計(jì)量是()
A.眾數(shù)B.方差C.中位數(shù)D.平均數(shù)
'迎>1
6.(3分)不等式組2的解集在數(shù)軸上表示為()
5-3x)-l
C.-1012D.-1012
7.(3分)如圖,在△ABC中,AH是高線,若NCAH=30°,EF=2()
8.(3分)元朝朱世杰所著的《算學(xué)啟蒙》中,記載了這樣一道題:良馬日行二百四十里,弩馬日行一百
五十里,問良馬幾何日追及之?其大意是:快馬每天行240里,慢馬每天行150里,快馬幾天可追上慢
馬?若設(shè)快馬尤天可追上慢馬,由題意得()
A.q=x+12B.上=上-12
240150240150
C.240(X-12)=150xD.240元=150(尤+12)
9.(3分)在平面直角坐標(biāo)系xOy中,點(diǎn)A(-1,yi)、B(2,>2)、C(4,*)是拋物線>=。/+桁(。>
0)上的三個(gè)點(diǎn),若且yi”<0,拋物線對(duì)稱軸為彳=/,則r的取值范圍是()
A.0<t<£B.ClVtV'D.
10.(3分)如圖,在△ABC中,AB=BC=AC,以尸為頂點(diǎn)作一個(gè)60°的角交AB、BC邊于D、E兩點(diǎn),
連結(jié)DE()
A.△ADF的周長B.△2DE的周長
C.的周長D.△£)£〃的周長
二、填空題(每小題4分,共24分)
11.(4分)寫一個(gè)比加大的無理數(shù).
12.(4分)因式分解:a2-ab=
13.(4分)一個(gè)不透明的袋子里裝有1個(gè)白球、3個(gè)黑球和6個(gè)紅球,它們除顏色外其余都相同.從袋中
隨機(jī)摸出一個(gè)球?yàn)楹谇虻母怕蕿?
14.(4分)如圖,正五邊形ABCDE的邊長為2,以頂點(diǎn)A為圓心,圖中陰影部分的面積
為______________________
D
15.(4分)如圖,RCABC頂點(diǎn)A落在y軸上,斜邊上的中線C£),x軸于點(diǎn)反比例函數(shù)ynK@#0)
16.(4分)如圖,邊長為6的菱形A8CD中,ZA=60°,CF=2,將四邊形AE7*沿著E尸折疊得到四
邊形A'D'FE,ZA,BE+ZD'BC=,止匕時(shí)D'F交BC邊于點(diǎn)G,BG的長
為___________________.
三、解答題(本大題有7小題,共66分)
17.(6分)⑴計(jì)算:V8-4sin45°+|V2-1|+20240;
(2)化簡:(x+1)(尤-1)+x(1-%).
18.(8分)在5X3的方格紙中,△A8C的頂點(diǎn)均在格點(diǎn)上,請(qǐng)按下列要求作圖.
(1)在圖1中,作線段8。,使得BO〃AC;
(2)在圖2中,作線段8E,使得8E平分AC
ABAB
圖1圖2
19.(8分)5月12日是我國“防災(zāi)減災(zāi)日”.為增強(qiáng)學(xué)生防災(zāi)減災(zāi)意識(shí),某區(qū)舉行防災(zāi)減災(zāi)安全知識(shí)競(jìng)賽.競(jìng)
賽結(jié)束后,發(fā)現(xiàn)所有參賽學(xué)生的成績(滿分100分)(用尤表示)分為四組:A組(60Wx<70),B組
(70W尤<80)(80W尤<90),。組(90WxW100),繪制了如下不完整的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖.
學(xué)生成績頻數(shù)直方圖學(xué)生成績扇形統(tǒng)計(jì)圖
頻數(shù)/人
B
20%
C
25%
“60708090100成績/分
根據(jù)以上信息,解答下列問題:
(1)通過計(jì)算補(bǔ)全頻數(shù)分布直方圖;
(2)扇形統(tǒng)計(jì)圖中A組所對(duì)應(yīng)的圓心角的度數(shù)為;
(3)根據(jù)小明學(xué)校成績,估計(jì)全區(qū)參加競(jìng)賽的5000名學(xué)生中有多少人的成績不低于80分?
20.(10分)某臨街商鋪想做一款落地窗以展示商品,為防止商品久曬受損,需保證冬至日正午時(shí)分太陽
光不能照進(jìn)落地窗.如圖,遮陽棚前段下擺的自然垂直長度BC=30cm,遮陽棚的固定高度AO=
240cm^-.
