![上海市外國語大學(xué)附屬大境中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第1頁](http://file4.renrendoc.com/view14/M0B/11/1D/wKhkGWcMGZWATQj9AAG_0PW6qjs528.jpg)
![上海市外國語大學(xué)附屬大境中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第2頁](http://file4.renrendoc.com/view14/M0B/11/1D/wKhkGWcMGZWATQj9AAG_0PW6qjs5282.jpg)
![上海市外國語大學(xué)附屬大境中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第3頁](http://file4.renrendoc.com/view14/M0B/11/1D/wKhkGWcMGZWATQj9AAG_0PW6qjs5283.jpg)
![上海市外國語大學(xué)附屬大境中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第4頁](http://file4.renrendoc.com/view14/M0B/11/1D/wKhkGWcMGZWATQj9AAG_0PW6qjs5284.jpg)
![上海市外國語大學(xué)附屬大境中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題含解析_第5頁](http://file4.renrendoc.com/view14/M0B/11/1D/wKhkGWcMGZWATQj9AAG_0PW6qjs5285.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
上海市外國語大學(xué)附屬大境中學(xué)2025屆數(shù)學(xué)高二上期末經(jīng)典試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.與圓和圓都外切的圓的圓心在()A.一個(gè)圓上 B.一個(gè)橢圓上C.雙曲線的一支上 D.一條拋物線上2.已知,為雙曲線的左,右頂點(diǎn),點(diǎn)P在雙曲線C上,為等腰三角形,且頂角為,則雙曲線C的離心率為()A. B.C.2 D.3.?dāng)?shù)列中前項(xiàng)和滿足,若是遞增數(shù)列,則的取值范圍為()A. B.C. D.4.公元前6世紀(jì),古希臘的畢達(dá)哥拉斯學(xué)派研究發(fā)現(xiàn)了黃金分割,簡稱黃金數(shù).離心率等于黃金數(shù)的倒數(shù)的雙曲線稱為黃金雙曲線.若雙曲線是黃金雙曲線,則()A. B.C. D.5.已知等差數(shù)列的前項(xiàng)和為,若,,則()A. B.C. D.6.已知雙曲線的焦點(diǎn)在y軸上,且實(shí)半軸長為4,虛半軸長為5,則雙曲線的標(biāo)準(zhǔn)方程為()A.=1 B.=1C.=1 D.=17.下列結(jié)論中正確的有()A.若,則 B.若,則C.若,則 D.若,則8.圓與圓的位置關(guān)系是()A.相交 B.相離C.內(nèi)切 D.外切9.已知兩定點(diǎn)和,動點(diǎn)在直線上移動,橢圓C以A,B為焦點(diǎn)且經(jīng)過點(diǎn)P,則橢圓C的短軸的最小值為()A. B.C. D.10.已知數(shù)列是首項(xiàng)為,公差為1的等差數(shù)列,數(shù)列滿足.若對任意的,都有成立,則實(shí)數(shù)的取值范圍是()A., B.C., D.11.已知點(diǎn)是橢圓上的任意點(diǎn),是橢圓的左焦點(diǎn),是的中點(diǎn),則的周長為()A. B.C. D.12.等差數(shù)列中,,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù)在R上連續(xù)且可導(dǎo),為偶函數(shù)且,其導(dǎo)函數(shù)滿足,則不等式的解集為___.14.如圖,正方形ABCD的邊長為8,取正方形ABCD各邊的中點(diǎn)E,F(xiàn),G,H,作第2個(gè)正方形EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個(gè)正方形IJKL.依此方法一直繼續(xù)下去.①從正方形ABCD開始,第7個(gè)正方形的邊長為___;②如果這個(gè)作圖過程可以一直繼續(xù)下去,那么作到第n個(gè)正方形,這n個(gè)正方形的面積之和為___.15.