版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
廣東省廣州市番禺區(qū)2024屆高三年級(jí)四月調(diào)研考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知,如圖是求的近似值的一個(gè)程序框圖,則圖中空白框中應(yīng)填入A. B.C. D.2.秦九韶是我國(guó)南寧時(shí)期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項(xiàng)式求值的秦九韶算法,至今仍是比較先進(jìn)的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項(xiàng)式值的一個(gè)實(shí)例.若輸入、的值分別為、,則輸出的值為()A. B. C. D.3.如圖,網(wǎng)格紙是由邊長(zhǎng)為1的小正方形構(gòu)成,若粗實(shí)線畫出的是某幾何體的三視圖,則該幾何體的表面積為()A. B. C. D.4.《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(2017版)》提出了數(shù)學(xué)學(xué)科的六大核心素養(yǎng).為了比較甲、乙兩名高二學(xué)生的數(shù)學(xué)核心素養(yǎng)水平,現(xiàn)以六大素養(yǎng)為指標(biāo)對(duì)二人進(jìn)行了測(cè)驗(yàn),根據(jù)測(cè)驗(yàn)結(jié)果繪制了雷達(dá)圖(如圖,每項(xiàng)指標(biāo)值滿分為5分,分值高者為優(yōu)),則下面敘述正確的是()A.甲的數(shù)據(jù)分析素養(yǎng)高于乙B.甲的數(shù)學(xué)建模素養(yǎng)優(yōu)于數(shù)學(xué)抽象素養(yǎng)C.乙的六大素養(yǎng)中邏輯推理最差D.乙的六大素養(yǎng)整體平均水平優(yōu)于甲5.已知實(shí)數(shù),則的大小關(guān)系是()A. B. C. D.6.如圖在直角坐標(biāo)系中,過原點(diǎn)作曲線的切線,切點(diǎn)為,過點(diǎn)分別作、軸的垂線,垂足分別為、,在矩形中隨機(jī)選取一點(diǎn),則它在陰影部分的概率為()A. B. C. D.7.已知函數(shù),,的零點(diǎn)分別為,,,則()A. B.C. D.8.某人用隨機(jī)模擬的方法估計(jì)無理數(shù)的值,做法如下:首先在平面直角坐標(biāo)系中,過點(diǎn)作軸的垂線與曲線相交于點(diǎn),過作軸的垂線與軸相交于點(diǎn)(如圖),然后向矩形內(nèi)投入粒豆子,并統(tǒng)計(jì)出這些豆子在曲線上方的有粒,則無理數(shù)的估計(jì)值是()A. B. C. D.9.函數(shù)的圖像大致為().A. B.C. D.10.執(zhí)行如圖所示的程序框圖,輸出的結(jié)果為()A. B.4 C. D.11.已知函數(shù),則()A.2 B.3 C.4 D.512.如圖,在平行四邊形中,對(duì)角線與交于點(diǎn),且,則()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標(biāo)系中,已知圓,圓.直線與圓相切,且與圓相交于,兩點(diǎn),則弦的長(zhǎng)為_________14.已知關(guān)于的方程在區(qū)間上恰有兩個(gè)解,則實(shí)數(shù)的取值范圍是________15.已知是同一球面上的四個(gè)點(diǎn),其中平面,是正三角形,,則該球的表面積為______.16.過圓的圓心且與直線垂直的直線方程為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)設(shè)的最小值為,正數(shù),滿足,證明:.18.(12分)如圖,為坐標(biāo)原點(diǎn),點(diǎn)為拋物線的焦點(diǎn),且拋物線上點(diǎn)處的切線與圓相切于點(diǎn)(1)當(dāng)直線的方程為時(shí),求拋物線的方程;(2)當(dāng)正數(shù)變化時(shí),記分別為的面積,求的最小值.19.