版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
等差數(shù)列與等比數(shù)列專項(xiàng)測(cè)試卷考試時(shí)間:120分鐘滿分:150分一、單選題:本大題共8小題,每個(gè)小題5分,共40分.在每小題給出的選項(xiàng)中,只有一項(xiàng)是符合題目要求的.1.(2023秋·山東·高二山東師范大學(xué)附中??计谀┮阎缺葦?shù)列SKIPIF1<0各項(xiàng)均為正數(shù),公比SKIPIF1<0,且滿足SKIPIF1<0,則SKIPIF1<0(
)A.8 B.4 C.2 D.1【答案】C【分析】根據(jù)等比數(shù)列的性質(zhì)可得SKIPIF1<0,根據(jù)各項(xiàng)均為正數(shù),得到SKIPIF1<0,則SKIPIF1<0,進(jìn)而求解.【詳解】因?yàn)镾KIPIF1<0,由等比數(shù)列的性質(zhì)可得:SKIPIF1<0,又因?yàn)閿?shù)列SKIPIF1<0各項(xiàng)均為正數(shù),所以SKIPIF1<0,因?yàn)楣萐KIPIF1<0,則SKIPIF1<0,故選:SKIPIF1<0.2.(內(nèi)蒙古自治區(qū)呼和浩特市2023屆高三上學(xué)期質(zhì)量普查調(diào)研考試?yán)砜茢?shù)學(xué)試題)數(shù)列SKIPIF1<0中,如果SKIPIF1<0,則Sn取最大值時(shí),n等于(
)A.23 B.24 C.25 D.26【答案】A【分析】根據(jù)等差數(shù)列前SKIPIF1<0項(xiàng)和的表達(dá)式,利用二次函數(shù)求最值即可.【詳解】由題意可知:數(shù)列SKIPIF1<0是以45為首項(xiàng),以SKIPIF1<0為公差的等差數(shù)列,所以SKIPIF1<0,關(guān)于SKIPIF1<0的二次函數(shù),開(kāi)口向下,對(duì)稱軸SKIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0最大,即數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和最大,故選:SKIPIF1<0.3.(2023·四川成都·統(tǒng)考一模)已知數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0.若SKIPIF1<0,則SKIPIF1<0(
)A.512 B.510 C.256 D.254【答案】C【分析】根據(jù)SKIPIF1<0與SKIPIF1<0的關(guān)系,結(jié)合等比數(shù)列的定義、等比數(shù)列的通項(xiàng)公式進(jìn)行求解即可.【詳解】由SKIPIF1<0,所以數(shù)列SKIPIF1<0是以2為首項(xiàng),2為公式的等比數(shù)列,于是SKIPIF1<0,故選:C4.(2023·四川綿陽(yáng)·統(tǒng)考模擬預(yù)測(cè))已知各項(xiàng)均為正數(shù)的等比數(shù)列SKIPIF1<0,前n項(xiàng)和為SKIPIF1<0,若SKIPIF1<0,則n的值為(
)A.4 B.5 C.6 D.7【答案】C【分析】先根據(jù)條件列出等比數(shù)列基本量的方程,求出基本量,再利用等比數(shù)列的通項(xiàng)公式計(jì)算即可.【詳解】設(shè)等比數(shù)列的公比為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0,無(wú)解;若SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0故選:C.5.(2023·江西景德鎮(zhèn)·統(tǒng)考模擬預(yù)測(cè))斐波那契數(shù)列SKIPIF1<0滿足SKIPIF1<0,SKIPIF1<0,設(shè)SKIPIF1<0,則SKIPIF1<0(
)A.2022 B.2023 C.2024 D.2025【答案】C【分析】根據(jù)遞推公式一一計(jì)算可得.【詳解】解:因?yàn)镾KIPIF1<0,SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.故選:C6.(2023·廣西桂林·統(tǒng)考一模)已知正項(xiàng)等比數(shù)列SKIPIF1<0}滿足SKIPIF1<0為SKIPIF1<0與SKIPIF1<0的等比中項(xiàng),則SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】B【分析】根據(jù)等比中項(xiàng)定義和等比數(shù)列通項(xiàng)公式得SKIPIF1<0,解得SKIPIF1<0,化簡(jiǎn)SKIPIF1<0.