已知數(shù)列是公差不為0的等差數(shù)列,,且,,成等比數(shù)列.(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)數(shù)列的前項(xiàng)和為,求.16.設(shè)雙曲線C:的焦點(diǎn)為,點(diǎn)為上一點(diǎn),,則為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)等差數(shù)列的前項(xiàng)和為(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和18.(12分)在直三棱柱中,、、、分別為中點(diǎn),.(1)求證:平面(2)求二面角的余弦值19.(12分)已知橢圓經(jīng)過點(diǎn),橢圓E的一個(gè)焦點(diǎn)為.(1)求橢圓E的方程;(2)若直線l過點(diǎn)且與橢圓E交于兩點(diǎn).求的最大值.20.(12分)已知函數(shù)(1)當(dāng)時(shí),討論的單調(diào)性;(2)當(dāng)時(shí),證明21.(12分)已知展開式中,第三項(xiàng)的系數(shù)與第四項(xiàng)的系數(shù)相等(1)求n的值;(2)求展開式中有理項(xiàng)的系數(shù)之和(用數(shù)字作答)22.(10分)已知函數(shù)f(x)=x﹣lnx(1)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;(2)求函數(shù)f(x)的極值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】設(shè)動圓的半徑為,然后根據(jù)動圓與兩圓都外切得,再兩式相減消去參數(shù),則滿足雙曲線的定義,即可求解.【詳解】設(shè)動圓的圓心為,半徑為,而圓的圓心為,半徑為1;圓的圓心為,半徑為2依題意得,則,所以點(diǎn)的軌跡是雙曲線的一支故選:C2、A【解析】根據(jù)給定條件求出點(diǎn)P的坐標(biāo),再代入雙曲線方程計(jì)算作答.【詳解】由雙曲線對稱性不妨令點(diǎn)P在第一象限,過P作軸于B,如圖,因?yàn)榈妊切?,且頂角為,則有,,有,于是得,即點(diǎn),因此,,解得,所以雙曲線C的離心率為.故選:A3、B【解析】由已知求得,再根據(jù)當(dāng)時(shí),,,可求得范圍.【詳解】解:因?yàn)椋瑒t,兩式相減得,因?yàn)槭沁f增數(shù)列,所以當(dāng)時(shí),,解得,又,,所以,解得,綜上得,故選:B.4、A【解析】根據(jù)黃金雙曲線的定義直接列方程求解【詳解】雙曲線中的,所以離心率,因?yàn)殡p曲線是黃金雙曲線,所以,兩邊平方得,解得或(舍去),故選:A5、B【解析】根據(jù)和可求得,結(jié)合等差數(shù)列通項(xiàng)公式可求得.【詳解】設(shè)等差數(shù)列公差為,由得:;又,,.故選:B.6、D【解析】根據(jù)雙曲線的性質(zhì)求解即可.【詳解】雙曲線的焦點(diǎn)在y軸上,且實(shí)半軸長為4,虛半軸長為5,可得a=4,b=5,所以雙曲線方程為:=1.故選:D.7、D【解析】根據(jù)基本初等函數(shù)的導(dǎo)數(shù)和運(yùn)算法則分別計(jì)算函數(shù)的導(dǎo)數(shù),即可判斷選項(xiàng).【詳解】A.若,則,故A錯(cuò)誤;B.若,則,故B錯(cuò)誤;C.若,則,故C錯(cuò)誤;D.若,則,故D正確.故選:D8、A【解析】求出兩圓的圓心及半徑,求出圓心距,從而可得出結(jié)論.【詳解】解:圓的圓心為,半徑為,圓圓心為,半徑為,則兩圓圓心距,因?yàn)椋詢蓤A相交.故選:A.9、B【解析】根據(jù)題意,點(diǎn)關(guān)于直線對稱點(diǎn)的性質(zhì),以及橢圓的定義,即可求解.【詳解】根據(jù)題意,設(shè)點(diǎn)關(guān)于直線的對稱點(diǎn),則,解得,即.根據(jù)橢圓的定義可知,,當(dāng)、、三點(diǎn)共線時(shí),長軸長取最小值,即,由且,得,因此橢圓C的短軸的最小值為.故選:B.10、D【解析】由等差數(shù)列通項(xiàng)公式得,再結(jié)合題意得數(shù)列單調(diào)遞增,且滿足,,即,再解不等式即可得答案.【詳解】解:根據(jù)題意:數(shù)列是首項(xiàng)為,公差為1的等差數(shù)列,所以,由于數(shù)列滿足,所以對任意的都成立,故數(shù)列單調(diào)遞增,且滿足,,所以,解得故選:11、A【解析】設(shè)橢圓另一個(gè)焦點(diǎn)為,連接,利用中位線的性質(zhì)結(jié)合橢圓的定義可求得結(jié)果.