(12分)如圖,在直角中,,通過以直線為軸順時(shí)針旋轉(zhuǎn)得到().點(diǎn)為斜邊上一點(diǎn).點(diǎn)為線段上一點(diǎn),且.(1)證明:平面;(2)當(dāng)直線與平面所成的角取最大值時(shí),求二面角的正弦值.20.(12分)已知△ABC三內(nèi)角A、B、C所對(duì)邊的長(zhǎng)分別為a,b,c,且3sin2A+3sin2B=4sinAsinB+3sin2C.(1)求cosC的值;(2)若a=3,c,求△ABC的面積.21.(12分)已知函數(shù),.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.22.(10分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大小;(2)在棱上確定一點(diǎn),使二面角的平面角的余弦值為.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】
由于中正項(xiàng)與負(fù)項(xiàng)交替出現(xiàn),根據(jù)可排除選項(xiàng)A、B;執(zhí)行第一次循環(huán):,①若圖中空白框中填入,則,②若圖中空白框中填入,則,此時(shí)不成立,;執(zhí)行第二次循環(huán):由①②均可得,③若圖中空白框中填入,則,④若圖中空白框中填入,則,此時(shí)不成立,;執(zhí)行第三次循環(huán):由③可得,符合題意,由④可得,不符合題意,所以圖中空白框中應(yīng)填入,故選C.2、B【解析】
列出循環(huán)的每一步,由此可得出輸出的值.【詳解】由題意可得:輸入,,,;第一次循環(huán),,,,繼續(xù)循環(huán);第二次循環(huán),,,,繼續(xù)循環(huán);第三次循環(huán),,,,跳出循環(huán);輸出.故選:B.【點(diǎn)睛】本題考查根據(jù)算法框圖計(jì)算輸出值,一般要列舉出算法的每一步,考查計(jì)算能力,屬于基礎(chǔ)題.3、C【解析】
根據(jù)三視圖還原為幾何體,結(jié)合組合體的結(jié)構(gòu)特征求解表面積.【詳解】由三視圖可知,該幾何體可看作是半個(gè)圓柱和一個(gè)長(zhǎng)方體的組合體,其中半圓柱的底面半圓半徑為1,高為4,長(zhǎng)方體的底面四邊形相鄰邊長(zhǎng)分別為1,2,高為4,所以該幾何體的表面積,故選C.【點(diǎn)睛】本題主要考查三視圖的識(shí)別,利用三視圖還原成幾何體是求解關(guān)鍵,側(cè)重考查直觀想象和數(shù)學(xué)運(yùn)算的核心素養(yǎng).4、D【解析】
根據(jù)雷達(dá)圖對(duì)選項(xiàng)逐一分析,由此確定敘述正確的選項(xiàng).【詳解】對(duì)于A選項(xiàng),甲的數(shù)據(jù)分析分,乙的數(shù)據(jù)分析分,甲低于乙,故A選項(xiàng)錯(cuò)誤.對(duì)于B選項(xiàng),甲的建模素養(yǎng)分,乙的建模素養(yǎng)分,甲低于乙,故B選項(xiàng)錯(cuò)誤.對(duì)于C選項(xiàng),乙的六大素養(yǎng)中,邏輯推理分,不是最差,故C選項(xiàng)錯(cuò)誤.對(duì)于D選項(xiàng),甲的總得分分,乙的總得分分,所以乙的六大素養(yǎng)整體平均水平優(yōu)于甲,故D選項(xiàng)正確.故選:D【點(diǎn)睛】本小題主要考查圖表分析和數(shù)據(jù)處理,屬于基礎(chǔ)題.5、B【解析】
根據(jù),利用指數(shù)函數(shù)對(duì)數(shù)函數(shù)的單調(diào)性即可得出.【詳解】解:∵,∴,,.∴.故選:B.【點(diǎn)睛】本題考查了指數(shù)函數(shù)對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.6、A【解析】
