![河南省名校聯(lián)盟2025屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第1頁(yè)](http://file4.renrendoc.com/view14/M02/36/2B/wKhkGWcSnFuAeHdJAAKmQYXlvS8993.jpg)
![河南省名校聯(lián)盟2025屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第2頁(yè)](http://file4.renrendoc.com/view14/M02/36/2B/wKhkGWcSnFuAeHdJAAKmQYXlvS89932.jpg)
![河南省名校聯(lián)盟2025屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第3頁(yè)](http://file4.renrendoc.com/view14/M02/36/2B/wKhkGWcSnFuAeHdJAAKmQYXlvS89933.jpg)
![河南省名校聯(lián)盟2025屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第4頁(yè)](http://file4.renrendoc.com/view14/M02/36/2B/wKhkGWcSnFuAeHdJAAKmQYXlvS89934.jpg)
![河南省名校聯(lián)盟2025屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題含解析_第5頁(yè)](http://file4.renrendoc.com/view14/M02/36/2B/wKhkGWcSnFuAeHdJAAKmQYXlvS89935.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
河南省名校聯(lián)盟2025屆數(shù)學(xué)高三第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫(xiě)清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效;在草稿紙、試卷上答題無(wú)效。4.作圖可先使用鉛筆畫(huà)出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.連接雙曲線及的4個(gè)頂點(diǎn)的四邊形面積為,連接4個(gè)焦點(diǎn)的四邊形的面積為,則當(dāng)取得最大值時(shí),雙曲線的離心率為()A. B. C. D.2.已知等比數(shù)列的各項(xiàng)均為正數(shù),設(shè)其前n項(xiàng)和,若(),則()A.30 B. C. D.623.設(shè)分別是雙線的左、右焦點(diǎn),為坐標(biāo)原點(diǎn),以為直徑的圓與該雙曲線的兩條漸近線分別交于兩點(diǎn)(位于軸右側(cè)),且四邊形為菱形,則該雙曲線的漸近線方程為()A. B. C. D.4.已知,則“m⊥n”是“m⊥l”的A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件5.在很多地鐵的車(chē)廂里,頂部的扶手是一根漂亮的彎管,如下圖所示.將彎管形狀近似地看成是圓弧,已知彎管向外的最大突出(圖中)有,跨接了6個(gè)坐位的寬度(),每個(gè)座位寬度為,估計(jì)彎管的長(zhǎng)度,下面的結(jié)果中最接近真實(shí)值的是()A. B. C. D.6.設(shè)橢圓:的右頂點(diǎn)為A,右焦點(diǎn)為F,B、C為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),直線BF交直線AC于M,且M為AC的中點(diǎn),則橢圓E的離心率是()A. B. C. D.7.下列選項(xiàng)中,說(shuō)法正確的是()A.“”的否定是“”B.若向量滿足,則與的夾角為鈍角C.若,則D.“”是“”的必要條件8.已知等差數(shù)列中,,,則數(shù)列的前10項(xiàng)和()A.100 B.210 C.380 D.4009.已知拋物線的焦點(diǎn)為,準(zhǔn)線為,是上一點(diǎn),是直線與拋物線的一個(gè)交點(diǎn),若,則()A. B.3 C. D.210.