【詳解】在橢圓中,,,,如圖,設(shè)橢圓的另一個(gè)焦點(diǎn)為,連接,因?yàn)椤⒎謩e為、的中點(diǎn),則,則的周長為,故選:A.12、C【解析】由等差數(shù)列的前項(xiàng)和公式和性質(zhì)進(jìn)行求解.【詳解】由題意,得.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由已知條件可得圖象關(guān)于對稱,在上遞增,在上遞減,然后分四種情況討論求解即可【詳解】因?yàn)闉榕己瘮?shù),所以的圖象關(guān)于軸對稱,所以的圖象關(guān)于對稱,因?yàn)?,所以?dāng)時(shí),,當(dāng)時(shí),,所以在上遞增,在上遞減,由,得,或,或,或,解得,或,或,或,綜上,,所以等式的解集為故答案為:14、①.1②.【解析】根據(jù)題意,正方形邊長成等比數(shù)列,正方形的面積等于邊長的平方可得,然后根據(jù)等比數(shù)列的通項(xiàng)公式及等比數(shù)列的前n項(xiàng)和的公式即可求解.【詳解】設(shè)第n個(gè)正方形的邊長為,第n個(gè)正方形的面積為,則第n個(gè)正方形的對角線長為,所以第n+1個(gè)正方形的邊長為,,∴數(shù)列{}是首項(xiàng)為,公比為的等比數(shù)列,,∴,即第7個(gè)正方形的邊長為1;∴數(shù)列{}是首項(xiàng)為,公比為的等比數(shù)列,故答案為:1;.15、(1);(2).【解析】(1)根據(jù),且,,成等比數(shù)列,利用等比中項(xiàng)由,求得公差即可.(2)由(1)得到,再利用裂項(xiàng)相消法求解.【詳解】(1)設(shè)數(shù)列的公差為d,因?yàn)?,且,,成等比?shù)列,所以,即,解得或(舍去),所以數(shù)列的通項(xiàng)公式;(2)由(1)知:,所以.【點(diǎn)睛】方法點(diǎn)睛:求數(shù)列的前n項(xiàng)和的方法(1)公式法:①等差數(shù)列的前n項(xiàng)和公式,②等比數(shù)列的前n項(xiàng)和公式;(2)分組轉(zhuǎn)化法:把數(shù)列的每一項(xiàng)分成兩項(xiàng)或幾項(xiàng),使其轉(zhuǎn)化為幾個(gè)等差、等比數(shù)列,再求解(3)裂項(xiàng)相消法:把數(shù)列的通項(xiàng)拆成兩項(xiàng)之差求和,正負(fù)相消剩下首尾若干項(xiàng)(4)倒序相加法:把數(shù)列分別正著寫和倒著寫再相加,即等差數(shù)列求和公式的推導(dǎo)過程的推廣(5)錯(cuò)位相減法:如果一個(gè)數(shù)列的各項(xiàng)是由一個(gè)等差數(shù)列和一個(gè)等比數(shù)列對應(yīng)項(xiàng)之積構(gòu)成的,則這個(gè)數(shù)列的前n項(xiàng)和用錯(cuò)位相減法求解.(6)并項(xiàng)求和法:一個(gè)數(shù)列的前n項(xiàng)和中,可兩兩結(jié)合求解,則稱之為并項(xiàng)求和.形如an=(-1)nf(n)類型,可采用兩項(xiàng)合并求解16、14【解析】利用雙曲線的定義求解即可【詳解】由,得,則,因?yàn)辄c(diǎn)為上一點(diǎn),所以,因?yàn)?,所以,解得或(舍去),故答案為?4三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)根據(jù)等差數(shù)列前n項(xiàng)和求和公式求出首項(xiàng)和公差,進(jìn)而求出通項(xiàng)公式;(2)結(jié)合(1)求出,再令得出數(shù)列的正數(shù)項(xiàng)和負(fù)數(shù)項(xiàng),進(jìn)而結(jié)合等差數(shù)列求和公式求得答案.【小問1詳解】設(shè)等差數(shù)列的首項(xiàng)和公差分別為和,∴,解得:所以.【小問2詳解】,所以.當(dāng);當(dāng),當(dāng),時(shí),,當(dāng)時(shí),.綜上:.18、(1)見解析;(2)【解析】(1)取中點(diǎn),連接,根據(jù)直棱柱的特征,易知,再由、分別為的中點(diǎn),根據(jù)中位線定理,可得,得到四邊形為平行四邊形,再利用線面平行的判定定理證明.(2)取的中點(diǎn),連接,以為原點(diǎn),、、分別為、、軸建立空間直角坐標(biāo)系,則.,再分別求得平面和平面的一個(gè)法向量,利用面面角的向量公式求解.