13
(1)如圖1,求遮陽棚上的8點(diǎn)到墻面的距離;
(2)如圖2,冬至日正午時(shí),該商鋪所在地區(qū)的太陽的高度角約是53°(光線EC與地面的夾角)(參
考數(shù)據(jù)sin53°仁0.8,cos53-0.6,tan53°A)
1.J/
,/太陽光
DGDG
圖1圖2
21.(10分)如圖,一次函數(shù)y=h(x-1)+3與反比例函數(shù)(4次2/0)的圖象相交于A(1,根)、
B(n,兩點(diǎn)?
(1)求m、n的值;
(2)直接寫出不等式kNx-D+e〉魚的解集;
1Y
(3)過A、2兩點(diǎn)分別作無軸的平行線和垂線,四條直線的另兩個(gè)交點(diǎn)為C、D,求證:直線CD經(jīng)過
原點(diǎn).
22.(12分)周末,小明和同學(xué)們一起去長江路地鐵站坐地鐵.在等車的過程中,他驚嘆于地鐵每次都能
精準(zhǔn)的??吭谕V咕€上.為什么每次地鐵停靠都那么準(zhǔn)呢?里面一定包含著數(shù)學(xué)知識(shí)!通過工作人員幫
助
f(秒)
S(米)256196144100643616…
當(dāng)小明拿到這些數(shù)據(jù)時(shí),他作了如下的思考:
(1)依據(jù)數(shù)學(xué)經(jīng)驗(yàn),小明需要將這些數(shù)據(jù)繪制在平面直角坐標(biāo)系中,并用平滑的曲線進(jìn)行連線,請(qǐng)你
在圖中落實(shí)他的想法;
(2)根據(jù)圖象以及數(shù)據(jù)關(guān)系,它可能是我們所學(xué)習(xí)過的________函數(shù)圖象(選填“一次”、“二次”
或“反比例”).請(qǐng)你選擇合適的數(shù)據(jù)求出該函數(shù)的表達(dá)式;
(3)地鐵從開始剎車到下次啟動(dòng)一共用時(shí)60秒.求地鐵的??繒r(shí)間.
(停靠時(shí)間指的是地鐵剎停后的靜止時(shí)間)
s
048121620242832t
23.(12分)如圖,四邊形ABC。是O。的內(nèi)接四邊形,AC±BD.
(1)ZBCO+ZBAC^_________;
(2)如圖2,若半徑OC〃AD
①求證:AB=AC;
②若。C:CD=5:6,求tan/AC£)的值.
(3)—如圖3,過。作DF±BC于點(diǎn)H,交AC于點(diǎn)F,若4。=5,CD=3V10-求。尸的
長.圖1圖2圖3
2024年浙江省寧波市北侖區(qū)中考數(shù)學(xué)一模試卷
參考答案與試題解析
一、選擇題(每小題3分,共30分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)符合題目要求)
1.(3分)如果把收入2024元記作+2024,那么支出2024元記作()
A.2024B.—」C.|2024|D.-2024
2024
【解答】解:收入2024元記作+2024,那么支出2024元記作-2024,
故選:D.
2.(3分)下列圖形中,是中心對(duì)稱圖形的是()
D.
【解答】解:選項(xiàng)4C、。均不能找到這樣的一個(gè)點(diǎn),所以不是中心對(duì)稱圖形;
選項(xiàng)B能找到這樣的一個(gè)點(diǎn),使圖形繞某一點(diǎn)旋轉(zhuǎn)180。后與原來的圖形重合.
故選:B.
3.(3分)據(jù)報(bào)道,第19屆杭州亞運(yùn)會(huì)的參賽運(yùn)動(dòng)員達(dá)到12500人,屬于歷史之最()
A.0.125X105B.1.25X105C.1.25X104D.12.5X103
【解答】解:12500=1.25X104,
故選:C.
4.(3分)如圖所示的幾何體是由一個(gè)圓錐體和一個(gè)圓柱體組成的,它的主視圖是()
主視方向
【解答】解:從正面看,底層是一個(gè)矩形.
故選:A.
5.(3分)要從兩名水平相當(dāng)?shù)纳鋼暨\(yùn)動(dòng)員中挑選出成績更穩(wěn)定的選手,應(yīng)關(guān)注的統(tǒng)計(jì)量是()
A.眾數(shù)B.方差C.中位數(shù)D.平均數(shù)
【解答】解:要從兩名水平相當(dāng)?shù)纳鋼暨\(yùn)動(dòng)員中挑選出成績更穩(wěn)定的選手,應(yīng)關(guān)注的統(tǒng)計(jì)量是方差,
故選:B.