【詳解】設(shè)等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,由題意得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,故選:B.7.(2022·四川南充·統(tǒng)考一模)已知數(shù)列滿足SKIPIF1<0,設(shè)SKIPIF1<0,則數(shù)列SKIPIF1<0的前2023項(xiàng)和為(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】D【分析】根據(jù)題意得到SKIPIF1<0,再利用裂項(xiàng)法求和即可.【詳解】由題知:數(shù)列滿足SKIPIF1<0,設(shè)SKIPIF1<0,所以SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,則SKIPIF1<0.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,檢驗(yàn):當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,符合.所以SKIPIF1<0.令SKIPIF1<0,前SKIPIF1<0項(xiàng)和為SKIPIF1<0.則SKIPIF1<0.故選:D8.(2023·四川瀘州·瀘州老窖天府中學(xué)??寄M預(yù)測(cè))已知數(shù)列SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,則數(shù)列SKIPIF1<0的前10項(xiàng)和SKIPIF1<0(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.2【答案】C【分析】將遞推式兩邊同時(shí)倒下,然后構(gòu)造等差數(shù)列求出數(shù)列SKIPIF1<0的通項(xiàng)公式,再利用裂項(xiàng)相消法求和即可.【詳解】解:∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.∴數(shù)列SKIPIF1<0是首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0的等差數(shù)列,∴SKIPIF1<0,∴SKIPIF1<0.∴SKIPIF1<0,∴數(shù)列SKIPIF1<0的前10項(xiàng)和SKIPIF1<0.故選:C.二、多選題:本大題共4小題,每個(gè)小題5分,共20分.在每小題給出的選項(xiàng)中,只有一項(xiàng)或者多項(xiàng)是符合題目要求的.9.(2022·湖北武漢·華中師大一附中??寄M預(yù)測(cè))記數(shù)列SKIPIF1<0是等差數(shù)列,下列結(jié)論中不恒成立的是(
)A.若SKIPIF1<0,則SKIPIF1<0B.若SKIPIF1<0,則SKIPIF1<0C.若SKIPIF1<0,則SKIPIF1<0D.若SKIPIF1<0,則SKIPIF1<0【答案】ACD【分析】根據(jù)等差數(shù)列通項(xiàng)公式及等差中項(xiàng),結(jié)合基本不等式即可求解.【詳解】設(shè)等差數(shù)列SKIPIF1<0的首項(xiàng)為SKIPIF1<0,公差為SKIPIF1<0,則對(duì)于A,由數(shù)列SKIPIF1<0是等差數(shù)列及SKIPIF1<0,所以可取SKIPIF1<0,所以SKIPIF1<0不成立,故A正確;對(duì)于B,由數(shù)列SKIPIF1<0是等差數(shù)列,所以SKIPIF1<0,所以SKIPIF1<0恒成立,故B不正確;對(duì)于C,由數(shù)列SKIPIF1<0是等差數(shù)列,SKIPIF1<0可取SKIPIF1<0,所以SKIPIF1<0不成立,故C正確;對(duì)于D,由數(shù)列SKIPIF1<0是等差數(shù)列,得SKIPIF1<0,無(wú)論SKIPIF1<0為何值,均有SKIPIF1<0所以若SKIPIF1<0,則SKIPIF1<0恒不成立,故D正確.故選:ACD.10.(2022·江蘇·模擬預(yù)測(cè))已知等差數(shù)列SKIPIF1<0的公差不為0,SKIPIF1<0且SKIPIF1<0成等比數(shù)列,則(
