版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆福建師大附中高二上數(shù)學期末學業(yè)水平測試試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列為等比數(shù)列,則“為常數(shù)列”是“成等差數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件2.已知,為正實數(shù),且,則的最小值為()A. B.C. D.13.從甲地到乙地要經(jīng)過3個十字路口,設(shè)各路口信號燈工作相互獨立,且在各路口遇到紅燈的概率分別為,,,一輛車從甲地到乙地,恰好遇到2個紅燈的概率為()A. B.C. D.4.已知拋物線,則其焦點到準線的距離為()A. B.C.1 D.45.已知三棱錐,點分別為的中點,且,用表示,則等于()A. B.C. D.6.已知是定義在上的函數(shù),且對任意都有,若函數(shù)的圖象關(guān)于點對稱,且,則()A. B.C. D.7.如果,,那么直線不經(jīng)過的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限8.執(zhí)行如圖所示的程序框圖,若輸入t的取值范圍為,則輸出s的取值范圍為()A. B.C. D.9.函數(shù)在區(qū)間上的最小值是()A. B.C. D.10.直線的傾斜角大小為()A. B.C. D.11.下列說法錯誤的是()A.命題“,”的否定是“,”B.若“”是“或”的充分不必要條件,則實數(shù)m的最大值為2021C.“”是“函數(shù)在內(nèi)有零點”的必要不充分條件D.已知,且,則的最小值為912.若用面積為48的矩形ABCD截某圓錐得到一個橢圓,且該橢圓與矩形ABCD的四邊都相切.設(shè)橢圓的方程為,則下列滿足題意的方程為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓,圓與軸相切,與圓外切,且圓心在直線上,則圓的標準方程為________14.已知方程,若此方程表示橢圓,則實數(shù)的取值范圍是________;若此方程表示雙曲線,則實數(shù)的取值范圍是________.15.拋物線的焦點到準線的距離等于__________.16.已知命題恒成立;,若p,均為真,則實數(shù)a的取值范圍__________三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)求下列函數(shù)導數(shù):(1);(2);18.(12分)已知函數(shù).(1)設(shè)x=2是函數(shù)f(x)的極值點,求a,并求f(x)的單調(diào)區(qū)間;(2)證明:當時,.19.(12分)從某居民區(qū)隨機抽取2021年的10個家庭,獲得第個家庭的月收入(單位:千元)與月儲蓄(單位:千元)的數(shù)據(jù)資料,計算得,,,(1)求家庭的月儲蓄對月收入的線性回歸方程;(2)判斷變量與之間是正相關(guān)還是負相關(guān);(3)利用(1)中的回歸方程,分析2021年該地區(qū)居民月收入與月儲蓄之間的變化情況,并預測當該居民區(qū)某家庭月收入為7千元,該家庭的月儲蓄額.附:線性回歸方程系數(shù)公式中,,,其中,為樣本平均值20.(12分)求函數(shù)在區(qū)間上的最大值和最小值21.(12分)已知函數(shù).若圖象上的點處的切線斜率為(1)求a,b的值;(2)的極值22.(10分)計算:(1)求函數(shù)(a,b為正常數(shù))的導數(shù)(2)已知點P在曲線上,為曲線在點P處的切線的傾斜角,則的取值范圍