已知平面向量,滿足且,若對(duì)每一個(gè)確定的向量,記的最小值為,則當(dāng)變化時(shí),的最大值為()A. B. C. D.111.若不等式在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),則實(shí)數(shù)的取值范圍是()A. B.C. D.12.中心在原點(diǎn),對(duì)稱軸為坐標(biāo)軸的雙曲線的兩條漸近線與圓都相切,則雙曲線的離心率是()A.2或 B.2或 C.或 D.或二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,雙曲線的一條準(zhǔn)線與兩條漸近線所圍成的三角形的面積為_(kāi)_____.14.設(shè)點(diǎn)P在函數(shù)的圖象上,點(diǎn)Q在函數(shù)的圖象上,則線段PQ長(zhǎng)度的最小值為_(kāi)________15.在的展開(kāi)式中,項(xiàng)的系數(shù)是__________(用數(shù)字作答).16.已知矩形ABCD,AB=4,BC=3,以A,B為焦點(diǎn),且過(guò)C,D兩點(diǎn)的雙曲線的離心率為_(kāi)___________.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知拋物線與直線.(1)求拋物線C上的點(diǎn)到直線l距離的最小值;(2)設(shè)點(diǎn)是直線l上的動(dòng)點(diǎn),是定點(diǎn),過(guò)點(diǎn)P作拋物線C的兩條切線,切點(diǎn)為A,B,求證A,Q,B共線;并在時(shí)求點(diǎn)P坐標(biāo).18.(12分)已知,且的解集為.(1)求實(shí)數(shù),的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實(shí)數(shù)取值范圍.19.(12分)已知,,函數(shù)的最小值為.(1)求證:;(2)若恒成立,求實(shí)數(shù)的最大值.20.(12分)在平面直角坐標(biāo)系xoy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系。已知曲線C的極坐標(biāo)方程為,過(guò)點(diǎn)的直線l的參數(shù)方程為(為參數(shù)),直線l與曲線C交于M、N兩點(diǎn)。(1)寫(xiě)出直線l的普通方程和曲線C的直角坐標(biāo)方程:(2)若成等比數(shù)列,求a的值。21.(12分)已知函數(shù)的圖象在處的切線方程是.(1)求的值;(2)若函數(shù),討論的單調(diào)性與極值;(3)證明:.22.(10分)如圖,在四棱柱中,平面平面,是邊長(zhǎng)為2的等邊三角形,,,,點(diǎn)為的中點(diǎn).(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值.(Ⅲ)在線段上是否存在一點(diǎn),使直線與平面所成的角正弦值為,若存在求出的長(zhǎng),若不存在說(shuō)明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
先求出四個(gè)頂點(diǎn)、四個(gè)焦點(diǎn)的坐標(biāo),四個(gè)頂點(diǎn)構(gòu)成一個(gè)菱形,求出菱形的面積,四個(gè)焦點(diǎn)構(gòu)成正方形,求出其面積,利用重要不等式求得取得最大值時(shí)有,從而求得其離心率.【詳解】雙曲線與互為共軛雙曲線,四個(gè)頂點(diǎn)的坐標(biāo)為,四個(gè)焦點(diǎn)的坐標(biāo)為,四個(gè)頂點(diǎn)形成的四邊形的面積,四個(gè)焦點(diǎn)連線形成的四邊形的面積,所以,當(dāng)取得最大值時(shí)有,,離心率,故選:D.【點(diǎn)睛】該題考查的是有關(guān)雙曲線的離心率的問(wèn)題,涉及到的知識(shí)點(diǎn)有共軛雙曲線的頂點(diǎn),焦點(diǎn),菱形面積公式,重要不等式求最值,等軸雙曲線的離心率,屬于簡(jiǎn)單題目.2、B【解析】