)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】ABD【分析】先求出通項(xiàng)公式SKIPIF1<0,再利用通項(xiàng)公式和前n項(xiàng)和公式對(duì)四個(gè)選項(xiàng)一一計(jì)算,進(jìn)行判斷.【詳解】設(shè)等差數(shù)列SKIPIF1<0的公差為d(SKIPIF1<0).因?yàn)镾KIPIF1<0且SKIPIF1<0成等比數(shù)列,所以SKIPIF1<0.解得:SKIPIF1<0,所以SKIPIF1<0.對(duì)于A:SKIPIF1<0.故A正確;對(duì)于B:因?yàn)镾KIPIF1<0,所以SKIPIF1<0.故B正確;對(duì)于C:SKIPIF1<0.故C錯(cuò)誤;對(duì)于D:因?yàn)镾KIPIF1<0,所以當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0.故D正確.故選:ABD11.(2022·遼寧大連·統(tǒng)考二模)南宋數(shù)學(xué)家楊輝所著的《詳解九章算法·商功》中出現(xiàn)了如圖所示的形狀,后人稱為“三角垛”(下圖所示的是一個(gè)4層的三角跺).“三角垛”最上層有1個(gè)球,第二層有3個(gè)球,第三層有6個(gè)球,…,設(shè)第n層有SKIPIF1<0個(gè)球,從上往下n層球的球的總數(shù)為SKIPIF1<0,則(
)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】BCD【分析】根據(jù)題意求得SKIPIF1<0,進(jìn)而可得SKIPIF1<0,利用累加法求出SKIPIF1<0即可判斷選項(xiàng)A、C;計(jì)算前7項(xiàng)的和即可判斷B;利用裂項(xiàng)相消求和法即可判斷D.【詳解】由題意得,SKIPIF1<0,以上n個(gè)式子累加可得SKIPIF1<0,又SKIPIF1<0滿足上式,所以SKIPIF1<0,故A錯(cuò)誤;則SKIPIF1<0,得SKIPIF1<0,故B正確;有SKIPIF1<0,故C正確;由SKIPIF1<0,得SKIPIF1<0,故D正確.故選:BCD.12.(2022·重慶·校聯(lián)考二模)設(shè)等差數(shù)列SKIPIF1<0前SKIPIF1<0項(xiàng)和為SKIPIF1<0,公差SKIPIF1<0,若SKIPIF1<0,則下列結(jié)論中正確的有(
)A.SKIPIF1<0 B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0取得最小值C.SKIPIF1<0 D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的最小值為29【答案】ABC【分析】根據(jù)等差數(shù)列的前n項(xiàng)和公式,結(jié)合該數(shù)列的單調(diào)性逐一判斷即可.【詳解】解:根據(jù)題意,由SKIPIF1<0.故A正確;因?yàn)镾KIPIF1<0,故當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0或SKIPIF1<0時(shí),SKIPIF1<0取得最小值,故B正確;由于SKIPIF1<0,故C正確;因?yàn)镾KIPIF1<0,SKIPIF1<0,所以由SKIPIF1<0,可得:SKIPIF1<0SKIPIF1<0,因此n的最小值為SKIPIF1<0,故D錯(cuò)誤.故選:ABC
三、填空題:本大題共4小題,每小題5分,共20分.把答案填在答題卡中的橫線上.13.(2022·陜西咸陽(yáng)·武功縣普集高級(jí)中學(xué)統(tǒng)考模擬預(yù)測(cè))已知等比數(shù)列SKIPIF1<0的公比為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0______【答案】2【分析】利用等比數(shù)列的通項(xiàng)公式求解即可.【詳解】因?yàn)榈缺葦?shù)列SKIPIF1<0,SKIPIF1<0,公比為SKIPIF1<0,所以由題設(shè)得SKIPIF1<0,即SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0,故答案為:214.(2018·上海虹口·統(tǒng)考二模)已知SKIPIF1<0是公比為q的等比數(shù)列,且SKIPIF1<0成等差數(shù)列,則q=_____.【答案】SKIPIF1<0或1【分析】根據(jù)給定條件,利用等差數(shù)列列方程,再解方程作答.【詳解】在等比數(shù)列SKIPIF1<0中,SKIPIF1<0成等差數(shù)列,則SKIPIF1<0,即SKIPIF1<0,而SKIPIF1<0,整理得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0或SKIPIF1<0.故答案為:SKIPIF1<0或115.(2023·江西·校聯(lián)考一模)已知等比數(shù)列SKIPIF1<0滿足:SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0的值為_(kāi)__________.【答案】SKIPIF1<0【分析】利用等比數(shù)列得性質(zhì)得出SKIPIF1<0,再將所求式子通分代入即可求得.【詳解】因?yàn)镾KIPIF1<0為等比數(shù)列,所以SKIPIF1<0,SKIPIF1<0故答案為:1016.(2022·湖南長(zhǎng)沙·長(zhǎng)沙縣第一中學(xué)??