6.(3分)不等式組[詈>1的解集在數(shù)軸上表示為()
解不等式5-3x2-5,得:尤W2,
則不等式組的解集為1<XW7,
故選:C.
7.(3分)如圖,在△ABC中,AH是高線,若NCAH=30°,EF=2()
【解答】解:是AABC的中位線,
;.AC=2斯=2X2=4,
是高線,
AZAHC=90°,
\'ZCAH=30°,
:.CH=1.AC=2,
8
故選:A.
8.(3分)元朝朱世杰所著的《算學(xué)啟蒙》中,記載了這樣一道題:良馬日行二百四十里,野馬日行一百
五十里,問良馬幾何日追及之?其大意是:快馬每天行240里,慢馬每天行150里,快馬幾天可追上慢
馬?若設(shè)快馬x天可追上慢馬,由題意得()
Ax_=x+12Rx=x_
,240150,240750
C.240(X-12)=150%D.240x=150(x+12)
【解答】解:???慢馬先行12天,快馬x天可追上慢馬,
.?.快馬追上慢馬時(shí),慢馬行了(x+12)天.
根據(jù)題意得:240%=150(x+12).
故選:D.
9.(3分)在平面直角坐標(biāo)系xOy中,點(diǎn)A(-1,yi)、B(2,”)、C(4,*)是拋物線丫二一+反(。>
0)上的三個(gè)點(diǎn),若且”戶<0,拋物線對(duì)稱軸為x=r,則r的取值范圍是()
A.0<t</B./<t<lC.D.
【解答】解:由題意,,.'A(-1,yi)、B(3,y2)在拋物線丫二一+法上,
??,6=。-b,y2=4〃+7Z?.
又yiy2V4,
???(〃-b)(4Q+2Z?)<4.
.,.2a2(2-A)(2+A.
aa
又40,
(5-A)(2+A.
aa
(A-1)(A.
aa
.\A>3或包
aa
--L<-l_L>iA.
2a42a2
y2<y4<y3,拋物線開口向上,
.,.|Z-2|<k+5|<|/-4|.
下面分兩種情形進(jìn)行討論.
(1)當(dāng)>1時(shí).
①7G<2.
:.2-t<t+l<4-t.
3.
52
,此時(shí)2cte旦.
2
②當(dāng)7WW4時(shí),
V|?-2|<|r+2|<|r-4],
:.t-2<t+3<4-t.
5
又2WtW4,
此時(shí)無解.
③當(dāng)t>1時(shí),
.\t-2<t+\<t-8.
,此時(shí)無解.
從上可得,1?旦.
6
(2)當(dāng)-工時(shí),
2
①當(dāng)t<-4時(shí),
':\t-2\<\t+l\<\t-l\,
:.2-t<-t-1<2-t.
,此時(shí)無解.
②當(dāng)-1WY-工時(shí),
6
V|r-2|<|r+l|<k-6|,
:.2-t<t+l<6-t.
22
,此時(shí)無解.
從上可得,當(dāng)f<-l時(shí).
綜上,8Vt<3.
2
故選:c.
10.(3分)如圖,在△ABC中,AB=BC=AC,以尸為頂點(diǎn)作一個(gè)60°的角交AB、BC邊于D、E兩點(diǎn),
連結(jié)DE()
A.△ADF的周長B.的周長
C.的周長D.△。斯的周長
【解答】解:如圖,取A3中點(diǎn)G,在即上截取E"=EC,
由N£FD=NEC/=NRir)=60°,
ZEFC+ZFEC=ZEFC+ZAFD=120°,
:.NCEF=NAFD,
:.△CEFsAAFD,
VAF^CF,
?EFCE
??-二,
FDCF
?:NEFD=NECF,
:.XCEFs^FED,
即△CEFsAFEDsAAFr>,
:?NCEF=NFED,
:.XECF沿XEHF(SAS),
:.ZFHE=ZFGA=60°,
AZFHD=ZFGD=120°,
?.*ZFDH=ZFDG,
:./\FDH^/\FDG(A4S),
:.DG=DH,
:.CABDE=BE+DE+BD=BE+EH+DH+BD=BC+BG=3BC,
2
即為△ABC周長的一半,
故選:B.
