版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
歷屆真題專題【年高考試題】一、選擇題:1.(年高考浙江卷理科9)有5本不同的書,其中語文書2本,數(shù)學書2本,物理書1本.若將其隨機的并排擺放到書架的同一層上,則同一科目的書都不相鄰的概率(A)(B)(C)(D)解析:因為甲乙兩位同學參加同一個小組有3種方法,兩位同學個參加一個小組共有種方法;所以,甲乙兩位同學參加同一個小組的概率為點評:本題考查排列組合、概率的概念及其運算和分析問題、解決問題的能力。4.(年高考廣東卷理科6)甲、乙兩隊進行排球決賽.現(xiàn)在的情形是甲隊只要再贏一局就獲冠軍,乙隊需要再贏兩局才能得冠軍.若兩隊勝每局的概率相同,則甲隊獲得冠軍的概率為()A.B.C.D.【解析】D.由題得甲隊獲得冠軍有兩種情況,第一局勝或第一局輸?shù)诙謩?,所以甲隊獲得冠軍的概率所以選D.5.(年高考湖北卷理科7)如圖,用K、A1、A2三類不同的元件連成一個系統(tǒng).當K正常工作且A1、A2至少有一個正常工作時,系統(tǒng)正常工作.已知K、A1、A2正常工作的概率依次為0.9、0.8、0.8,則系統(tǒng)正常工作的概率為可能,最后一小時他們同在一個景點有種,則最后一小時他們同在一個景點的概率是,故選D7.(年高考四川卷理科12)在集合中任取一個偶數(shù)和一個奇數(shù)構(gòu)成以原點為起點的向量a=(a,b).從所有得到的以原點為起點的向量中任取兩個向量為鄰邊作平行四邊形.記所有作成的平行四邊形的個數(shù)為,其中面積不超過的平行四邊形的個數(shù)為,則()(A)(B)(C)(D)答案:B解析:基本事件:.其中面積為2的平行四邊形的個數(shù);其中面積為4的平行四【答案】【解析】:,的取值為0,1,2,3,,故2.(年高考江西卷理科12)小波通過做游戲的方式來確定周末活動,他隨機地往單位圓內(nèi)投擲一點,若此點到圓心的距離大于,則周末去看電影;若此點到圓心的距離小于,則去打籃球;否則,在家看書,則小波周末不在家看書的概率為【答案】【解析】小波周末不在家看書包含兩種情況:一是去看電影;二是去打籃球;所以小波周末不在家看書的概率為.3.(年高考湖南卷理科15)如圖4,EFGH是以O(shè)為圓心,半徑為1的圓內(nèi)接正方形.將一顆豆子隨機地扔到該圓內(nèi),用A表示事件“豆子落在正方形EFGH內(nèi)”,B表示事件“豆子落在扇形OHE(陰影部分)內(nèi)”,則(1);(2).答案:;顯然相同,故①的概率為6.(年高考安徽卷江蘇5)從1,2,3,4這四個數(shù)中一次隨機取兩個數(shù),則其中一個數(shù)是另一個的兩倍的概率是______【答案】【解析】從1,2,3,4這四個數(shù)中一次隨機取兩個數(shù),所有可能的取法有6種,滿足“其中一個數(shù)是另一個的兩倍”的所有可能的結(jié)果有(1,2),(2,4)共2種取法,所以其中一個數(shù)是另一個的兩倍的概率是.7.(年高考福建卷理科13)盒中裝有形狀、大小完全相同的5個球,其中紅色球3個,黃色球2個。若從中隨機取出2個球,則所取出的2個球顏色不同的概率等于_______?!敬鸢浮?.(年高考上海卷理科9)馬老師從課本上抄錄一個隨機變量的概率分布律如下表請小牛同學計算的數(shù)學期望,盡管“!”處無法完全看清,且兩個“?”處字跡模糊,但能肯定這兩個“?”處的數(shù)值相同。據(jù)此,小牛給出了正確答案?!敬鸢浮?.(年高考上海卷理科12)隨機抽取9個同學中,至少有2個同學在同一月出生的概率是(默認每月天數(shù)相同,結(jié)果精確到)?!敬鸢浮咳⒔獯痤}:1.(年高考山東卷理科18)(本小題滿分12分)紅隊隊員甲、乙、丙與藍隊隊員A、B、C進行圍棋比賽,甲對A,乙對B,丙對C各一盤,已知甲勝A,乙勝B,丙勝C的概率分別為0.6,0.5,0.5,假設(shè)各盤比賽結(jié)果相互獨立。(Ⅰ)求紅隊至少兩名隊員獲勝的概率;(Ⅱ)用表示紅隊隊員獲勝的總盤數(shù),求的分布列和數(shù)學期望.