寄M預(yù)測(cè))已知等比數(shù)列{SKIPIF1<0}各項(xiàng)均為正數(shù),SKIPIF1<0,SKIPIF1<0、SKIPIF1<0為方程SKIPIF1<0(m為常數(shù))的兩根,數(shù)列{SKIPIF1<0}的前n項(xiàng)和為SKIPIF1<0,且SKIPIF1<0,求數(shù)列SKIPIF1<0的前2022項(xiàng)和為_(kāi)________.【答案】SKIPIF1<0【分析】首先根據(jù)條件求得等比數(shù)列{SKIPIF1<0}的前n項(xiàng)和為SKIPIF1<0,代入SKIPIF1<0中可看出可以通過(guò)裂項(xiàng)相消法求和.【詳解】等比數(shù)列{SKIPIF1<0}中SKIPIF1<0、SKIPIF1<0為方程SKIPIF1<0的兩根SKIPIF1<0,設(shè)數(shù)列{SKIPIF1<0}的公比為SKIPIF1<0,則SKIPIF1<0,且SKIPIF1<0又SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0∴SKIPIF1<0∴SKIPIF1<0∴數(shù)列SKIPIF1<0的前2022項(xiàng)和SKIPIF1<0,故答案為:SKIPIF1<0.
四、解答題:本大題共6小題,共70分.解答應(yīng)寫出必要的文字說(shuō)明、證明過(guò)程或演算步驟.17.(2023·四川內(nèi)江·統(tǒng)考一模)數(shù)列SKIPIF1<0滿足:SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,SKIPIF1<0為數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,若SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)把遞推關(guān)系式里的SKIPIF1<0換成SKIPIF1<0得到一個(gè)新的遞推公式,兩個(gè)遞推相減可得到.(2)裂項(xiàng)相消求和,然后求和的范圍.【詳解】(1)當(dāng)SKIPIF1<0時(shí),SKIPIF1<0SKIPIF1<0①SKIPIF1<0②②減①得:SKIPIF1<0經(jīng)檢驗(yàn)SKIPIF1<0也符合SKIPIF1<0綜上:SKIPIF1<0(2)SKIPIF1<0SKIPIF1<0又因?yàn)镾KIPIF1<0,又因?yàn)镾KIPIF1<0恒成立,即SKIPIF1<0或SKIPIF1<0所以SKIPIF1<0的范圍為SKIPIF1<018.(2023·湖南湘潭·統(tǒng)考二模)在數(shù)列SKIPIF1<0中,SKIPIF1<0.(1)求SKIPIF1<0的通項(xiàng)公式;(2)證明:SKIPIF1<0.【答案】(1)SKIPIF1<0(2)證明見(jiàn)解析【分析】(1)令SKIPIF1<0可求得SKIPIF1<0的值,令SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,兩式作差可得出SKIPIF1<0的表達(dá)式,再驗(yàn)證SKIPIF1<0的值是否滿足SKIPIF1<0的表達(dá)式,綜合可得出數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)計(jì)算得出SKIPIF1<0,利用裂項(xiàng)相消法求出數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和,即可證得結(jié)論成立.【詳解】(1)解:因?yàn)镾KIPIF1<0,①則當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,即SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,②①SKIPIF1<0②得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0也滿足SKIPIF1<0,故對(duì)任意的SKIPIF1<0,SKIPIF1<0.(2)證明:SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0SKIPIF1<0.19.(2023·湖南長(zhǎng)沙·統(tǒng)考一模)已知數(shù)列SKIPIF1<0為等差數(shù)列,數(shù)列SKIPIF1<0為等比數(shù)列,滿足SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.(1)求數(shù)列SKIPIF1<0,SKIPIF1<0的通項(xiàng)公式;(2)求數(shù)列SKIPIF1<0的前n項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0,SKIPIF1<0;(2)SKIPIF1<0.