二、填空題(每小題4分,共24分)
11.(4分)寫一個(gè)比加大的無理數(shù)
【解答】解:V3
故答案為:Vs(答案不確定,比、而
12.(4分)因式分解:/-ab=a(a-b)
【解答】解:cr-ab—a(a-b).
故答案為:a(a-/?).
13.(4分)一個(gè)不透明的袋子里裝有1個(gè)白球、3個(gè)黑球和6個(gè)紅球,它們除顏色外其余都相同.從袋中
隨機(jī)摸出一個(gè)球?yàn)楹谇虻母怕蕿锳.
一1。一
【解答】解::袋子中共1+3+7=10個(gè)球,其中黑球有3個(gè),
從中隨機(jī)摸出一個(gè)球?yàn)楹谇虻母怕蕿閲?/p>
故答案為:A.
10
14.(4分)如圖,正五邊形A8CDE的邊長為2,以頂點(diǎn)A為圓心,圖中陰影部分的面積為國工
一5
D
【解答】解::五邊形ABCDE是正五邊形,
...4=(5-2)X180°—os。,
5
???S陰影部分=5扇形4BE=108兀*22=空_.
3605
故答案為:旦L.
8
15.(4分)如圖,Rt^ABC頂點(diǎn)A落在y軸上,斜邊上的中線COJ_x軸于點(diǎn)。,反比例函數(shù)y=K(卜聲0)
X
經(jīng)過直角頂點(diǎn)C,則k的值為10.
??,在Rtz^ABC中,斜邊上的中線CD_Lx軸于點(diǎn)。,
S^ACD=S^BCD=5,CD〃y軸,
???AOCD和△AC。的公共邊CD上的高相等,
??S^OCD=S^ACD=59
?.?反比例函數(shù)y£@卉4)經(jīng)過直角頂點(diǎn)C,
X
???根據(jù)反比例函數(shù)比例系數(shù)k的幾何意義得:SAOCD=l-\k\,
2
.*.|A:|=7SAOC£)=10,
..?反比例函數(shù)(k#0)的圖象在第一象限,
X
%=10.
故答案為:10.
16.(4分)如圖,邊長為6的菱形ABC。中,ZA=60°,CF=2,將四邊形AEFD沿著EF折疊得到四
邊形A'D'FE,NA'BE+/D'BC=60°此時(shí)O'b交BC邊于點(diǎn)G,8G的長為-li
一5
【解答】解:連接8R延長A3,在C3上截取C"=B=2,以8。,連接
ZABC=180°—120°,
?二4、B、。三點(diǎn)在同一條直線上,
ZA'BE+ZD'BC=180°-ZABC=60°,
,:FC=CH=2,ZC=ZA=60°,
???△CFH為等邊三角形,
:.ZCHF=60°,FH=CF=5,
由折疊得:FD'=FD=CD-CF=4,BH=BC-CH=4,
?.?□FDBM,
:?BM=BH=5,NFMB=NFDB=120°,
???NBMH=/BHM,
VZBHF=180°-ZCHF=180°-60°=120°,
???/FMH=ZFMB-/BMH=ZFHB-ZBHM=/FHM,
:.FM=FH=2,
:.BD=FM=2,
:.A'B=A'D'-BD'=AD-BD'=5-2=4,
9:FD//AE,
:.FD//A'E,BPD'I//A'E,
?A'EBEA'B3_
,,DTT=Bf=FT=y2n,
設(shè)A'E=AE=x,貝!J8E=2-X,
???D,1=%BI=yBE=3-1x^
U:DF//AB.
:.ZDFE=/IEF,
由折疊知:ZDFE=ZIFE,
:.ZIFE=ZIEF,
:.IF=IE,
:.FD+D1=BE+BI,
?81
??4?x=6-x+6-萬x'
解得:x2
X2
.47
??BE=64J,
.14
':BI//CF,
:.△BIGs^CFG,
7_
?BI_BG_3-__7
,方而下〒
o
???CG-yBG,
■:BC=BG+CG=7,
o
???BGqBG=8,
解得:BGT-
故答案為:60°;工£
5
三、解答題(本大題有7小題,共66分)
17.(6分)⑴計(jì)算:V8-4sin45°+|V2-11+20240;
(2)化簡:(x+1)(x-1)+x(1-x).
【解答】解:(1)V8-4sin45°+|V5-11+2024°
=5&-4X
2
=8&-2V5+V2
=如;
(2)(尤+8)(x-1)+x(1-x)
=S-1+x-%2
=x-5
18.(8分)在5X3的方格紙中,AABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)按下列要求作圖.