根據(jù),分別令,結(jié)合等比數(shù)列的通項(xiàng)公式,得到關(guān)于首項(xiàng)和公比的方程組,解方程組求出首項(xiàng)和公式,最后利用等比數(shù)列前n項(xiàng)和公式進(jìn)行求解即可.【詳解】設(shè)等比數(shù)列的公比為,由題意可知中:.由,分別令,可得、,由等比數(shù)列的通項(xiàng)公式可得:,因此.故選:B【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,考查了數(shù)學(xué)運(yùn)算能力.3、B【解析】
由于四邊形為菱形,且,所以為等邊三角形,從而可得漸近線的傾斜角,求出其斜率.【詳解】如圖,因?yàn)樗倪呅螢榱庑危?,所以為等邊三角形,,兩漸近線的斜率分別為和.故選:B【點(diǎn)睛】此題考查的是求雙曲線的漸近線方程,利用了數(shù)形結(jié)合的思想,屬于基礎(chǔ)題.4、B【解析】
構(gòu)造長(zhǎng)方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,然后再在這兩個(gè)面中根據(jù)題意恰當(dāng)?shù)倪x取直線為m,n即可進(jìn)行判斷.【詳解】如圖,取長(zhǎng)方體ABCD﹣A1B1C1D1,令平面α為面ADD1A1,底面ABCD為β,直線=直線。若令A(yù)D1=m,AB=n,則m⊥n,但m不垂直于若m⊥,由平面平面可知,直線m垂直于平面β,所以m垂直于平面β內(nèi)的任意一條直線∴m⊥n是m⊥的必要不充分條件.故選:B.【點(diǎn)睛】本題考點(diǎn)有兩個(gè):①考查了充分必要條件的判斷,在確定好大前提的條件下,從m⊥n?m⊥?和m⊥?m⊥n??jī)煞矫孢M(jìn)行判斷;②是空間的垂直關(guān)系,一般利用長(zhǎng)方體為載體進(jìn)行分析.5、B【解析】
為彎管,為6個(gè)座位的寬度,利用勾股定理求出弧所在圓的半徑為,從而可得弧所對(duì)的圓心角,再利用弧長(zhǎng)公式即可求解.【詳解】如圖所示,為彎管,為6個(gè)座位的寬度,則設(shè)弧所在圓的半徑為,則解得可以近似地認(rèn)為,即于是,長(zhǎng)所以是最接近的,其中選項(xiàng)A的長(zhǎng)度比還小,不可能,因此只能選B,260或者由,所以弧長(zhǎng).故選:B【點(diǎn)睛】本題考查了弧長(zhǎng)公式,需熟記公式,考查了學(xué)生的分析問(wèn)題的能力,屬于基礎(chǔ)題.6、C【解析】
連接,為的中位線,從而,且,進(jìn)而,由此能求出橢圓的離心率.【詳解】如圖,連接,橢圓:的右頂點(diǎn)為A,右焦點(diǎn)為F,B、C為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),不妨設(shè)B在第二象限,直線BF交直線AC于M,且M為AC的中點(diǎn)為的中位線,,且,,解得橢圓的離心率.故選:C【點(diǎn)睛】本題考查了橢圓的幾何性質(zhì),考查了運(yùn)算求解能力,屬于基礎(chǔ)題.7、D【解析】
對(duì)于A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,即可判斷出;對(duì)于B若向量滿足,則與的夾角為鈍角或平角;對(duì)于C當(dāng)m=0時(shí),滿足am2≤bm2,但是a≤b不一定成立;對(duì)于D根據(jù)元素與集合的關(guān)系即可做出判斷.【詳解】選項(xiàng)A根據(jù)命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,因此A不正確;選項(xiàng)B若向量滿足,則與的夾角為鈍角或平角,因此不正確.選項(xiàng)C當(dāng)m=0時(shí),滿足am2≤bm2,但是a≤b不一定成立,因此不正確;選項(xiàng)D若“”,則且,所以一定可以推出“”,因此“”是“”的必要條件,故正確.故選:D.【點(diǎn)睛】本題考查命題的真假判斷與應(yīng)用,涉及知識(shí)點(diǎn)有含有量詞的命題的否定、不等式性質(zhì)、向量夾角與性質(zhì)、集合性質(zhì)等,屬于簡(jiǎn)單題.8、B【解析】
設(shè)公差為,由已知可得,進(jìn)而求出的通項(xiàng)公式,即可求解.【詳解】設(shè)公差為,,,,.故選:B.【點(diǎn)睛】本題考查等差數(shù)列的基本量計(jì)算以及前項(xiàng)和,屬于基礎(chǔ)題.9、D【解析】