【解析】(Ⅰ)紅隊至少兩名隊員獲勝的概率為=0.55.(Ⅱ)取的可能結(jié)果為0,1,2,3,則=0.1;++=0.35;=0.4;=0.15.所以的分布列為0123P0.10.350.40.15數(shù)學期望=0×0.1+1×0.35+2×0.4+3×0.15=1.6.2.(年高考遼寧卷理科19)(本小題滿分12分) 某農(nóng)場計劃種植某種新作物,為此對這種作物的兩個品種(分別稱為品種甲和品種乙)進行田間試驗.選取兩大塊地,每大塊地分成n小塊地,在總共2n小塊地中,隨機選n小塊地種植品種甲,另外n小塊地種植品種乙. (I)假設(shè)n=4,在第一大塊地中,種植品種甲的小塊地的數(shù)目記為X,求X的分布列和數(shù)學期望; (II)試驗時每大塊地分成8小塊,即n=8,試驗結(jié)束后得到品種甲和品種乙在個小塊地上的每公頃產(chǎn)量(單位:kg/hm2)如下表:分別求品種甲和品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗結(jié)果,你認為應該種植哪一品種?附:樣本數(shù)據(jù)x1,x2,…,xa的樣本方差,其中為樣本平均數(shù).即X的分布列為X01234PX的數(shù)學期望是:.3.(年高考安徽卷理科20)(本小題滿分13分)工作人員需進入核電站完成某項具有高輻射危險的任務,每次只派一個人進去,且每個人只派一次,工作時間不超過10分鐘,如果有一個人10分鐘內(nèi)不能完成任務則撤出,再派下一個人?,F(xiàn)在一共只有甲、乙、丙三個人可派,他們各自能完成任務的概率分別,假設(shè)互不相等,且假定各人能否完成任務的事件相互獨立.(Ⅰ)如果按甲在先,乙次之,丙最后的順序派人,求任務能被完成的概率。若改變?nèi)齻€人被派出的先后順序,任務能被完成的概率是否發(fā)生變化?=(Ⅱ)當依次派出的三個人各自完成任務的概率分別為時,所需派出人員數(shù)目的分布列為123P所需派出人員數(shù)目的均值(數(shù)字期望)是,若交換前兩人的順序,則變?yōu)?,由此可見,當時,交換前兩人的順序可減少所需派出人員的數(shù)目的均值。(=2\*romanii)也可將(Ⅱ)中改寫為,若交換后兩人的順序則變?yōu)椋纱丝梢?,保持第一個人不變,當4.(年高考全國新課標卷理科19)(本小題滿分12分)某種產(chǎn)品的質(zhì)量以其質(zhì)量指標值衡量,質(zhì)量指標值越大表明質(zhì)量越好,且質(zhì)量指標值大于或等于102的產(chǎn)品為優(yōu)質(zhì)品,現(xiàn)用兩種新配方(分別稱為A配方和B配方)做試驗,各生產(chǎn)了100件這種產(chǎn)品,并測試了每件產(chǎn)品的質(zhì)量指標值,得到下面試驗結(jié)果:A配方的頻數(shù)分布表指標值分組頻數(shù)82042228B配方的頻數(shù)分布表指標值分組頻數(shù)41242328(Ⅰ)分別估計用A配方,B配方生產(chǎn)的產(chǎn)品的優(yōu)質(zhì)品率;(Ⅱ)已知用B配方生成的一件產(chǎn)品的利潤y(單位:元)與其質(zhì)量指標值t的關(guān)系式為從用B配方生產(chǎn)的產(chǎn)品中任取一件,其利潤記為X(單位:元),求X的分布列及數(shù)學期望.(以實驗結(jié)果中質(zhì)量指標值落入各組的頻率作為一件產(chǎn)品的質(zhì)量指標值落入相應組的概率)5.(年高考天津卷理科16)(本小題滿分13分)學校游園活動有這樣一個游戲項目:甲箱子里裝有3個白球、2個黑球,乙箱子里裝有1個白球、2個黑球,這些球除顏色外完全相同,每次游戲從這兩個箱子里各隨機摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結(jié)束后將球放回原箱)(Ⅰ)求在一次游戲中,(i)摸出3個白球的概率;(ii)獲獎的概率;(Ⅱ)求在兩次游戲中獲獎次數(shù)的分布列及數(shù)學期望.【解析】本小題主要考查古典概型及其概率計算公式、離散型隨機變量的分布列、互斥事件和相互獨立事件等基礎(chǔ)知識,考查運用概率知識解決簡單的實際問題的能力.