版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2025屆上海外國語大學(xué)附中數(shù)學(xué)高二上期末達(dá)標(biāo)檢測試題注意事項(xiàng)1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.若,則x的值為()A.4 B.6C.4或6 D.82.瑞士數(shù)學(xué)家歐拉1765年在其所著的《三角形的幾何學(xué)》一書中提出:任意三角形的外心、重心、垂心在同一條直線上,后人稱這條直線為歐拉線.已知的頂點(diǎn),,其歐拉線方程為,則頂點(diǎn)的坐標(biāo)可以是()A. B.C. D.3.把直線繞原點(diǎn)逆時(shí)針轉(zhuǎn)動(dòng),使它與圓相切,則直線轉(zhuǎn)動(dòng)的最小正角度A. B.C. D.4.已知圓,圓C2:x2+y2-x-4y+7=0,則“a=1”是“兩圓內(nèi)切”的()A.充分必要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件5.已知橢圓C:的左、右焦點(diǎn)分別為F1,F(xiàn)2,過點(diǎn)F1作直線l交橢圓C于M,N兩點(diǎn),則的周長為()A.3 B.4C.6 D.86.記為等差數(shù)列的前n項(xiàng)和,有下列四個(gè)等式,甲:;乙:;丙:;?。海绻挥幸粋€(gè)等式不成立,則該等式為()A.甲 B.乙C.丙 D.丁7.雙曲線的焦點(diǎn)坐標(biāo)是()A. B.C. D.8.已知,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.即不充分又不必要條件9.已知函數(shù)的導(dǎo)函數(shù)為,且滿足,則()A. B.C. D.10.若直線與直線垂直,則a=()A.-2 B.0C.0或-2 D.111.已知等差數(shù)列的前項(xiàng)和為,,,則()A. B.C. D.12.設(shè)橢圓:的右頂點(diǎn)為,右焦點(diǎn)為,為橢圓在第二象限內(nèi)的點(diǎn),直線交橢圓于點(diǎn),為原點(diǎn),若直線平分線段,則橢圓的離心率為A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點(diǎn),,其中,若線段的中點(diǎn)坐標(biāo)為,則直線的方程為________14.如圖,在等腰直角中,,為半圓弧上異于,的動(dòng)點(diǎn),當(dāng)半圓弧繞旋轉(zhuǎn)的過程中,有下列判斷:①存在點(diǎn),使得;②存在點(diǎn),使得;③四面體的體積既有最大值又有最小值:④若二面角為直二面角,則直線與平面所成角的最大值為45°.其中正確的是______(請?zhí)钌纤心阏J(rèn)為正確的結(jié)果的序號).15.如圖,在直棱柱中,,則異面直線與所成角的余弦值為___________.16.已知數(shù)列滿足,則的前20項(xiàng)和___________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)在等差數(shù)列中,記為數(shù)列的前項(xiàng)和,已知:.(1)求數(shù)列的通項(xiàng)公式;(2)求使成立的的值.18.(12分)已知數(shù)列滿足,,,.從①,②這兩個(gè)條件中任選一個(gè)填在橫線上,并完成下面問題.(1)寫出、,并求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.19.(12分)已知數(shù)列的前n項(xiàng)和為,當(dāng)時(shí),;數(shù)列中,.直線經(jīng)過點(diǎn)(1)求數(shù)列的通項(xiàng)公式和;(2)設(shè),求數(shù)列的前n項(xiàng)和,并求的最大整數(shù)n20.(12分)如圖,四棱錐的底面是正方形,平面平面,E為的中點(diǎn)(1)若,證明:;(2)求直線與平面所成角的余弦值的取值范圍21.