根據(jù)拋物線的定義求得,由此求得的長(zhǎng).【詳解】過(guò)作,垂足為,設(shè)與軸的交點(diǎn)為.根據(jù)拋物線的定義可知.由于,所以,所以,所以,所以.故選:D【點(diǎn)睛】本小題主要考查拋物線的定義,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.10、B【解析】
根據(jù)題意,建立平面直角坐標(biāo)系.令.為中點(diǎn).由即可求得點(diǎn)的軌跡方程.將變形,結(jié)合及平面向量基本定理可知三點(diǎn)共線.由圓切線的性質(zhì)可知的最小值即為到直線的距離最小值,且當(dāng)與圓相切時(shí),有最大值.利用圓的切線性質(zhì)及點(diǎn)到直線距離公式即可求得直線方程,進(jìn)而求得原點(diǎn)到直線的距離,即為的最大值.【詳解】根據(jù)題意,設(shè),則由代入可得即點(diǎn)的軌跡方程為又因?yàn)?變形可得,即,且所以由平面向量基本定理可知三點(diǎn)共線,如下圖所示:所以的最小值即為到直線的距離最小值根據(jù)圓的切線性質(zhì)可知,當(dāng)與圓相切時(shí),有最大值設(shè)切線的方程為,化簡(jiǎn)可得由切線性質(zhì)及點(diǎn)到直線距離公式可得,化簡(jiǎn)可得即所以切線方程為或所以當(dāng)變化時(shí),到直線的最大值為即的最大值為故選:B【點(diǎn)睛】本題考查了平面向量的坐標(biāo)應(yīng)用,平面向量基本定理的應(yīng)用,圓的軌跡方程問(wèn)題,圓的切線性質(zhì)及點(diǎn)到直線距離公式的應(yīng)用,綜合性強(qiáng),屬于難題.11、C【解析】
由題可知,設(shè)函數(shù),,根據(jù)導(dǎo)數(shù)求出的極值點(diǎn),得出單調(diào)性,根據(jù)在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),轉(zhuǎn)化為在區(qū)間內(nèi)的解集中有且僅有三個(gè)整數(shù),結(jié)合圖象,可求出實(shí)數(shù)的取值范圍.【詳解】設(shè)函數(shù),,因?yàn)?,所以,或,因?yàn)闀r(shí),,或時(shí),,,其圖象如下:當(dāng)時(shí),至多一個(gè)整數(shù)根;當(dāng)時(shí),在內(nèi)的解集中僅有三個(gè)整數(shù),只需,,所以.故選:C.【點(diǎn)睛】本題考查不等式的解法和應(yīng)用問(wèn)題,還涉及利用導(dǎo)數(shù)求函數(shù)單調(diào)性和函數(shù)圖象,同時(shí)考查數(shù)形結(jié)合思想和解題能力.12、A【解析】
根據(jù)題意,由圓的切線求得雙曲線的漸近線的方程,再分焦點(diǎn)在x、y軸上兩種情況討論,進(jìn)而求得雙曲線的離心率.【詳解】設(shè)雙曲線C的漸近線方程為y=kx,是圓的切線得:,得雙曲線的一條漸近線的方程為∴焦點(diǎn)在x、y軸上兩種情況討論:
①當(dāng)焦點(diǎn)在x軸上時(shí)有:②當(dāng)焦點(diǎn)在y軸上時(shí)有:∴求得雙曲線的離心率2或.
故選:A.【點(diǎn)睛】本小題主要考查直線與圓的位置關(guān)系、雙曲線的簡(jiǎn)單性質(zhì)等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查數(shù)形結(jié)合思想.解題的關(guān)鍵是:由圓的切線求得直線的方程,再由雙曲線中漸近線的方程的關(guān)系建立等式,從而解出雙曲線的離心率的值.此題易忽視兩解得出錯(cuò)誤答案.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出雙曲線的漸近線方程,求出準(zhǔn)線方程,求出三角形的頂點(diǎn)的坐標(biāo),然后求解面積.【詳解】解:雙曲線:雙曲線中,,,則雙曲線的一條準(zhǔn)線方程為,雙曲線的漸近線方程為:,可得準(zhǔn)線方程與雙曲線的兩條漸近線所圍成的三角形的頂點(diǎn)的坐標(biāo),,,,則三角形的面積為.故答案為:【點(diǎn)睛】本題考查雙曲線方程的應(yīng)用,雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力,屬于中檔題.14、【解析】