(Ⅰ)(i)設(shè)“在一次游戲中摸出i個白球”為事件,則.(ii)設(shè)“在一次游戲中獲獎”為事件B,則B=,又,且互斥,所以.(Ⅱ)由題意可知的所有可能取值為0,1,,2,P(=0)=,P(=1)=,P(=2)=,所以的分布列是012P的數(shù)學期望=+=.6.(年高考江西卷理科16)(本小題滿分12分)某飲料公司招聘了一名員工,現(xiàn)對其進行一項測試,以便確定工資級別.公司準備了兩種不同的飲料共8杯,其顏色完全相同,并且其中4杯為A飲料,另外4杯為B飲料,公司要求此員工一一品嘗后,從8杯飲料中選出4杯A飲料.若4杯都選對,則月工資定為3500元;若4杯選對3杯,則月工資定為2800元,否則月工資定為2100元,令X表示此人選對A飲料的杯數(shù),假設(shè)此人對A和B兩種飲料沒有鑒別能力.(1)求X的分布列;(2)求此員工月工資的期望.解析:(1)X的所有可能取值為0,1,2,3,4,則,所以所求的分布列為X01234P(2)設(shè)Y表示該員工的月工資,則Y的所有可能取值為3500,2800,2100,相對的概率分別為,,,所以.所以此員工工資的期望為2280元.本題考查排列、組合的基礎(chǔ)知識及概率分布、數(shù)學期望.7.(年高考湖南卷理科18)(本小題滿分12分)某商店試銷某種商品20天,獲得如下數(shù)據(jù):日銷售量(件)0123頻數(shù)1595試銷結(jié)束后(假設(shè)該商品的日銷售量的分布規(guī)律不變).設(shè)某天開始營業(yè)時由該商品3件,當天營業(yè)結(jié)束后檢查存貨,若發(fā)現(xiàn)存量少于2件,則當天進貨補充至3件,否則不進貨.將頻率視為概率.求當天商店不進貨的概率;+故的分布列為所以的數(shù)學期望為.評析:本大題主要考查生活中的概率統(tǒng)計知識和方法.求離散型隨機變量的分布列和數(shù)學期望的方法,以及互斥事件概率的求法.8.(年高考廣東卷理科17)(本小題滿分13分)為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測量產(chǎn)品中微量元素x,y的含量(單位:毫克).下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):(1)已知甲廠生產(chǎn)的產(chǎn)品共98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;(2)當產(chǎn)品中的微量元素x,y滿足≥175且y≥75,該產(chǎn)品為優(yōu)等品,用上述樣本數(shù)據(jù)估計乙廠生產(chǎn)的優(yōu)等品的數(shù)量;(3)從乙廠抽出的上述5件產(chǎn)品中,隨即抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及其均值(即數(shù)學期望).【解析】解:(1),即乙廠生產(chǎn)的產(chǎn)品數(shù)量為35件。(2)易見只有編號為2,5的產(chǎn)品為優(yōu)等品,所以乙廠生產(chǎn)的產(chǎn)品中的優(yōu)等品 故乙廠生產(chǎn)有大約(件)優(yōu)等品,(3)的取值為0,1,2。 所以的分布列為012P 故9.(年高考陜西卷理科20)(本小題滿分13分)如圖,A地到火車站共有兩條路徑和,據(jù)統(tǒng)計,通過兩條路徑所用的時間互不影響,所用時間落在各時間段內(nèi)的頻率如下表:時間(分鐘)的頻率0.10.20.30.20.2的頻率00.10.40.40.1現(xiàn)甲、乙兩人分別有40分鐘和50分鐘時間用于趕往火車站。(Ⅰ)為了盡最大可能在各自允許的時間內(nèi)趕到火車站,甲和乙應如何選擇各自的路徑?(Ⅱ)用X表示甲、乙兩人中在允許的時間內(nèi)能趕到火車站的人數(shù),針對(Ⅰ)的選擇方案,求X的分布列和數(shù)學期望。X的分布列為X012P0.040.420.54 10.