設(shè)所求切線的方程為,聯(lián)立,消去得出關(guān)于的方程,可得出,求出的值,進(jìn)而求得切點(diǎn)的坐標(biāo),利用定積分求出陰影部分區(qū)域的面積,然后利用幾何概型概率公式可求得所求事件的概率.【詳解】設(shè)所求切線的方程為,則,聯(lián)立,消去得①,由,解得,方程①為,解得,則點(diǎn),所以,陰影部分區(qū)域的面積為,矩形的面積為,因此,所求概率為.故選:A.【點(diǎn)睛】本題考查定積分的計(jì)算以及幾何概型,同時(shí)也涉及了二次函數(shù)的切線方程的求解,考查計(jì)算能力,屬于中等題.7、C【解析】
轉(zhuǎn)化函數(shù),,的零點(diǎn)為與,,的交點(diǎn),數(shù)形結(jié)合,即得解.【詳解】函數(shù),,的零點(diǎn),即為與,,的交點(diǎn),作出與,,的圖象,如圖所示,可知故選:C【點(diǎn)睛】本題考查了數(shù)形結(jié)合法研究函數(shù)的零點(diǎn),考查了學(xué)生轉(zhuǎn)化劃歸,數(shù)形結(jié)合的能力,屬于中檔題.8、D【解析】
利用定積分計(jì)算出矩形中位于曲線上方區(qū)域的面積,進(jìn)而利用幾何概型的概率公式得出關(guān)于的等式,解出的表達(dá)式即可.【詳解】在函數(shù)的解析式中,令,可得,則點(diǎn),直線的方程為,矩形中位于曲線上方區(qū)域的面積為,矩形的面積為,由幾何概型的概率公式得,所以,.故選:D.【點(diǎn)睛】本題考查利用隨機(jī)模擬的思想估算的值,考查了幾何概型概率公式的應(yīng)用,同時(shí)也考查了利用定積分計(jì)算平面區(qū)域的面積,考查計(jì)算能力,屬于中等題.9、A【解析】
本題采用排除法:由排除選項(xiàng)D;根據(jù)特殊值排除選項(xiàng)C;由,且無限接近于0時(shí),排除選項(xiàng)B;【詳解】對(duì)于選項(xiàng)D:由題意可得,令函數(shù),則,;即.故選項(xiàng)D排除;對(duì)于選項(xiàng)C:因?yàn)?故選項(xiàng)C排除;對(duì)于選項(xiàng)B:當(dāng),且無限接近于0時(shí),接近于,,此時(shí).故選項(xiàng)B排除;故選項(xiàng):A【點(diǎn)睛】本題考查函數(shù)解析式較復(fù)雜的圖象的判斷;利用函數(shù)奇偶性、特殊值符號(hào)的正負(fù)等有關(guān)性質(zhì)進(jìn)行逐一排除是解題的關(guān)鍵;屬于中檔題.10、A【解析】
模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的的值,當(dāng),,退出循環(huán),輸出結(jié)果.【詳解】程序運(yùn)行過程如下:,;,;,;,;,;,;,,退出循環(huán),輸出結(jié)果為,故選:A.【點(diǎn)睛】該題考查的是有關(guān)程序框圖的問題,涉及到的知識(shí)點(diǎn)有判斷程序框圖輸出結(jié)果,屬于基礎(chǔ)題目.11、A【解析】
根據(jù)分段函數(shù)直接計(jì)算得到答案.【詳解】因?yàn)樗?故選:.【點(diǎn)睛】本題考查了分段函數(shù)計(jì)算,意在考查學(xué)生的計(jì)算能力.12、C【解析】
畫出圖形,以為基底將向量進(jìn)行分解后可得結(jié)果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.【點(diǎn)睛】應(yīng)用平面向量基本定理應(yīng)注意的問題(1)只要兩個(gè)向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時(shí),合理選擇基底會(huì)給解題帶來方便.(2)利用已知向量表示未知向量,實(shí)質(zhì)就是利用平行四邊形法則或三角形法則進(jìn)行向量的加減運(yùn)算或數(shù)乘運(yùn)算.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用直線與圓相切求出斜率,得到直線的方程,幾何法求出【詳解】解:直線與圓相切,圓心為由,得或,當(dāng)時(shí),到直線的距離,不成立,當(dāng)時(shí),與圓相交于,兩點(diǎn),到直線的距離,故答案為.【點(diǎn)睛】考查直線與圓的位置關(guān)系,相切和相交問題,屬于中檔題.14、【解析】