由解析式可分析兩函數(shù)互為反函數(shù),則圖象關(guān)于對(duì)稱,則點(diǎn)到的距離的最小值的二倍即為所求,利用導(dǎo)函數(shù)即可求得最值.【詳解】由題,因?yàn)榕c互為反函數(shù),則圖象關(guān)于對(duì)稱,設(shè)點(diǎn)為,則到直線的距離為,設(shè),則,令,即,所以當(dāng)時(shí),,即單調(diào)遞減;當(dāng)時(shí),,即單調(diào)遞增,所以,則,所以的最小值為,故答案為:【點(diǎn)睛】本題考查反函數(shù)的性質(zhì)的應(yīng)用,考查利用導(dǎo)函數(shù)研究函數(shù)的最值問(wèn)題.15、【解析】的展開(kāi)式的通項(xiàng)為:.令,得.答案為:-40.點(diǎn)睛:求二項(xiàng)展開(kāi)式有關(guān)問(wèn)題的常見(jiàn)類(lèi)型及解題策略(1)求展開(kāi)式中的特定項(xiàng).可依據(jù)條件寫(xiě)出第r+1項(xiàng),再由特定項(xiàng)的特點(diǎn)求出r值即可.(2)已知展開(kāi)式的某項(xiàng),求特定項(xiàng)的系數(shù).可由某項(xiàng)得出參數(shù)項(xiàng),再由通項(xiàng)寫(xiě)出第r+1項(xiàng),由特定項(xiàng)得出r值,最后求出其參數(shù).16、2【解析】
根據(jù)為焦點(diǎn),得;又求得,從而得到離心率.【詳解】為焦點(diǎn)在雙曲線上,則又本題正確結(jié)果:【點(diǎn)睛】本題考查利用雙曲線的定義求解雙曲線的離心率問(wèn)題,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1);(2)證明見(jiàn)解析,或【解析】
(1)根據(jù)點(diǎn)到直線的公式結(jié)合二次函數(shù)的性質(zhì)即可求出;(2)設(shè),,,,表示出直線,的方程,利用表示出,,即可求定點(diǎn)的坐標(biāo).【詳解】(1)設(shè)拋物線上點(diǎn)的坐標(biāo)為,則,時(shí)取等號(hào)),則拋物線上的點(diǎn)到直線距離的最小值;(2)設(shè),,,,,,直線,的方程為分別為,,由兩條直線都經(jīng)過(guò)點(diǎn)點(diǎn)得,為方程的兩根,,直線的方程為,,,,,共線.又,,,解,,點(diǎn),是直線上的動(dòng)點(diǎn),時(shí),,時(shí),,,或.【點(diǎn)睛】本題考查拋物線的方程的求法,考查直線方程的求法,考查直線過(guò)定點(diǎn)的解法,意在考查學(xué)生對(duì)這些知識(shí)的理解掌握水平和分析推理能力.18、(1),;(2)【解析】
(1)解絕對(duì)值不等式得,根據(jù)不等式的解集為列出方程組,解出即可;(2)求出的圖像與直線及交點(diǎn)的坐標(biāo),通過(guò)分割法將四邊形的面積分為兩個(gè)三角形,列出不等式,解不等式即可.【詳解】(1)由得:,,即,解得,.(2)的圖像與直線及圍成的四邊形,,,,.過(guò)點(diǎn)向引垂線,垂足為,則.化簡(jiǎn)得:,(舍)或.故的取值范圍為.【點(diǎn)睛】本題主要考查了絕對(duì)值不等式的求法,以及絕對(duì)值不等式在幾何中的應(yīng)用,屬于中檔題.19、(1)見(jiàn)解析;(2)最大值為.【解析】
(1)將函數(shù)表示為分段函數(shù),利用函數(shù)的單調(diào)性求出該函數(shù)的最小值,進(jìn)而可證得結(jié)論成立;(2)由可得出,并將代數(shù)式與相乘,展開(kāi)后利用基本不等式可求得的最小值,進(jìn)而可得出實(shí)數(shù)的最大值.【詳解】(1).當(dāng)時(shí),函數(shù)單調(diào)遞減,則;當(dāng)時(shí),函數(shù)單調(diào)遞增,則;當(dāng)時(shí),函數(shù)單調(diào)遞增,則.綜上所述,,所以;(2)因?yàn)楹愠闪?,且,,所以恒成立,?因?yàn)?,?dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,實(shí)數(shù)的最大值為.【點(diǎn)睛】本題考查含絕對(duì)值函數(shù)最值的求解,同時(shí)也考查了利用基本不等式恒成立求參數(shù),考查推理能力與計(jì)算能力,屬于中等題.20、(1)l的普通方程;C的直角坐標(biāo)方程;(2).【解析】