(年高考重慶卷理科17)(本小題滿分13分。(Ⅰ)小問5分(Ⅱ)小問8分.)某市公租房房屋位于A.B.C三個地區(qū),設(shè)每位申請人只申請其中一個片區(qū)的房屋,且申請其中任一個片區(qū)的房屋是等可能的,求該市的任4位申請人中:(Ⅰ)若有2人申請A片區(qū)房屋的概率;(Ⅱ)申請的房屋在片區(qū)的個數(shù)的分布列與期望。(2)設(shè)甲,乙兩個所付的費用之和為,可為分布列.12.(年高考全國卷理科18)(本小題滿分12分)(注意:在試題卷上作答無效)根據(jù)以往統(tǒng)計資料,某地車主購買甲種保險的概率為0.5,購買乙種保險但不購買甲種保險的概率為0.3,設(shè)各車主購買保險相互獨立(I)求該地1位車主至少購買甲、乙兩種保險中的l種的概率;(Ⅱ)X表示該地的l00位車主中,甲、乙兩種保險都不購買的車主數(shù)。求的期望。13.(年高考北京卷理科17)本小題共13分以下莖葉圖記錄了甲、乙兩組個四名同學的植樹棵樹。乙組記錄中有一個數(shù)據(jù)模糊,無法確認,在圖中以X表示。 (Ⅰ)如果X=8,求乙組同學植樹棵樹的平均數(shù)和方差; (Ⅱ)如果X=9,分別從甲、乙兩組中隨機選取一名同學,求這兩名同學的植樹總棵樹Y的分布列和數(shù)學期望。 (注:方差,其中為,,……的平均數(shù))同理可得所以隨機變量Y的分布列為:Y1718192021PEY=17×P(Y=17)+18×P(Y=18)+19×P(Y=19)+20×P(Y=20)+21×P(Y=21)=17×+18×+19×+20×+21×=19.14.(年高考福建卷理科19)(本小題滿分13分)某產(chǎn)品按行業(yè)生產(chǎn)標準分成8個等級,等級系數(shù)X依次為1,2,……,8,其中X≥5為標準A,X≥為標準B,已知甲廠執(zhí)行標準A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為6元/件;乙廠執(zhí)行標準B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價為4元/件,假定甲、乙兩廠得產(chǎn)品都符合相應的執(zhí)行標準(I)已知甲廠產(chǎn)品的等級系數(shù)X1的概率分布列如下所示:5678P0.4ab0.1且X1的數(shù)字期望EX1=6,求a,b的值;(=2\*ROMANII)為分析乙廠產(chǎn)品的等級系數(shù)X2,從該廠生產(chǎn)的產(chǎn)品中隨機抽取30件,相應的等級系數(shù)組成一個樣本,數(shù)據(jù)如下:353385563463475348538343447567用這個樣本的頻率分布估計總體分布,將頻率視為概率,求等級系數(shù)X2的數(shù)學期望.(III)在(I)、(II)的條件下,若以“性價比”為判斷標準,則哪個工廠的產(chǎn)品更具可購買性?說明理由.注:(1)產(chǎn)品的“性價比”=;(2)“性價比”大的產(chǎn)品更具可購買性.3456780.30.20.20.10.10.1用這個樣本的頻率分布估計總體分布,將頻率視為概率,可得等級系數(shù)X2的概率分布列如下:345678P0.30.20.20.10.10.1所以即乙廠產(chǎn)品的等級系數(shù)的數(shù)學期望等于4.8.(III)乙廠的產(chǎn)品更具可購買性,理由如下:因為甲廠產(chǎn)品的等級系數(shù)的期望數(shù)學等于6,價格為6元/件,所以其性價比為因為乙廠產(chǎn)呂的等級系數(shù)的期望等于4.8,價格為4元/件,所以其性價比為據(jù)此,乙廠的產(chǎn)品更具可購買性。【年高考試題】(遼寧理數(shù))(3)兩個實習生每人加工一個零件.加工為一等品的概率分別為和,兩個零件是否加工為一等品相互獨立,則這兩個零件中恰有一個一等品的概率為(A)(B)(C)(D)【答案】B【命題立意】本題考查了相互獨立事件同時發(fā)生的概率,考查了有關(guān)概率的計算問題【解析】記兩個零件中恰好有一個一等品的事件為A,則P(A)=P(A1)+P(A2)= (江西理數(shù))11.