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】先考慮充分性,再考慮必要性即得解.【詳解】解:如果為常數(shù)列,則成等差數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的充分條件;等差數(shù)列,所以,所以數(shù)列為,所以數(shù)列是常數(shù)列,所以“為常數(shù)列”是“成等差數(shù)列”的必要條件.所以“為常數(shù)列”是“成等差數(shù)列”的充要條件.故選:C2、D【解析】利用基本不等式可求的最小值.【詳解】可化為,由基本不等式可得,故,當且僅當時等號成立,故的最小值為1,故選:D.3、B【解析】利用相互獨立事件概率乘法公式和互斥事件概率加法公式直接求解【詳解】由各路口信號燈工作相互獨立,可得某人從甲地到乙地恰好遇到2次紅燈的概率:故選:B4、B【解析】化簡拋物線的方程為,求得,即為焦點到準線的距離.【詳解】由題意,拋物線,即,解得,即焦點到準線的距離是故選:B5、D【解析】連接,利用,化簡即可得到答案.【詳解】連接,如下圖.故選:D.6、D【解析】令,代入可得,即得,再由函數(shù)的圖象關(guān)于點對稱,判斷得函數(shù)的圖象關(guān)于點對稱,即,則化簡可得,即函數(shù)的周期為,從而代入求解.【詳解】令,得,即,所以,因為函數(shù)的圖象關(guān)于點對稱,所以函數(shù)的圖象關(guān)于點對稱,即,所以,即,可得,則,故選:D.第II卷(非選擇題7、A【解析】將直線化為,結(jié)合已知條件即可判斷不經(jīng)過的象限.【詳解】由題設(shè),直線可寫成,又,,∴,,故直線過二、三、四象限,不過第一象限.故選:A.8、A【解析】由程序圖可得,,再分段求解函數(shù)的值域,即可求解【詳解】由程序圖可得,當時,,,當時,,,綜上所述,的取值范圍為,故選:A9、B【解析】求出導函數(shù),確定函數(shù)的單調(diào)性,得極值,并求出端點處函數(shù)值比較后可得最小值【詳解】解:因為,于是函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,,,得函數(shù)在區(qū)間上的最小值是故選:B10、B【解析】將直線方程變?yōu)樾苯厥?,根?jù)斜率與傾斜角關(guān)系可直接求解.【詳解】由直線可得,所以,設(shè)傾斜角為,則因為所以故選:B11、C【解析】對于A:用存在量詞否定全稱命題,直接判斷;對于B:根據(jù)充分不必要條件直接判斷;對于C:判斷出“”是“函數(shù)在內(nèi)有零點”的充分不必要條件,即可判斷;對于D:利用基本不等式求最值.【詳解】對于A:用存在量詞否定全稱命題,所以命題“,”的否定是“,”.故A正確;對于B:若“”是“或”的充分不必要條件,所以,即實數(shù)m的最大值為2021.故B正確;對于C:“函數(shù)在內(nèi)有零點”,則,解得:或,所以“”是“函數(shù)在內(nèi)有零點”的充分不必要條件.故C錯誤;對于D:已知,且,所以(當且僅當,即時取等號)故D正確.故選:C12、A【解析】由橢圓與矩形ABCD的四邊都相切得到再逐項判斷即可.【詳解】由于橢圓與矩形ABCD的四邊都相切,所以矩形兩邊長分別為,由矩形面積為48,得,對于選項B,D由于,不符合條件,不正確.對于選項A,,滿足題意.對于選項C,不正確.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】根據(jù)題干求得圓的圓心及半徑,再利用圓與軸相切,與圓外切,且圓心在直線上確定圓的圓心及半徑.【詳解】圓的標準方程為,所以圓心,半徑為由圓心在直線上,可設(shè)因為與軸相切,與圓外切,于是圓的半徑為,從而,解得因此,圓的標準方程為故答案為:【點睛】判斷兩圓的位置關(guān)系常用幾何法,即用兩圓圓心距與兩圓半徑和與差之間的關(guān)系,一般不采用代數(shù)法.兩圓相切注意討論內(nèi)切外切兩種情況.14、①.②.【解析】分別根據(jù)橢圓、雙曲線的標準方程的特征建立不等式即可求解.【詳解】當方程表示橢圓時,則有且,所以的取值范圍是;當方程表示雙曲線時,則有或,所以的取值范圍是.故答案為:;15、【解析】先將拋物線方程,轉(zhuǎn)化為標準方程,求得焦點坐標,準線方程即可.【詳解】因為拋物線方程是,轉(zhuǎn)化為標準方程得:,所以拋物線開口方向向右,焦點坐標準線方程為:,所以焦點到準線的距離等于.故答案為:【點睛】本題主要考查拋物線的標準方程,還考查了理解辨析的能力,屬于基礎(chǔ)題.16、【解析】根據(jù)題意得到命題為真命題,為假命題,結(jié)合二次函數(shù)的圖象與性質(zhì),即可求解.【詳解】根據(jù)題意,命題,均為真命題,可得命題為真命題,為假命題,由命題恒成立,可得,解得;又由命題為假命題,可得,解得,所以,即實數(shù)a的取值范圍為.