版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
數(shù)量關(guān)系
—第4章空間解析幾何
在三維空間中:空間形式
—
點(diǎn),
線,
面基本方法
—
坐標(biāo)法;向量法坐標(biāo),方程(組)多元函數(shù)微分學(xué)
第4章第1節(jié)一、空間直角坐標(biāo)系二、空間兩點(diǎn)間的距離三、曲面方程的概念四、常見(jiàn)的曲面及其方程空間解析幾何簡(jiǎn)介ⅦⅡⅢⅥⅤⅧⅣ一、空間直角坐標(biāo)系由三條互相垂直的數(shù)軸按右手規(guī)則組成一個(gè)空間直角坐標(biāo)系.
坐標(biāo)原點(diǎn)
坐標(biāo)軸x軸(橫軸)y軸(縱軸)z
軸(豎軸)過(guò)空間一定點(diǎn)O,
坐標(biāo)面
卦限(八個(gè))ⅠzOx面在直角坐標(biāo)系下坐標(biāo)軸上的點(diǎn)
P,Q,R;坐標(biāo)面上的點(diǎn)A,B,C點(diǎn)
M特殊點(diǎn)的坐標(biāo):有序數(shù)組(稱為點(diǎn)
M
的坐標(biāo))原點(diǎn)O(0,0,0);坐標(biāo)軸:坐標(biāo)面:二、空間兩點(diǎn)間的距離得兩點(diǎn)間的距離公式:設(shè)兩點(diǎn)與過(guò)點(diǎn)分別作垂直于三個(gè)坐標(biāo)軸的平面,
這六個(gè)平面圍成一個(gè)長(zhǎng)方體,其棱長(zhǎng)分別為例1.
求證以證:即為等腰三角形.的三角形是等腰三角形.為頂點(diǎn)例2.
在z
軸上求與兩點(diǎn)等距解:
設(shè)該點(diǎn)為解得故所求點(diǎn)為及離的點(diǎn).三、曲面方程的概念求到兩定點(diǎn)A(1,2,3)
和B(2,-1,4)等距離的點(diǎn)的化簡(jiǎn)得即說(shuō)明:動(dòng)點(diǎn)軌跡為線段
AB的垂直平分面.引例:顯然在此平面上的點(diǎn)的坐標(biāo)都滿足此方程,不在此平面上的點(diǎn)的坐標(biāo)不滿足此方程.解:設(shè)軌跡上的動(dòng)點(diǎn)為軌跡方程.
定義1.如果曲面
S
與方程
F(x,y,z)=0有下述關(guān)系:(1)曲面
S上的任意點(diǎn)的坐標(biāo)都滿足此方程則F(x,y,z)=0
叫做曲面
S
的方程,曲面S叫做方程F(x,y,z)=0的圖形.兩個(gè)基本問(wèn)題:(1)已知一曲面作為點(diǎn)的幾何軌跡時(shí),(2)不在曲面S上的點(diǎn)的坐標(biāo)不滿足此方程求曲面方程.(2)已知方程時(shí),研究它所表示的幾何形狀(必要時(shí)需作圖).故所求方程為例3.
求動(dòng)點(diǎn)到定點(diǎn)方程.特別,當(dāng)M0在原點(diǎn)時(shí),球面方程為解:
設(shè)軌跡上動(dòng)點(diǎn)為即依題意距離為
R
的軌跡表示上(下)球面.例4.
研究方程解:
配方得可見(jiàn)此方程表示一個(gè)球面說(shuō)明:如下形式的三元二次方程
(A≠0)都可通過(guò)配方研究它的圖形.其圖形可能是的曲面.表示怎樣半徑為球心為一個(gè)球面,或點(diǎn),或虛軌跡.四、常見(jiàn)的曲面及其方程設(shè)有三元一次方程以上兩式相減,得平面的點(diǎn)法式方程此方程稱為平面的一般方程.任取一組滿足上述方程的數(shù)則1.平面
特殊情形?當(dāng)
D=0時(shí),Ax+By+Cz=0表示
通過(guò)原點(diǎn)的平面;?當(dāng)
A=0時(shí),By+Cz+D=0的法向量平面平行于
x
軸;?
Ax+Cz+D=0表示?
Ax+By+D=0表示?
Cz+D=0表示?Ax+D=0表示?
By+D=0表示平行于
y
軸的平面;平行于
z
軸的平面;平行于xOy
面的平面;平行于yOz
面的平面;平行于zOx
面的平面.特別,當(dāng)平面與三坐標(biāo)軸的交點(diǎn)分別為此式稱為平面的截距式方程.時(shí),平面方程為例5.