一位國王的鑄幣大臣在每箱100枚的硬幣中各摻入了一枚劣幣,國王懷疑大臣作弊,他用兩種方法來檢測。方法一:在10箱子中各任意抽查一枚;方法二:在5箱中各任意抽查兩枚。國王用方法一、二能發(fā)現(xiàn)至少一枚劣幣的概率分別為和,則A.=B.<C.>D。以上三種情況都有可能【答案】B【解析】考查不放回的抽球、重點考查二項分布的概率。本題是北師大版新課標的課堂作業(yè),作為舊大綱的最后一年高考,本題給出一個強烈的導向信號。方法一:每箱的選中的概率為,總概率為;同理,方法二:每箱的選中的概率為,總事件的概率為,作差得<。1.(湖北理數(shù))4.投擲一枚均勻硬幣和一枚均勻骰子各一次,記“硬幣正面向上”為事件A,“骰子向上的點數(shù)是3”ABCD(重慶理數(shù))(13)某籃球隊員在比賽中每次罰球的命中率相同,且在兩次罰球中至多命中一次的概率為,則該隊員每次罰球的命中率為____________.解析:由得(湖南理數(shù))11.在區(qū)間上隨機取一個數(shù)x,則的概率為3.(江蘇卷)3、盒子中有大小相同的3只白球,1只黑球,若從中隨機地摸出兩只球,兩只球顏色不同的概率是_▲__.[解析]考查古典概型知識。(全國卷2理數(shù))(20)(本小題滿分12分)如圖,由M到N的電路中有4個元件,分別標為T1,T2,T3,T4,電流能通過T1,T2,T3的概率都是p,電流能通過T4的概率是0.9.電流能否通過各元件相互獨立.已知T1,T2,T3中至少有一個能通過電流的概率為0.999.(Ⅰ)求p;(Ⅱ)求電流能在M與N之間通過的概率;(Ⅲ)表示T1,T2,T3,T4中能通過電流的元件個數(shù),求的期望.【命題意圖】本試題主要考查獨立事件的概率、對立事件的概率、互斥事件的概率及數(shù)學期望,考查分類討論的思想方法及考生分析問題、解決問題的能力.【參考答案】【點評】概率與統(tǒng)計也是每年的必考題,但對考試難度有逐年加強的趨勢,已經(jīng)由原來解答題的前3題的位置逐漸后移到第20題的位置,對考生分析問題的能力要求有所加強,這應引起高度重視.(遼寧理數(shù))(18)(本小題滿分12分)為了比較注射A,B兩種藥物后產(chǎn)生的皮膚皰疹的面積,選200只家兔做試驗,將這200只家兔隨機地分成兩組,每組100只,其中一組注射藥物A,另一組注射藥物B。(Ⅰ)甲、乙是200只家兔中的2只,求甲、乙分在不同組的概率;(Ⅱ)下表1和表2分別是注射藥物A和B后的試驗結(jié)果.(皰疹面積單位:mm2)表1:注射藥物A后皮膚皰疹面積的頻數(shù)分布表(?。┩瓿上旅骖l率分布直方圖,并比較注射兩種藥物后皰疹面積的中位數(shù)大?。唬áⅲ┩瓿上旅?×2列聯(lián)表,并回答能否有99.9%的把握認為“注射藥物A后的皰疹面積與注射藥物B后的皰疹面積有差異”.表3:解:(Ⅰ)甲、乙兩只家兔分在不同組的概率為……4分(Ⅱ)(i)圖Ⅰ注射藥物A后皮膚皰疹面積的頻率分布直方圖圖Ⅱ注射藥物B后皮膚皰疹面積的頻率分布直方圖可以看出注射藥物A后的皰疹面積的中位數(shù)在65至70之間,而注射藥物B后的皰疹面積的中位數(shù)在70至75之間,所以注射藥物A后皰疹面積的中位數(shù)小于注射藥物B后皰疹面積的中位數(shù)。……8分(ii)表3:由于K2>10.828,所以有99.9%的把握認為“注射藥物A后的皰疹面積于注射藥物B后的皰疹面積有差異”?!?2分 (北京理數(shù))(17)(本小題共13分)某同學參加3門課程的考試。假設(shè)該同學第一門課程取得優(yōu)秀成績的概率為,第二、第三門課程取得優(yōu)秀成績的概率分別為,(>),且不同課程是否取得優(yōu)秀成績相互獨立。記ξ為該生取得優(yōu)秀成績的課程數(shù),其分布列為ξ0123(Ⅰ)求該生至少有1門課程取得優(yōu)秀成績的概率;(Ⅱ)求,的值;(Ⅲ)求數(shù)學期望ξ。解:事件表示“該生第門課程取得優(yōu)秀成績”,=1,2,3,由題意知,,(I)由于事件“該生至少有1門課程取得優(yōu)秀成績”與事件“”是對立的,所以該生至少有1門課程取得優(yōu)秀成績的概率是,(II)由題意知整理得,由,可得,.