勾股定理發(fā)展史課件_第1頁
勾股定理發(fā)展史課件_第2頁
勾股定理發(fā)展史課件_第3頁
勾股定理發(fā)展史課件_第4頁
勾股定理發(fā)展史課件_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

編輯版pppt1勾股定理的發(fā)展史李美2編輯版pppt勾股定理,是幾何學(xué)中一顆燦爛而奪目的明珠,被稱為幾何學(xué)的基石,亦大家爭相研究證明的的寵兒,古往今來,下至平民百姓,上至帝王總統(tǒng)都愿意探討和研究它的證明。它被譽(yù)為改變世界面貌的十大數(shù)學(xué)公式之一3編輯版pppt目錄4編輯版pppt一、中國勾股定理的發(fā)展

中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭,記載著一段周公向商高請教數(shù)學(xué)知識的對話:“竊聞乎大夫善數(shù)也,請問昔者包犧立周天歷度——夫天可不階而升,地不可得尺寸而度,請問數(shù)安從出?”商高曰:故折矩,以為句廣三,股修四,徑隅五。意思是:當(dāng)直角三角形的兩條直角邊分別為3(短邊)和4(長邊)時(shí),徑隅(就是弦)則為5。以后人們就簡單地把這個(gè)事實(shí)說成“勾三股四弦五”。由于勾股定理的內(nèi)容最早見于商高的話中,所以人們就把這個(gè)定理也叫作“商高定理”。

5編輯版pppt隨后在《九章算術(shù)》一書中,勾股定理得到了更加規(guī)范的一般性表達(dá)。書中的《勾股章》說;“把勾和股分別自乘,然后把它們的積加起來,再進(jìn)行開方,便可以得到弦?!?編輯版pppt我國對勾股定理的證明采取的是割補(bǔ)法,最早的形式見于公元三、四世紀(jì)趙爽的《勾股圓方圖注》.在這篇短文中,趙爽畫了一張他所謂的“弦圖”,其中每一個(gè)直角三角形稱為“朱實(shí)”,中間的一個(gè)正方形稱為“中黃實(shí)”,以弦為邊的大正方形叫“弦實(shí)”,所以,如果以a、b、c分別表示勾、股、弦之長,7編輯版pppt那么于是8編輯版pppt二、外國勾股定理的發(fā)展這棵樹漂亮嗎?如果在樹上掛上幾串彩色燈泡,再掛上些小鈴鐺、小彩球、小禮盒、小的圣誕老人,是不是更像一棵圣誕樹.也許有人會問:“它與勾股定理有什么關(guān)系嗎?”仔細(xì)看看,你會發(fā)現(xiàn),奧妙在樹干和樹枝上,整棵樹都是由下方的這個(gè)基本圖形組成的:一個(gè)直角三角形以及分別以它的每邊為一邊向外所作的正方形.這個(gè)圖形有什么作用呢?不要小看它哦!古希臘的數(shù)學(xué)家畢達(dá)哥拉斯就是利用這個(gè)圖形驗(yàn)證了勾股定理.9編輯版pppt在西方有文字記載的最早的證明是畢達(dá)哥拉斯給出的。據(jù)說當(dāng)他證明了勾股定理以后,欣喜若狂,殺牛百頭,以示慶賀。故西方亦稱勾股定理為“百牛定理”。10編輯版pppt伽菲爾德總統(tǒng)對勾股定理的證明迄今為止,關(guān)于勾股定理的證明方法已有500余種.其中,美國第二十任總統(tǒng)伽菲爾德的證法在數(shù)學(xué)史上被傳為佳話.總統(tǒng)為什么會想到去證明勾股定理呢?難道他是數(shù)學(xué)家或數(shù)學(xué)愛好者?答案是否定的.事情的經(jīng)過是這樣的:1876年一個(gè)周末的傍晚,在美國首都華盛頓的郊外,有一位中年人正在散步,欣賞黃昏的美景,他就是當(dāng)時(shí)美國俄亥俄州共和黨議員伽菲爾德.他走著走著,突然發(fā)現(xiàn)附近的一個(gè)小石凳上,有兩個(gè)小孩正在聚精會神地談?wù)撝裁矗瑫r(shí)而大聲爭論,時(shí)而小聲探討.11編輯版pppt由于好奇心驅(qū)使伽菲爾德循聲向兩個(gè)小孩走去,想搞清楚兩個(gè)小孩到底在干什么.只見一個(gè)小男孩正俯著身子用樹枝在地上畫著一個(gè)直角三角形.于是伽菲爾德便問他們在干什么?只見那個(gè)小男孩頭也不抬地說:“請問先生,如果直角三角形的兩條直角邊分別為3和4,那么斜邊長為多少呢?”伽菲爾德答到:“是5呀.”小男孩又問道:“如果兩條直角邊分別為5和7,那么這個(gè)直角三角形的斜邊長又是多少?”伽菲爾德不加思索地回答到:“那斜邊的平方一定等于5的平方加上7的平方.”12編輯版pppt小男孩又說道:“先生,你能說出其中的道理嗎?”伽菲爾德一時(shí)語塞,無法解釋了,心理很不是滋味.于是伽菲爾德不再散步,立即回家,潛心探討小男孩給他留下的難題.他經(jīng)過反復(fù)的思考與演算,終于弄清楚了其中的道理,并給出了簡潔的證明方法

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論