【分析】(1)由等差數(shù)列和等比數(shù)列的基本量法求得公差和公比后可得通項(xiàng)公式;(2)用錯(cuò)位相減法求數(shù)列SKIPIF1<0的和.【詳解】(1)解:設(shè)SKIPIF1<0的公差為SKIPIF1<0,SKIPIF1<0的公比為SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,聯(lián)立SKIPIF1<0,整理可得SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0.(2)解:由(1)知SKIPIF1<0,則SKIPIF1<0,①SKIPIF1<0,②①-②,得SKIPIF1<0SKIPIF1<0SKIPIF1<0.所以SKIPIF1<0.20.(2023·廣西桂林·統(tǒng)考一模)已知數(shù)列SKIPIF1<0的前n項(xiàng)和為SKIPIF1<0(1)證明:數(shù)列{SKIPIF1<0}為等差數(shù)列;(2)SKIPIF1<0,求λ的最大值.【答案】(1)證明見(jiàn)解析;(2)SKIPIF1<0.【分析】(1)由SKIPIF1<0得SKIPIF1<0的遞推關(guān)系,變形后由等差數(shù)列的定義得證;(2)由(1)求得SKIPIF1<0,從而代入已知等式后求得SKIPIF1<0得SKIPIF1<0,然后化簡(jiǎn)不等式并分離參數(shù)轉(zhuǎn)化為求函數(shù)的最值,得結(jié)論.【詳解】(1)SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,所以數(shù)列SKIPIF1<0是以SKIPIF1<0為首項(xiàng)和公差的等差數(shù);(2)由(1)知:SKIPIF1<0,所以SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,又SKIPIF1<0滿足上式,∴SKIPIF1<0,因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,記SKIPIF1<0,又SKIPIF1<0在SKIPIF1<0上單調(diào)遞減,在SKIPIF1<0上單調(diào)遞增,又因?yàn)镾KIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0的最大值為SKIPIF1<0.21.(2022·廣東廣州·統(tǒng)考一模)已知等差數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和為SKIPIF1<0,且SKIPIF1<0.(1)求數(shù)列SKIPIF1<0的通項(xiàng)公式;(2)設(shè)SKIPIF1<0,求數(shù)列SKIPIF1<0的前SKIPIF1<0項(xiàng)和SKIPIF1<0.【答案】(1)SKIPIF1<0(2)SKIPIF1<0【分析】(1)根據(jù)已知條件求得數(shù)列SKIPIF1<0的首項(xiàng)和公差,從而求得SKIPIF1<0.(2)利用錯(cuò)位相減求和法求得SKIPIF1<0.【詳解】(1)設(shè)等差數(shù)列的公差為SKIPIF1<0,依題意,SKIPIF1<0,則SKIPIF1<0所以SKIPIF1<0,解得SKIPIF1<0,所以SKIPIF1<0.(2)SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,兩式相減得SKIPIF1<0SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0.22.(2022·陜西渭南·統(tǒng)考一模)已知各項(xiàng)均為正數(shù)的數(shù)列SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 物流代理 加盟合同范例
- 建筑外架合同范例
- 福州合同范例
- 鋼筋代銷合同范例
- 香港分租合同范例
- 簡(jiǎn)版股合同范例
- 消防主機(jī)專利轉(zhuǎn)讓合同范例
- 鳳起路租房合同范例
- 圍墻包工合同范例
- 搬家及安裝合同范例
- 剛曉觀所緣緣論略講
- 雙橋靜力觸探分層統(tǒng)計(jì)及承載力表0421
- 形勢(shì)任務(wù)教育宣講材料第一講——講上情
- 八卦五行-PPT課件
- ISO8573-2測(cè)定懸浮狀油含量的試驗(yàn)方法學(xué)習(xí)資料
- 中國(guó)地質(zhì)大學(xué)(武漢)教育發(fā)展基金會(huì)籌備成立情況報(bào)告
- 薪酬管理試卷及答案
- 大學(xué)無(wú)機(jī)及分析化學(xué)----氣體練習(xí)題及答案
- 保險(xiǎn)行業(yè)新會(huì)計(jì)準(zhǔn)則實(shí)施指南征求意見(jiàn)稿
- 形式發(fā)票模板 PI模板 英文版
- 初一的最美的風(fēng)景高分的作文600字
評(píng)論
0/150
提交評(píng)論