(1)在圖1中,作線段BD使得BO〃AC;
(2)在圖2中,作線段BE,使得BE平分AC
【解答】解:(1)如圖1中,線段8。即為所求;
(2)如圖2中,線段BE即為所求.
19.(8分)5月12日是我國“防災(zāi)減災(zāi)日”.為增強(qiáng)學(xué)生防災(zāi)減災(zāi)意識(shí),某區(qū)舉行防災(zāi)減災(zāi)安全知識(shí)競(jìng)賽.競(jìng)
賽結(jié)束后,發(fā)現(xiàn)所有參賽學(xué)生的成績(滿分100分)(用尤表示)分為四組:A組(60Wx<70),B組
(70W尤<80)(80Wx<90),。組(90WxW100),繪制了如下不完整的頻數(shù)分布直方圖和扇形統(tǒng)計(jì)圖.
學(xué)生成績頻數(shù)直方圖學(xué)生成績扇形統(tǒng)計(jì)圖
根據(jù)以上信息,解答下列問題:
(1)通過計(jì)算補(bǔ)全頻數(shù)分布直方圖;
(2)扇形統(tǒng)計(jì)圖中A組所對(duì)應(yīng)的圓心角的度數(shù)為
(3)根據(jù)小明學(xué)校成績,估計(jì)全區(qū)參加競(jìng)賽的5000名學(xué)生中有多少人的成績不低于80分?
【解答】解:(1)由頻數(shù)分布直方圖可知:C組是100人,
由扇形統(tǒng)計(jì)圖可知:C組占小明所在學(xué)校參加競(jìng)賽學(xué)生的25%,
,小明所在學(xué)校參加競(jìng)賽學(xué)生人數(shù)為:100?25%=400(人),
組的人數(shù)為:400X20%=80(人),
補(bǔ)全頻數(shù)分布直方圖如圖所示:
學(xué)生成績頻數(shù)直方圖
,t.A組人數(shù)占班級(jí)人數(shù)的百分比為:40+400=10%,
組所對(duì)應(yīng)的圓心角的度數(shù)為:360°X10%=36°;
故答案為:36°;
(3)5000X=3500(人),
400
答:估計(jì)全區(qū)參加競(jìng)賽的5000名學(xué)生中有3500人的成績不低于80分.
20.(10分)某臨街商鋪想做一款落地窗以展示商品,為防止商品久曬受損,需保證冬至日正午時(shí)分太陽
光不能照進(jìn)落地窗.如圖,遮陽棚前段下擺的自然垂直長度BC=30cm,遮陽棚的固定高度AD=
240C/77-^-.
13
(1)如圖1,求遮陽棚上的8點(diǎn)到墻面的距離;
(2)如圖2,冬至日正午時(shí),該商鋪所在地區(qū)的太陽的高度角約是53。(光線EC與地面的夾角)(參
考數(shù)據(jù)sin53°七0.8,cos53°心0.6,tan53°心4)
3
圖2
【解答】解:(1)如圖,過點(diǎn)B作于點(diǎn)K,
\'AB=\3Qcm,sinZBAD=-l^.,
13
.BK=BK=12
"AB"130'"13,
:.BK^120,
即的8點(diǎn)到墻面AD的距離為120cm;
(2)過點(diǎn)C作C”,Z)G于點(diǎn)H,設(shè)直線CE交DG于點(diǎn)F,
由勾股定理得,^=VAB2-BK2=V1342-1202=50,
:.DK=AD-4K=240-50=190(cm),
:.BC^DK^190cm,
又,..BC=30m,
:.CH=190-30=160(c/77),
又,:ZCFH=53°,
:.tanZCFH^^=^,
FH3
?.?-C-H=-1-6-0-=-6-,
FHFH3
:.FH=120f
由(1)知,5K=120cm,
:.DG=BK=120cm,
:.FH=DG,
???該商鋪的落地窗方案可行.
21.(10分)如圖,一次函數(shù)y=h(x-1)+3與反比例函數(shù)y上2(女次2W0)的圖象相交于A(1,機(jī))、
x
B(n,得)兩點(diǎn).
(1)求相、n的值;
(2)直接寫出不等式女|底-1)+3>±2的解集;
1X
(3)過A、3兩點(diǎn)分別作x軸的平行線和垂線,四條直線的另兩個(gè)交點(diǎn)為C、D,求證:直線CD經(jīng)過
原點(diǎn).