求通過(guò)x軸和點(diǎn)(4,–3,–1)的平面方程.解:因平面通過(guò)
x軸,設(shè)所求平面方程為代入已知點(diǎn)得化簡(jiǎn),得所求平面方程定義2.一條平面曲線2.旋轉(zhuǎn)曲面
繞其平面上一條定直線旋轉(zhuǎn)一周所形成的曲面叫做旋轉(zhuǎn)曲面.該定直線稱為旋轉(zhuǎn)軸.例如:建立yOz面上曲線C
繞
z
軸旋轉(zhuǎn)所成曲面的方程:故旋轉(zhuǎn)曲面方程為當(dāng)繞
z軸旋轉(zhuǎn)時(shí),若點(diǎn)給定yOz
面上曲線
C:則有則有該點(diǎn)轉(zhuǎn)到思考:當(dāng)曲線C繞y軸旋轉(zhuǎn)時(shí),方程如何?例6.
求坐標(biāo)面xOz
上的雙曲線分別繞
x軸和
z
軸旋轉(zhuǎn)一周所生成的旋轉(zhuǎn)曲面方程.解:繞
x
軸旋轉(zhuǎn)繞
z
軸旋轉(zhuǎn)這兩種曲面都叫做旋轉(zhuǎn)雙曲面.所成曲面方程為所成曲面方程為3.柱面引例.
分析方程表示怎樣的曲面.的坐標(biāo)也滿足方程解:在
xOy面上,表示圓C,沿圓周C平行于
z軸的一切直線所形成的曲面稱為圓故在空間過(guò)此點(diǎn)作柱面.對(duì)任意
z,平行
z
軸的直線
l,表示圓柱面在圓C上任取一點(diǎn)其上所有點(diǎn)的坐標(biāo)都滿足此方程,定義3.平行定直線并沿定曲線C
移動(dòng)的直線l形成的軌跡叫做柱面.
表示拋物柱面,母線平行于
z
軸;準(zhǔn)線為xOy
面上的拋物線.
z
軸的橢圓柱面.
z
軸的平面.
表示母線平行于(且z
軸在平面上)表示母線平行于C
叫做準(zhǔn)線,l
叫做母線.一般地,在三維空間柱面,柱面,平行于x
軸;平行于
y
軸;平行于
z
軸;準(zhǔn)線xOz
面上的曲線l3.母線柱面,準(zhǔn)線
xOy
面上的曲線l1.母線準(zhǔn)線
yOz面上的曲線l2.母線4.二次曲面三元二次方程適當(dāng)選取直角坐標(biāo)系可得它們的標(biāo)準(zhǔn)方程,下面僅就幾種常見(jiàn)標(biāo)準(zhǔn)型的特點(diǎn)進(jìn)行介紹.研究二次曲面特性的基本方法:截痕法其基本類型有:橢球面、拋物面、雙曲面、錐面的圖形統(tǒng)稱為二次曲面.(二次項(xiàng)系數(shù)不全為0)橢球面(1)范圍:(2)與坐標(biāo)面的交線:橢圓與的交線為橢圓:(4)當(dāng)a=b
時(shí)為旋轉(zhuǎn)橢球面;同樣的截痕及也為橢圓.當(dāng)a=b=c
時(shí)為球面.(3)截痕:為正數(shù))拋物面(1)橢圓拋物面(p,q
同號(hào))(2)雙曲拋物面(鞍形曲面)(p,q同號(hào))特別,當(dāng)p=q時(shí)為繞
z軸的旋轉(zhuǎn)拋物面.雙曲面(1)單葉雙曲面橢圓.時(shí),截痕為(實(shí)軸平行于x
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度餐飲連鎖企業(yè)食材集中配送服務(wù)合同3篇
- 2024年版船舶租賃合同格式3篇
- 2024年版施工單位與監(jiān)理單位合作協(xié)議
- 2024事業(yè)單位合同管理信息系統(tǒng)開(kāi)發(fā)與維護(hù)合同2篇
- 2025年伊犁下載貨運(yùn)從業(yè)資格證模擬考試題
- 2024商場(chǎng)餐飲品牌租賃與市場(chǎng)營(yíng)銷策略合同3篇
- 洛陽(yáng)師范學(xué)院《大數(shù)據(jù)基礎(chǔ)理論與應(yīng)用》2023-2024學(xué)年第一學(xué)期期末試卷
- 表面處理工程安裝施工承包合同
- 建筑綠化勞務(wù)合同
- 酒店行業(yè)技術(shù)人才招聘合同范本
- 半導(dǎo)體封裝過(guò)程wirebond中wireloop的研究及其優(yōu)化
- 15m鋼棧橋施工方案
- FZ∕T 97040-2021 分絲整經(jīng)機(jī)
- 應(yīng)聘人員面試登記表(應(yīng)聘者填寫)
- T∕CAAA 005-2018 青貯飼料 全株玉米
- s鐵路預(yù)應(yīng)力混凝土連續(xù)梁(鋼構(gòu))懸臂澆筑施工技術(shù)指南
- 撥叉831006設(shè)計(jì)說(shuō)明書
- 10KV高壓線防護(hù)施工方案——杉木桿
- 石油鉆井八大系統(tǒng)ppt課件
- 對(duì)標(biāo)管理辦法(共7頁(yè))
- R語(yǔ)言入門教程(超經(jīng)典)
評(píng)論
0/150
提交評(píng)論