(III)由題意知===(四川理數(shù))(17)(本小題滿分12分)某種有獎銷售的飲料,瓶蓋內(nèi)印有“獎勵一瓶”或“謝謝購買”字樣,購買一瓶若其瓶蓋內(nèi)印有“獎勵一瓶”字樣即為中獎,中獎概率為.甲、乙、丙三位同學每人購買了一瓶該飲料。(Ⅰ)求甲中獎且乙、丙都沒有中獎的概率;(Ⅱ)求中獎人數(shù)ξ的分布列及數(shù)學期望Eξ.解:(1)設(shè)甲、乙、丙中獎的事件分別為A、B、C,那么P(A)=P(B)=P(C)=P()=P(A)P()P()=答:甲中獎且乙、丙都沒有中獎的概率為……6分(2)ξ的可能值為0,1,2,3P(ξ=k)=(k=0,1,2,3)所以中獎人數(shù)ξ的分布列為ξ0123PEξ=0×+1×+2×+3×=………………12分(天津理數(shù))(18).(本小題滿分12分)(1)解:設(shè)為射手在5次射擊中擊中目標的次數(shù),則~.在5次射擊中,恰有2次擊中目標的概率(Ⅱ)解:設(shè)“第次射擊擊中目標”為事件;“射手在5次射擊中,有3次連續(xù)擊中目標,另外2次未擊中目標”為事件,則==(Ⅲ)解:由題意可知,的所有可能取值為=所以的分布列是(全國卷1理數(shù))(18)(本小題滿分12分)投到某雜志的稿件,先由兩位初審專家進行評審.若能通過兩位初審專家的評審,則予以錄用;若兩位初審專家都未予通過,則不予錄用;若恰能通過一位初審專家的評審,則再由第三位專家進行復審,若能通過復審專家的評審,則予以錄用,否則不予錄用.設(shè)稿件能通過各初審專家評審的概率均為0.5,復審的稿件能通過評審的概率為0.3.各專家獨立評審.(I)求投到該雜志的1篇稿件被錄用的概率;(II)記表示投到該雜志的4篇稿件中被錄用的篇數(shù),求的分布列及期望.(山東理數(shù))=,所以的分布列為234數(shù)學期望=++4=?!久}意圖】本題考查了相互獨立事件同時發(fā)生的概率、考查了離散型隨機變量的分布列以及數(shù)學期望的知識,考查了同學們利用所學知識解決實際問題的能力。(江蘇卷)22.本小題滿分10分)某工廠生產(chǎn)甲、乙兩種產(chǎn)品,甲產(chǎn)品的一等品率為80%,二等品率為20%;乙產(chǎn)品的一等品率為90%,二等品率為10%。生產(chǎn)1件甲產(chǎn)品,若是一等品則獲得利潤4萬元,若是二等品則虧損1萬元;生產(chǎn)1件乙產(chǎn)品,若是一等品則獲得利潤6萬元,若是二等品則虧損2萬元。設(shè)生產(chǎn)各種產(chǎn)品相互獨立。記X(單位:萬元)為生產(chǎn)1件甲產(chǎn)品和1件乙產(chǎn)品可獲得的總利潤,求X的分布列;求生產(chǎn)4件甲產(chǎn)品所獲得的利潤不少于10萬元的概率。[解析]本題主要考查概率的有關(guān)知識,考查運算求解能力。滿分10分。解:(1)由題設(shè)知,X的可能取值為10,5,2,-3,且P(X=10)=0.8×0.9=0.72,P(X=5)=0.2×0.9=0.18,P(X=2)=0.8×0.1=0.08,P(X=-3)=0.2×0.1=0.02。由此得X的分布列為:X1052-3P0.720.180.080.02(2)設(shè)生產(chǎn)的4件甲產(chǎn)品中一等品有件,則二等品有件。由題設(shè)知,解得,又,得,或。所求概率為答:生產(chǎn)4件甲產(chǎn)品所獲得的利潤不少于10萬元的概率為0.8192?!灸旮呖荚囶}】12.(·山東理)在區(qū)間-1,1:上隨機取一個數(shù)x,的值介于0到之間的概率為().A.B.C.D.解析::在區(qū)間-1,1:上隨機取一個數(shù)x,即時,要使的值介于0到之間,需使或∴或,區(qū)間長度為,由幾何概型知的值介于0到之間的概率為.故選A.答案:A命題立意::本題考查了三角函數(shù)的值域和幾何概型問題,由自變量x的取值范圍,得到函數(shù)值的范圍,再由長度型幾何概型求得.13.(·山東文)在區(qū)間上隨機取一個數(shù)x,的值介于0到之間的概率為().A.B.C.D.