故答案為:.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】根據(jù)基本初等函數(shù)的導數(shù)公式以及導數(shù)的運算法則計算可得;【詳解】解:(1)因為所以,即(2)因為所以,即18、(1),的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)證明見解析;【解析】(1)求出函數(shù)的定義域與導函數(shù),依題意可得,即可求出參數(shù)的值,再根據(jù)導函數(shù)與函數(shù)的單調(diào)性的關(guān)系求出函數(shù)的單調(diào)區(qū)間;(2)依題意可得,令,即證,,又,所以即證,令,利用導數(shù)說明其單調(diào)性,即可得解;【詳解】解:(1)因為,定義域為,所以,因為是函數(shù)的極值點,所以,所以,解得,所以,令,則,所以在上單調(diào)遞增,又,所以當時,,即,所以在上單調(diào)遞減,當時,,即,所以上單調(diào)遞增,綜上可得的單調(diào)遞減區(qū)間為,單調(diào)遞增區(qū)間為;(2)證明:依題意即證,即證,令,則,所以即證,因為,所以即證,令,則,所以當時,,當時,所以,所以,所以當時,19、(1)=0.3x-0.4(2)正相關(guān)(3)1.7千元【解析】(1)由題意得到n=10,求得,進而求得,寫出回歸方程;.(2)由判斷;(3)將x=7代入回歸方程求解.【小問1詳解】由題意知n=10,,則,所以所求回歸方程為=0.3x-0.4.【小問2詳解】因為,所以變量y的值隨x的值增加而增加,故x與y之間是正相關(guān).【小問3詳解】將x=7代入回歸方程可以預測該家庭的月儲蓄為=0.3×7-0.4=1.7(千元).20、,【解析】先求導函數(shù),再根據(jù)導函數(shù)得到單調(diào)區(qū)間,比較極值和端點值,即可得到最大值和最小值.【詳解】解:依題意,,令,得或,所以函數(shù)在和上單調(diào)遞增,在上單調(diào)遞減,又,,,所以,21、(1)(2)極大值為,極小值為【解析】(1)求出函數(shù)的導函數(shù),再根據(jù)圖象上的點處的切線斜率為,列出方程組,解之即可得解;(2)求出函數(shù)的導函數(shù),根據(jù)導函數(shù)的符號求得函數(shù)的單調(diào)區(qū)間,再根據(jù)極值的定義即可得解.【小問1詳解】解:,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 滿意度調(diào)查報告怎么寫(15篇)
- 小學教師師風師德演講稿5篇
- 2025年汽車涂裝項目申請報告
- 2025年氟鋁酸鈣鋰晶體(LICAALF)項目提案報告范文
- 2024-2025學年邢臺市寧晉縣三年級數(shù)學第一學期期末監(jiān)測試題含解析
- 2021年個人年終工作總結(jié)13篇
- 2024-2025學年溫江縣數(shù)學三年級第一學期期末聯(lián)考試題含解析
- 簡短的教師辭職報告(7篇)
- 2025年半硬質(zhì)泡沫塑料項目立項申請報告模范
- 2024再婚夫妻解除婚姻關(guān)系及財產(chǎn)分割協(xié)議書示范文本3篇
- 水利水電移民安置驗收資料目錄、工作報告、驗收報告、有關(guān)表格
- 建設(shè)工程強制性條文匯編2024
- Unit 1 - Unit 6 知識點(知識清單)-2024-2025學年人教PEP版(2024)英語三年級上冊
- 2024 AI專題:從模型視角看端側(cè)AI模型技術(shù)持續(xù)演進交互體驗有望升級
- 地質(zhì)勘探合同書范例
- 特種設(shè)備每月安全調(diào)度會議紀要
- MCN達人主播合同協(xié)議書
- 機電樣板實施施工方法及工藝要求
- 專題08:文言文比較閱讀(原卷版)-2022-2023學年七年級語文下學期期中專題復習(浙江專用)
- 2023版學前教育專業(yè)人才需求調(diào)研報告及人培方案(普招)
- DB43-T 2927-2024 中醫(yī)護理門診建設(shè)與管理規(guī)范
評論
0/150
提交評論