(1)利用極坐標(biāo)與直角坐標(biāo)的互化公式即可把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,利用消去參數(shù)即可得到直線的直角坐標(biāo)方程;(2)將直線的參數(shù)方程,代入曲線的方程,利用參數(shù)的幾何意義即可得出,從而建立關(guān)于的方程,求解即可.【詳解】(1)由直線l的參數(shù)方程消去參數(shù)t得,,即為l的普通方程由,兩邊乘以得為C的直角坐標(biāo)方程.(2)將代入拋物線得由已知成等比數(shù)列,即,,,整理得(舍去)或.【點(diǎn)睛】熟練掌握極坐標(biāo)與直角坐標(biāo)的互化公式、方程思想、直線的參數(shù)方程中的參數(shù)的幾何意義是解題的關(guān)鍵.21、(1);(2)單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無(wú)極大值;(3)見(jiàn)解析.【解析】
(1)切點(diǎn)既在切線上又在曲線上得一方程,再根據(jù)斜率等于該點(diǎn)的導(dǎo)數(shù)再列一方程,解方程組即可;(2)先對(duì)求導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)判斷和求解即可.(3)把證明轉(zhuǎn)化為證明,然后證明極小值大于極大值即可.【詳解】解:(1)函數(shù)的定義域?yàn)橛梢阎?,則,解得.(2)由題意得,則.當(dāng)時(shí),,所以單調(diào)遞減,當(dāng)時(shí),,所以單調(diào)遞增,所以,單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為,的極小值為,無(wú)極大值.(3)要證成立,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 人教版數(shù)學(xué)八年級(jí)下冊(cè)16.2《二次根式的乘除》聽(tīng)評(píng)課記錄4
- 岳麓版歷史八年級(jí)下冊(cè)第16課《“一國(guó)兩制”與香港、澳門(mén)回歸祖國(guó)》聽(tīng)課評(píng)課記錄
- 蘇教版三年級(jí)第五冊(cè)整百數(shù)乘一位數(shù)的口算教學(xué)設(shè)計(jì)
- 小學(xué)二年級(jí)語(yǔ)文教學(xué)計(jì)劃范文
- 廠房物業(yè)管理服務(wù)合同范本
- 五年級(jí)上冊(cè)數(shù)學(xué)聽(tīng)評(píng)課記錄《第5單元:第3課時(shí) 用字母表示稍復(fù)雜的數(shù)量關(guān)系》人教新課標(biāo)
- 2025年度互聯(lián)網(wǎng)金融服務(wù)連帶責(zé)任保證擔(dān)保協(xié)議范文
- 2025年度蔬菜種植基地病蟲(chóng)害防治合作協(xié)議
- 二零二五年度XX裝修公司員工崗位責(zé)任合同協(xié)議書(shū)
- 2025年度電商團(tuán)隊(duì)數(shù)據(jù)安全合作協(xié)議
- 2023年上海青浦區(qū)區(qū)管企業(yè)統(tǒng)一招考聘用筆試題庫(kù)含答案解析
- 2023年高一物理期末考試卷(人教版)
- 2023版押品考試題庫(kù)必考點(diǎn)含答案
- 植物之歌觀后感
- 空氣能熱泵安裝示意圖
- 建筑工程施工質(zhì)量驗(yàn)收規(guī)范檢驗(yàn)批填寫(xiě)全套表格示范填寫(xiě)與說(shuō)明
- 2020年中秋國(guó)慶假日文化旅游市場(chǎng)安全生產(chǎn)檢查表
- 辦公家具項(xiàng)目實(shí)施方案、供貨方案
- 七年級(jí)英語(yǔ)下冊(cè)閱讀理解10篇
- 節(jié)后開(kāi)工收心會(huì)
- 設(shè)計(jì)質(zhì)量、進(jìn)度保證措施
評(píng)論
0/150
提交評(píng)論