先換元,令,將原方程轉(zhuǎn)化為,利用參變分離法轉(zhuǎn)化為研究?jī)珊瘮?shù)的圖像交點(diǎn),觀察圖像,即可求出.【詳解】因?yàn)殛P(guān)于的方程在區(qū)間上恰有兩個(gè)解,令,所以方程在上只有一解,即有,直線與在的圖像有一個(gè)交點(diǎn),由圖可知,實(shí)數(shù)的取值范圍是,但是當(dāng)時(shí),還有一個(gè)根,所以此時(shí)共有3個(gè)根.綜上實(shí)數(shù)的取值范圍是.【點(diǎn)睛】本題主要考查學(xué)生運(yùn)用轉(zhuǎn)化與化歸思想的能力,方程有解問題轉(zhuǎn)化成兩函數(shù)的圖像有交點(diǎn)問題,是常見的轉(zhuǎn)化方式.15、【解析】
求得等邊三角形的外接圓半徑,利用勾股定理求得三棱錐外接球的半徑,進(jìn)而求得外接球的表面積.【詳解】設(shè)是等邊三角形的外心,則球心在其正上方處.設(shè),由正弦定理得.所以得三棱錐外接球的半徑,所以外接球的表面積為.故答案為:【點(diǎn)睛】本小題主要考查幾何體外接球表面積的計(jì)算,屬于基礎(chǔ)題.16、【解析】
根據(jù)與已知直線垂直關(guān)系,設(shè)出所求直線方程,將已知圓圓心坐標(biāo)代入,即可求解.【詳解】圓心為,所求直線與直線垂直,設(shè)為,圓心代入,可得,所以所求的直線方程為.故答案為:.【點(diǎn)睛】本題考查圓的方程、直線方程求法,注意直線垂直關(guān)系的靈活應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】
(1)將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)利用絕對(duì)值三角不等式求得的最小值,利用分析法,結(jié)合基本不等式,證得不等式成立.【詳解】(1),不等式,即或或,即有或或,所以所求不等式的解集為.(2),,因?yàn)?,,所以要證,只需證,即證,因?yàn)?,所以只要證,即證,即證,因?yàn)?,所以只需證,因?yàn)椋猿闪?,所?【點(diǎn)睛】本小題主要考查絕對(duì)值不等式的解法,考查分析法證明不等式,考查基本不等式的運(yùn)用,屬于中檔題.18、(1)x2=4y.(2).【解析】試題解析:(Ⅰ)設(shè)點(diǎn)P(x0,),由x2=2py(p>0)得,y=,求導(dǎo)y′=,因?yàn)橹本€PQ的斜率為1,所以=1且x0--√2=0,解得p=2,所以拋物線C1的方程為x2=4y.(Ⅱ)因?yàn)辄c(diǎn)P處的切線方程為:y-=(x-x0),即2x0x-2py-x02=0,∴OQ的方程為y=-x根據(jù)切線與圓切,得d=r,即,化簡(jiǎn)得x04=4x02+4p2,由方程組,解得Q(,),所以|PQ|=√1+k2|xP-xQ|=點(diǎn)F(0,)到切線PQ的距離是d=,所以S1==,S2=,而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,所以==+1≥2+1,當(dāng)且僅當(dāng)時(shí)取“=”號(hào),即x02=4+2,此時(shí),p=.所以的最小值為2+1.考點(diǎn):求拋物線的方程,與拋物線有關(guān)的最值問題.19、(1)見解析;(2)【解析】