【解答】(1)解:當(dāng)兀=1時(shí),一次函數(shù)加=女1(4-1)+3=2,
二?A(1,3),
.\3Xm=-即3=-
??.〃=-2.
?*nt~~39ri―1—2.
(2)解:由(1)可知A(2,3),一2),
7
根據(jù)函數(shù)圖象可知不等式(x-l)+3>”的解集為:尤>1或-3<x<0.
1X
(3)證明:由(1)可知,A(1,B(-7,-旦),
2
根據(jù)題意可得C(-5,3),-1),
設(shè)直線CD解析式為>=履+6,代入C
-2k+b=3
2,解得,k=4
k+b=-y
b=0
直線CO解析式為尸-生
故直線C。經(jīng)過原點(diǎn).
22.(12分)周末,小明和同學(xué)們一起去長江路地鐵站坐地鐵.在等車的過程中,他驚嘆于地鐵每次都能
精準(zhǔn)的??吭谕V咕€上.為什么每次地鐵??慷寄敲礈?zhǔn)呢?里面一定包含著數(shù)學(xué)知識(shí)!通過工作人員幫
助
t(秒)04812162024…
S(米)256196144100643616…
當(dāng)小明拿到這些數(shù)據(jù)時(shí),他作了如下的思考:
(1)依據(jù)數(shù)學(xué)經(jīng)驗(yàn),小明需要將這些數(shù)據(jù)繪制在平面直角坐標(biāo)系中,并用平滑的曲線進(jìn)行連線,請(qǐng)你
在圖中落實(shí)他的想法;
(2)根據(jù)圖象以及數(shù)據(jù)關(guān)系,它可能是我們所學(xué)習(xí)過的二次函數(shù)圖象(選填“一次”、“二次”或
“反比例”).請(qǐng)你選擇合適的數(shù)據(jù)求出該函數(shù)的表達(dá)式;
(3)地鐵從開始剎車到下次啟動(dòng)一共用時(shí)60秒.求地鐵的??繒r(shí)間.
(??繒r(shí)間指的是地鐵剎停后的靜止時(shí)間)
S
260
240
220
200
180
160
140
120
100
80
60
40
20
O48121620242832t
【解答】解:(1)描點(diǎn),連線
s
(2)根據(jù)圖象以及數(shù)據(jù)關(guān)系,它可能是我們所學(xué)習(xí)過的二次函數(shù),
iS:S=at1+bt+c,將點(diǎn)(0,
將(5,196),144)代入S=a/+bx+256中,
得.(16a+4b+256=196,
164z-a+4b+256=144
'二
解得:a=7,
b=-16
該函數(shù)的表達(dá)式為5=當(dāng)2-16X+256;
4
故答案為:二次;
(3)依題意,當(dāng)S=7時(shí),-kv7-16x+256=0,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 辦公室翻新補(bǔ)貼合同協(xié)議書
- 智能機(jī)器人研發(fā)與銷售合作合同
- 中秋月餅購銷合同書
- 無人機(jī)技術(shù)開發(fā)與應(yīng)用作業(yè)指導(dǎo)書
- 農(nóng)業(yè)休閑旅游與三農(nóng)深度融合策略研究
- 化妝品買賣合同
- 房屋買賣合同協(xié)議書
- 個(gè)人地皮轉(zhuǎn)讓協(xié)議書
- 人力資源管理關(guān)鍵步驟指導(dǎo)書
- 國際貿(mào)易進(jìn)口合同履行流程
- 賬期協(xié)議書賬期合同書
- 信息技術(shù)課程標(biāo)準(zhǔn)2023版:義務(wù)教育小學(xué)階段
- 2024年興業(yè)銀行股份有限公司校園招聘考試試題參考答案
- 2024年常德職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測(cè)試題庫完整
- 天津市河?xùn)|區(qū)2023-2024學(xué)年九年級(jí)上學(xué)期期末數(shù)學(xué)試題
- 黑龍江省哈爾濱市2024年數(shù)學(xué)八年級(jí)下冊(cè)期末經(jīng)典試題含解析
- 克羅恩病的外科治療
- 金屬表面處理中的冷噴涂技術(shù)
- 河北省石家莊市2023-2024學(xué)年高一上學(xué)期期末教學(xué)質(zhì)量檢測(cè)化學(xué)試題(解析版)
- 建設(shè)平安校園筑牢安全防線
- 黑龍江省齊齊哈爾市2023-2024學(xué)年高一上學(xué)期1月期末英語試題(含答案解析)
評(píng)論
0/150
提交評(píng)論