(12分)已知函數(shù)在處取得極值確定a的值;若,討論的單調(diào)性22.(10分)某公司有員工人,對他們進(jìn)行年齡和學(xué)歷情況調(diào)查,其結(jié)果如下:現(xiàn)從這名員工中隨機(jī)抽取一人,設(shè)“抽取的人具有本科學(xué)歷”,“抽取的人年齡在歲以下”,試求:(1);(2);(3).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】根據(jù)組合數(shù)的性質(zhì)可求解.【詳解】,或,即或.故選:C2、C【解析】設(shè)出點(diǎn)C坐標(biāo),求出的重心并代入歐拉線方程,驗(yàn)證并排除部分選項(xiàng),余下選項(xiàng)再由外心、垂心驗(yàn)證判斷作答.【詳解】設(shè)頂點(diǎn)的坐標(biāo)為,則的重心坐標(biāo)為,依題意,,整理得:,對于A,當(dāng)時(shí),,不滿足題意,排除A;對于D,當(dāng)時(shí),,不滿足題意,排除D;對于B,當(dāng)時(shí),,對于C,當(dāng)時(shí),,直線AB的斜率,線段AB中點(diǎn),線段AB中垂線方程:,即,由解得:,于是得的外心,若點(diǎn),則直線BC的斜率,線段BC中點(diǎn),該點(diǎn)與點(diǎn)M確定直線斜率為,顯然,即點(diǎn)M不在線段BC的中垂線上,不滿足題意,排除B;若點(diǎn),則直線BC的斜率,線段BC中點(diǎn),線段BC中垂線方程為:,即,由解得,即點(diǎn)為的外心,并且在直線上,邊AB上的高所在直線:,即,邊BC上的高所在直線:,即,由解得:,則的垂心,此時(shí)有,即的垂心在直線上,選項(xiàng)C滿足題意.故選:C【點(diǎn)睛】結(jié)論點(diǎn)睛:的三頂點(diǎn),則的重心為.3、B【解析】根據(jù)直線過原點(diǎn)且與圓相切,求出直線的斜率,再數(shù)形結(jié)合計(jì)算最小旋轉(zhuǎn)角【詳解】解析:由題意,設(shè)切線為,∴.∴或.∴時(shí)轉(zhuǎn)動(dòng)最小∴最小正角為.故選B.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系,屬于基礎(chǔ)題4、B【解析】先得出圓的圓心和半徑,求出兩圓心間的距離,半徑之差,根據(jù)兩圓內(nèi)切得出方程,從而得出答案.【詳解】圓的圓心半徑的圓心半徑兩圓心之間的距離為兩圓的半徑之差為當(dāng)兩圓內(nèi)切時(shí),,解得或所以當(dāng),可得兩圓內(nèi)切,當(dāng)兩圓內(nèi)切時(shí),不能得出(可能)故“”是“兩圓內(nèi)切”的充分不必要條件故選:B5、D【解析】由的周長為,結(jié)合橢圓的定義,即可求解.【詳解】由題意,橢圓,可得,即,如圖所示,根據(jù)橢圓的定義,可得的周長為故選:D.6、D【解析】分別假設(shè)甲、乙、丙、丁不成立,驗(yàn)證得到答案【詳解】設(shè)數(shù)列的公差為,若甲不成立,則,由①,③可得,此時(shí)與②矛盾;A錯(cuò),若乙不成立,則,由①,③可得,此時(shí);與②矛盾;B錯(cuò),若丙不成立,則,由①,③可得,此時(shí);與②矛盾;C錯(cuò),若丁不成立,則,由①,③可得,此時(shí);,D對,故選:D.7、B【解析】根據(jù)雙曲線的方程,求得,結(jié)合雙曲線的幾何性質(zhì),即可求解.【詳解】由題意,雙曲線,可得,所以,且雙曲線的焦點(diǎn)再軸上,所以雙曲線的焦點(diǎn)坐標(biāo)為.故選:B.8、B【解析】根據(jù)充分條件和必要條件的定義判斷即可求解.【詳解】由可得或,所以由得不出,故充分性不成立,由可得,故必要性成立,所以“”是“”的必要不充分條件,故選:B.9、C【解析】求出導(dǎo)數(shù)后,把x=e代入,即可求解.【詳解】因?yàn)?,所以,解得故選:C10、C【解析】代入兩直線垂直的公式,即可求解.【詳解】因?yàn)閮芍本€垂直,所以,解得:或.