共12對,所以所求概率為,選D10.(·江蘇)現(xiàn)有5根竹竿,它們的長度(單位:m)分別為2.5,2.6,2.7,2.8,2.9,若從中一次隨機抽取2根竹竿,則它們的長度恰好相差0.3m的概率為.解析:考查等可能事件的概率知識。從5根竹竿中一次隨機抽取2根的可能的事件總數(shù)為10,它們的長度恰好相差0.3m的事件數(shù)為2,分別是:2.5和2.8,2.6和2.9,所求概率為0.2。13.(·廣東理)(本小題滿分12分)對某城市一年(365天)的空氣質(zhì)量進行監(jiān)測,獲得的API數(shù)據(jù)按照區(qū)間,,,,,進行分組,得到頻率分布直方圖如圖5.(1)求直方圖中的值;(2)計算一年中空氣質(zhì)量分別為良和輕微污染的天數(shù);(3)求該城市某一周至少有2天的空氣質(zhì)量為良或輕微污染的概率.(結(jié)果用分數(shù)表示.已知,,,)解:(1)由圖可知,解得;(2);(3)該城市一年中每天空氣質(zhì)量為良或輕微污染的概率為,則空氣質(zhì)量不為良且不為輕微污染的概率為,一周至少有兩天空氣質(zhì)量為良或輕微污染的概率為.14.(·浙江理)(本題滿分14分)在這個自然數(shù)中,任取個數(shù).(I)求這個數(shù)中恰有個是偶數(shù)的概率;(II)設(shè)為這個數(shù)中兩數(shù)相鄰的組數(shù)(例如:若取出的數(shù)為,則有兩組相鄰的數(shù)和,此時的值是).求隨機變量的分布列及其數(shù)學期望.解析:(I)記“這3個數(shù)恰有一個是偶數(shù)”為事件A,則;.(II)隨機變量的取值為的分布列為012P所以的數(shù)學期望為.15.(·山東理)(本小題滿分12分)在某校組織的一次籃球定點投籃訓練中,規(guī)定每人最多投3次;在A處每投進一球得3分,在B處每投進一球得2分;如果前兩次得分之和超過3分即停止投籃,否則投第三次,某同學在A處的命中率q為0.25,在B處的命中率為q,該同學選擇先在A處投一球,以后都在B處投,用表示該同學投籃訓練結(jié)束后所得的總分,其分布列為02345p0.03P1P2P3P4求q的值;求隨機變量的數(shù)學期望E;試比較該同學選擇都在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大小。解:(1)設(shè)該同學在A處投中為事件A,在B處投中為事件B,則事件A,B相互獨立,且P(A)=0.25,,P(B)=q,.根據(jù)分布列知:=0時=0.03,所以,q=0.8.(2)當=2時,P1==0.75q()×2=1.5q()=0.24當=3時,P2==0.01,當=4時,P3==0.48,當=5時,P4==0.24所以隨機變量的分布列為02345p0.030.240.010.480.24隨機變量的數(shù)學期望(3)該同學選擇都在B處投籃得分超過3分的概率為;該同學選擇(1)中方式投籃得分超過3分的概率為0.48+0.24=0.72.由此看來該同學選擇都在B處投籃得分超過3分的概率大.命題立意::本題主要考查了互斥事件的概率,相互獨立事件的概率和數(shù)學期望,以及運用概率知識解決問題的能力.17.(·安徽理)(本小題滿分12分)某地有A、B、C、D四人先后感染了甲型H1N1流感,其中只有A到過疫區(qū).B肯定是受A感染的.對于C,因為難以斷定他是受A還是受B感染的,于是假定他受A和受B感染的概率都是.同樣也假定D受A、B和C感染的概率都是.在這種假定之下,B、C、D中直接受A感染的人數(shù)X就是一個隨機變量.寫出X的分布列(不要求寫出計算過程),并求X的均值(即數(shù)學期望).本小題主要考查古典概型及其概率計算,考查取有限個值的離散型隨機變量及其分布列和均值的概念,通過設(shè)置密切貼近現(xiàn)實生活的情境,考查概率思想的應用意識和創(chuàng)新意識。體現(xiàn)數(shù)學的科學價值。本小題滿分12分。