(1)先算出的長(zhǎng)度,利用勾股定理證明,再由已知可得,利用線面垂直的判定定理即可證明;(2)由(1)可得為直線與平面所成的角,要使其最大,則應(yīng)最小,可得為中點(diǎn),然后建系分別求出平面的法向量即可算得二面角的余弦值,進(jìn)一步得到正弦值.【詳解】(1)在中,,由余弦定理得,∴,∴,由題意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以為坐標(biāo)原點(diǎn),以,,的方向?yàn)椋S的正方向,建立空間直角坐標(biāo)系.∵平面,∴在平面上的射影是,∴與平面所成的角是,∴最大時(shí),即,點(diǎn)為中點(diǎn).,,,,,,,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,同理,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,∴,,故二面角的正弦值為.【點(diǎn)睛】本題考查線面垂直的判定定理以及利用向量法求二面角的正弦值,考查學(xué)生的運(yùn)算求解能力,是一道中檔題.20、(1);(2)或.【解析】
(1)利用正弦定理對(duì)已知代數(shù)式化簡(jiǎn),根據(jù)余弦定理求解余弦值;(2)根據(jù)余弦定理求出b=1或b=3,結(jié)合面積公式求解.【詳解】(1)已知等式3sin2A+3sin2B=4sinAsinB+3sin2C,利用正弦定理化簡(jiǎn)得:3a2+3b2﹣3c2=4ab,即a2+b2﹣c2ab,∴cosC;(2)把a(bǔ)=3,c,代入3a2+3b2﹣3c2=4ab得:b=1或b=3,∵cosC,C為三角形內(nèi)角,∴sinC,∴S△ABCabsinC3×bb,則△ABC的面積為或.【點(diǎn)睛】此題考查利用正余弦定理求解三角形,關(guān)鍵在于熟練掌握正弦定理進(jìn)行邊角互化,利用余弦定理求解邊長(zhǎng),根據(jù)面積公式求解面積.21、(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題分析:(1)由已知利用兩角和與差的三角函數(shù)公式及倍角公式將的解析式化為一個(gè)復(fù)合角的三角函數(shù)式,再利用正弦型函數(shù)的最小正周期計(jì)算公式,即可求得函數(shù)的最小正周期;(2)由(1)得函數(shù),分析它在閉區(qū)間上的單調(diào)性,可知函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù),由此即可求得函數(shù)在閉區(qū)間上的最大值和最小值.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- JJF 2175-2024水溶性酸測(cè)定儀校準(zhǔn)規(guī)范
- 速寫交通課件教學(xué)課件
- 2024年度金融服務(wù)技術(shù)外包合同
- 認(rèn)識(shí)雪 課件教學(xué)課件
- 2024年度建筑項(xiàng)目工程終止合同
- 2024年度太陽(yáng)能系統(tǒng)安裝合同
- 2024年度企業(yè)咨詢服務(wù)外包合同
- 2024年修訂版:農(nóng)產(chǎn)品冷鏈物流配送協(xié)議
- 2024年建筑合同糾紛解決策略
- 2024小區(qū)智能化系統(tǒng)工程施工合同協(xié)議書范本
- 四肢關(guān)節(jié)病癥推拿治療-梨狀肌綜合癥患者的推拿治療
- 房產(chǎn)開發(fā)地塊收購(gòu)項(xiàng)目可行性研究報(bào)告(完美版)
- JJF 2133-2024海洋資料浮標(biāo)傳感器校準(zhǔn)規(guī)范
- HGT 6333-2024《煤氣化灰水阻垢分散劑阻垢性能測(cè)定方法》
- 高三一?!叭松枰獙W(xué)會(huì)繞行”審題立意及范文(彩色高效版)
- 2023-2024學(xué)年江蘇省南京玄武區(qū)中考語(yǔ)文最后一模試卷含解析
- 職場(chǎng)心理學(xué)智慧樹知到期末考試答案章節(jié)答案2024年山東工商學(xué)院
- 2024中國(guó)通信服務(wù)股份限公司招聘公開引進(jìn)高層次人才和急需緊缺人才筆試參考題庫(kù)(共500題)答案詳解版
- 中醫(yī)養(yǎng)生活動(dòng)策劃方案
- 汽車坡道玻璃雨棚施工方案
- 漫畫解讀非煤地采礦山重大事故隱患判定標(biāo)準(zhǔn)
評(píng)論
0/150
提交評(píng)論