【詳解】(1)證明:如圖所示:取中點(diǎn),連接,易知,、分別為的中點(diǎn),∴,∴故四邊形為平行四邊形,∴,∵平面,平面,平面(2)取的中點(diǎn),連接,以為原點(diǎn),、、分別為、、軸建立如圖所示的空間直角坐標(biāo)系,如圖所示:則∴,設(shè)平面的法向量為,則,即,取,得,易知平面的一個(gè)法向量為,∴,∴二面角的余弦值為【點(diǎn)睛】本題主要考查線面平行的判定定理和面面角的向量求法,還考查了轉(zhuǎn)化化歸的思想和運(yùn)算求解的能力,屬于中檔題.19、(1)(2)【解析】(1)設(shè)橢圓的左,右焦點(diǎn)分別為,.利用橢圓的定義求出,然后求解,得到橢圓方程;(2)當(dāng)直線的斜率存在時(shí),設(shè),,,,,聯(lián)立直線與橢圓方程,利用韋達(dá)定理以及弦長公式得到弦長的表達(dá)式,再通過換元利用二次函數(shù)的性質(zhì)求解最值即可【小問1詳解】依題意,設(shè)橢圓的左,右焦點(diǎn)分別為,則,,,,橢圓的方程為【小問2詳解】當(dāng)直線的斜率存在時(shí),設(shè),,,,由得由得由,得設(shè),則,當(dāng)直線的斜率不存在時(shí),,的最大值為20、(1)單調(diào)遞減,在單調(diào)遞增;(2)見解析.【解析】(1)求f(x)導(dǎo)數(shù),討論導(dǎo)數(shù)的正負(fù)即可求其單調(diào)性;(2)由于,則,只需證明,構(gòu)造函數(shù),證明其最小值大于0即可.【小問1詳解】時(shí),,當(dāng)時(shí),,∴,當(dāng)時(shí),,∴,∴在單調(diào)遞減,在單調(diào)遞增;【小問2詳解】由于,∴,∴只需證明,令,則,∴在上為增函數(shù),而,∴在上有唯一零點(diǎn),且,當(dāng)時(shí),,g(x)單調(diào)遞減,當(dāng)時(shí),,g(x)單調(diào)遞增,∴的最小值為,由,得,則,∴,當(dāng)且僅當(dāng)時(shí)取等號,而,∴,∴,即,∴當(dāng)時(shí),.【點(diǎn)睛】本題考察了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,也考察了利用導(dǎo)數(shù)研究函數(shù)的最值,解題過程中設(shè)計(jì)到隱零點(diǎn)的問題,需要掌握隱零點(diǎn)處理問題的常見思路和方法.21、(1)8;(2).【解析】(1)由題設(shè)可得,進(jìn)而寫出第三、四項(xiàng)的系數(shù),結(jié)合已知列方程求n值即可.(2)由(1)有,確定有理項(xiàng)的對應(yīng)k值,進(jìn)而求得對應(yīng)項(xiàng)的系數(shù),即可得結(jié)果.小問1詳解】由題意,二項(xiàng)式展開式的通項(xiàng)公式所以第三項(xiàng)系數(shù)為,第四項(xiàng)系數(shù)為,由,解得,即n的值為8【小問2詳解】由(1)知:當(dāng),3,6時(shí),對應(yīng)的是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年葛花項(xiàng)目可行性研究報(bào)告
- 2025年液壓振動夯項(xiàng)目可行性研究報(bào)告
- 2025至2030年中國虛擬景觀軟件數(shù)據(jù)監(jiān)測研究報(bào)告
- 2025至2030年中國寬邊手帕數(shù)據(jù)監(jiān)測研究報(bào)告
- 2025至2030年中國功能矯正器數(shù)據(jù)監(jiān)測研究報(bào)告
- 亮化燈具供貨合同范本
- 中外書籍合作出版合同范本
- 保育員聘用合同范本
- 民辦學(xué)校聘任教師合同范本
- 解決方案研討會會議紀(jì)要報(bào)告
- HGE系列電梯安裝調(diào)試手冊(ELS05系統(tǒng)SW00004269,A.4 )
- 找人辦事協(xié)議
- 老年護(hù)理陪護(hù)培訓(xùn)課件
- 醬香型白酒工廠設(shè)計(jì)
- 第3章 環(huán)境感知技術(shù)
- 牽引管道孔壁與管道外壁之間注漿技術(shù)方案
- 肛周膿腫完整版課件
- 公司(工廠)廠牌管理規(guī)定
- 《移動互聯(lián)網(wǎng)應(yīng)用開發(fā)》課程標(biāo)準(zhǔn)
- 定點(diǎn)醫(yī)療機(jī)構(gòu)接入驗(yàn)收申請表
- 膿毒血癥指南
評論
0/150
提交評論