解:隨機變量X的分布列是X123PX的均值為附:X的分布列的一種求法共有如下6種不同的可能情形,每種情形發(fā)生的概率都是:①②③④⑤⑥A—B—C—DA—B—C└DA—B—C└DA—B—D└CA—C—D└B在情形①和②之下,A直接感染了一個人;在情形③、④、⑤之下,A直接感染了兩個人;在情形⑥之下,A直接感染了三個人。18.(·安徽文)(本小題滿分12分)某良種培育基地正在培育一種小麥新品種A,將其與原有的一個優(yōu)良品種B進行對照試驗,兩種小麥各種植了25畝,所得畝產(chǎn)數(shù)據(jù)(單位:千克)如下:.品種A:357,359,367,368,375,388,392,399,400,405,414,415,421,423,423,427,430,430,434,443,445,451,454品種B:363,371,374,383,385,386,391,392,394,395,397397,400,401,401,403,406,407,410,412,415,416,422,430(Ⅰ)完成所附的莖葉圖(Ⅱ)用莖葉圖處理現(xiàn)有的數(shù)據(jù),有什么優(yōu)點?.(Ⅲ)通過觀察莖葉圖,對品種A與B的畝產(chǎn)量及其穩(wěn)定性進行比較,寫出統(tǒng)計結(jié)論。思路:由統(tǒng)計知識可求出A、B兩種品種的小麥穩(wěn)定性大小并畫出莖葉圖,用莖葉圖處理數(shù)據(jù),看其分布就比較明了。.解析:(1)莖葉圖如圖所示AB973587363537148383569239124457750400113675424102567331422400430553444145(2)用莖葉圖處理現(xiàn)有的數(shù)據(jù)不僅可以看出數(shù)據(jù)的分布狀況,而且可以看出每組中的具體數(shù)據(jù).(3)通過觀察莖葉圖,可以發(fā)現(xiàn)品種A的平均每畝產(chǎn)量為411.1千克,品種B的平均畝產(chǎn)量為397.8千克.由此可知,品種A的平均畝產(chǎn)量比品種B的平均畝產(chǎn)量高.但品種A的畝產(chǎn)量不夠穩(wěn)定,而品種B的畝產(chǎn)量比較集中D平均產(chǎn)量附近.20.(·遼寧理)(本小題滿分12分)某人向一目射擊4次,每次擊中目標的概率為。該目標分為3個不同的部分,第一、二、三部分面積之比為1:3:6。擊中目標時,擊中任何一部分的概率與其面積成正比。(Ⅰ)設(shè)X表示目標被擊中的次數(shù),求X的分布列;(Ⅱ)若目標被擊中2次,A表示事件“第一部分至少被擊
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 直郵廣告解決方案
- 二零二五年度房產(chǎn)租賃合同終止催告通知3篇
- 二零二五年度房地產(chǎn)物業(yè)管理合同范本5篇
- “銀色數(shù)字鴻溝”對老年人身心健康的影響
- “雙減”背景下學校課后服務質(zhì)量的問題、原因及策略
- 蜜雪冰城企業(yè)案例分析
- 四川省瀘州市龍馬潭區(qū)瀘化中學2024-2025學年九年級上學期1月期末考試化學試卷(含答案)
- 建設(shè)生物質(zhì)加工利用及年產(chǎn)3萬噸炭素資源化利用項目可行性研究報告模板-立項拿地
- 福建省廈門市同安區(qū)2024-2025學年八年級上學期期末模擬語文試卷(含答案)
- Unit5 Humans and nature Lesson 3 Race to the pole 說課稿 -2024-2025學年高中英語北師大版(2019)必修第二冊
- 采購部績效考核
- 超短波操作流程圖
- 小學2022 年國家義務教育質(zhì)量監(jiān)測工作方案
- 化學品安全技術(shù)說明(膠水)
- 南寧市中小學學籍管理系統(tǒng)數(shù)據(jù)采集表
- 中空吹塑成型課件
- 領(lǐng)先閱讀X計劃第四級Bug Hunt 教學設(shè)計
- 《詩詞格律》word版
- 預算第二十三講
- 高中體育與健康人教版全一冊 6.2田徑—短跑 課件(共11張PPT)
- 蔬菜供貨服務保障方案
評論
0/150
提交評論