故選:C11、C【解析】利用已知條件求得,由此求得.【詳解】依題意,解得,所以.故選:C【點(diǎn)睛】本小題主要考查等差數(shù)列的通項(xiàng)公式和前項(xiàng)和公式,屬于基礎(chǔ)題.12、B【解析】如上圖,設(shè)AC中點(diǎn)為M,連OM,則OM為的中位線,易得∽,且,即可得,選B.點(diǎn)睛:本題主要考查橢圓的方程和性質(zhì),主要是離心率的求法,本題的關(guān)鍵是利用中位線定理和相似三角形定理二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)中點(diǎn)坐標(biāo)公式求出,再根據(jù)直線的兩點(diǎn)式方程即可得出答案.【詳解】解:由,,得線段的中點(diǎn)坐標(biāo)為,所以,解得,所以直線的方程為,即.故答案為:.14、①②④【解析】①當(dāng)D為中點(diǎn),且A,B,C,D四點(diǎn)共面時(shí),可證得四邊形ABCD為正方形即可判斷①;②當(dāng)D在平面ABC內(nèi)的射影E在線段BC上(不含端點(diǎn))時(shí),可知平面ABC,可證得平面CDB,即可判斷②;③,研究臨界值即可判斷③;④二面角D-AC-B為直二面角,且D為中點(diǎn)時(shí),直線DB與平面ABC所成角的最大,作圖分析驗(yàn)證可判斷④.【詳解】①當(dāng)D為中點(diǎn),且A,B,C,D四點(diǎn)共面時(shí),連結(jié)BD,交AC于,則為AC中點(diǎn),此時(shí),且,所以四邊形ABCD為正方形,所以AB//CD,故①正確;②當(dāng)D在平面ABC內(nèi)的射影E在線段BC上(不含端點(diǎn))時(shí),此時(shí)有:平面ABC,,又因?yàn)?,所以平面CDB,所以,故②正確;③,當(dāng)平面平面ABC,且D為中點(diǎn)時(shí),h有最大值;當(dāng)A,B,C,D四點(diǎn)共面時(shí)h有最小值0,此時(shí)為平面圖形,不是立體圖形,故四面體D-ABC無最小值,故③錯(cuò)誤.④二面角D-AC-B為直二面角,且D為中點(diǎn)時(shí),直線DB與平面ABC所成角的最大,取AC中點(diǎn)O,連結(jié)DO,BO,則,AC=平面平面ACD,平面平面ACD,所以平面ABC,所以為直線DB與平面ABC所成角,設(shè),則,,所以為等腰直角三角形,所以,直線與平面所成角的最大值為45°,故④正確.故答案為:①②④.15、【解析】建立空間直角坐標(biāo)系后求相關(guān)的向量后再用夾角公式運(yùn)算即可.【詳解】如圖,以C為坐標(biāo)原點(diǎn),所在直線為x,y,z軸,建立空間直角坐標(biāo)系,則,所以,所以,故異面直線與所成角的余弦值為,故答案為:.16、135【解析】直接利用數(shù)列的遞推關(guān)系式寫出相鄰四項(xiàng)之和,進(jìn)而求出數(shù)列的和.【詳解】數(shù)列滿足,所以,故,當(dāng)時(shí),,當(dāng)時(shí),,,當(dāng)時(shí),,所以.故答案為:135.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】(1)根據(jù)給定條件求出數(shù)列的公差及首項(xiàng)即可計(jì)算作答.(2)由(1)求出,建立方程求解作答.【小問1詳解】設(shè)等差數(shù)列公差為,因,則,解得,于是得,所以數(shù)列的通項(xiàng)公式為:.【小問2詳解】由(1)知,,由得:,即,解得或,所以使成立的的值是或.18、(1)條件選擇見解析,,,(2)【解析】(1)選①,推導(dǎo)出數(shù)列為等比數(shù)列,確定該數(shù)列的首項(xiàng)和公比,可求得,并可求得、;選②,推導(dǎo)出數(shù)列是等比數(shù)列,確定該數(shù)列的首項(xiàng)和公比,可求得,可求得,由此可得出、;(2)求得,,分為偶數(shù)、奇數(shù)兩種情況討論,結(jié)合并項(xiàng)求和法以及等比數(shù)列求和公式可求得.【小問1詳解】解:若選①,,且,故數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,,故;若選②,,所以,,且,故數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,所以,,故,所以,,故,.【小問2詳解】解:由(1)可知,則,所以,.當(dāng)為偶數(shù)時(shí),;當(dāng)為奇數(shù)時(shí),.綜上所述,.19、(1),(2),7【解析】(1)根據(jù)之間的遞推關(guān)系,可寫出。,采用和相減得方法,可求得,由題意可推得為等差數(shù)列,利用等差數(shù)列的通項(xiàng)公式可求得答案;(2)寫出的表達(dá)式,利用錯(cuò)位相減法可求得數(shù)列的前n項(xiàng)和,進(jìn)而利用數(shù)列的單調(diào)性求的最大整數(shù)n【小問1詳解】∵,∴,則,∴,即,得又,∴,即,可得數(shù)列是以2為首項(xiàng),以2為公比的等比數(shù)列,則;∵點(diǎn)在直線上,∴,∴,即數(shù)列是等差數(shù)列,又,∴;【小問2詳解】∵,∴,∴,∴,兩式相減可得:,∴,設(shè),則,故,是單調(diào)遞增的故當(dāng)時(shí),單調(diào)遞增的,當(dāng)時(shí),;當(dāng)時(shí),,故滿足的最大整數(shù)20、(1)證明見解析;(2).【解析】(1)取的中點(diǎn)F,連接.先證明,,即證平面,原題即得證;(2)分別取的中點(diǎn)G,H,連接,證明為直線與平面所成的角,設(shè)正方形的邊長為1,,在中,,即得解.【小問1詳解】解:取的中點(diǎn)F,連接因?yàn)?,則為正三角形,所以因?yàn)槠矫嫫矫?,則平面因?yàn)槠矫?,則.①因?yàn)樗倪呅螢檎叫?,E為的中點(diǎn),則,所以,從而,所以.②又平面,結(jié)合①②知,平面,所以【小問2詳解】解:分別取的中點(diǎn)G,H,則,又,,則,所以四邊形為平行四邊形,從而.因?yàn)?,則因?yàn)槠矫嫫矫?,,則平面,從而,因?yàn)槠矫?,所以平面,從而平面連接,則為直線與平面所成的角.設(shè)正方形的邊長為1,,則從而,.在中,因?yàn)楫?dāng)時(shí),單調(diào)遞增,則,所以直線與平面所成角的余弦值的取值范圍是.21、(1)(2)在和內(nèi)為減函數(shù),在和內(nèi)為增函數(shù)【解析】(1)對求導(dǎo)得,因?yàn)樵谔幦〉脴O值,所以,即
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 買車代收保險(xiǎn)合同范例
- 養(yǎng)殖場及山羊承包合同范例
- 縣城養(yǎng)老機(jī)構(gòu)服務(wù)合同范例
- 攤位簡易租賃合同范例
- 廠房隔墻拆除合同范例
- 安裝門面合同范例
- 樣填寫家庭裝修合同范例
- 印廠合同范例
- 產(chǎn)品購貨合同范例
- 信號控制電纜采購合同范例
- 安全生產(chǎn)知識負(fù)責(zé)人復(fù)習(xí)題庫(附參考答案)
- 2024年安徽省廣播電視行業(yè)職業(yè)技能大賽(有線廣播電視機(jī)線員)考試題庫(含答案)
- 山東省濟(jì)南市濟(jì)陽區(qū)三校聯(lián)考2024-2025學(xué)年八年級上學(xué)期12月月考語文試題
- 糖尿病酮酸癥中毒
- Unit 6 Food Lesson 1(說課稿)-2024-2025學(xué)年人教精通版(2024)英語三年級上冊
- 東北師大附屬中學(xué)2025屆高一物理第一學(xué)期期末質(zhì)量檢測試題含解析
- HSE(健康、安全與環(huán)境)計(jì)劃書
- 雨的形成課件教學(xué)課件
- 金蛇納瑞2025年公司年會(huì)通知模板
- 部編版小學(xué)五年級上冊道德與法治單元檢測試卷含答案(全冊)
- 有限空間應(yīng)急預(yù)案演練方案及過程
評論
0/150
提交評論