2025屆四川省資陽市樂至縣寶林中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第1頁
2025屆四川省資陽市樂至縣寶林中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第2頁
2025屆四川省資陽市樂至縣寶林中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第3頁
2025屆四川省資陽市樂至縣寶林中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第4頁
2025屆四川省資陽市樂至縣寶林中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

2025屆四川省資陽市樂至縣寶林中學(xué)高三下學(xué)期第六次檢測數(shù)學(xué)試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.一個由兩個圓柱組合而成的密閉容器內(nèi)裝有部分液體,小圓柱底面半徑為,大圓柱底面半徑為,如圖1放置容器時,液面以上空余部分的高為,如圖2放置容器時,液面以上空余部分的高為,則()A. B. C. D.2.已知數(shù)列的前項和為,且,,,則的通項公式()A. B. C. D.3.已知函數(shù),,若成立,則的最小值是()A. B. C. D.4.若復(fù)數(shù)滿足(是虛數(shù)單位),則的虛部為()A. B. C. D.5.單位正方體ABCD-,黑、白兩螞蟻從點A出發(fā)沿棱向前爬行,每走完一條棱稱為“走完一段”.白螞蟻爬地的路線是AA1→A1D1→‥,黑螞蟻爬行的路線是AB→BB1→‥,它們都遵循如下規(guī)則:所爬行的第i+2段與第i段所在直線必須是異面直線(iN*).設(shè)白、黑螞蟻都走完2020段后各自停止在正方體的某個頂點處,這時黑、白兩螞蟻的距離是()A.1 B. C. D.06.已知是等差數(shù)列的前項和,若,設(shè),則數(shù)列的前項和取最大值時的值為()A.2020 B.20l9 C.2018 D.20177.已知雙曲線:的左右焦點分別為,,為雙曲線上一點,為雙曲線C漸近線上一點,,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.8.設(shè),則“”是“”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件9.函數(shù)的圖象與函數(shù)的圖象的交點橫坐標(biāo)的和為()A. B. C. D.10.已知是雙曲線的左、右焦點,若點關(guān)于雙曲線漸近線的對稱點滿足(為坐標(biāo)原點),則雙曲線的漸近線方程為()A. B. C. D.11.己知拋物線的焦點為,準(zhǔn)線為,點分別在拋物線上,且,直線交于點,,垂足為,若的面積為,則到的距離為()A. B. C.8 D.612.已知三棱錐的所有頂點都在球的球面上,平面,,若球的表面積為,則三棱錐的體積的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知多項式滿足,則_________,__________.14.某校為了解家長對學(xué)校食堂的滿意情況,分別從高一、高二年級隨機抽取了20位家長的滿意度評分,其頻數(shù)分布表如下:滿意度評分分組合計高一1366420高二2655220根據(jù)評分,將家長的滿意度從低到高分為三個等級:滿意度評分評分70分70評分90評分90分滿意度等級不滿意滿意非常滿意假設(shè)兩個年級家長的評價結(jié)果相互獨立,根據(jù)所給數(shù)據(jù),以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率.現(xiàn)從高一、高二年級各隨機抽取1名家長,記事件:“高一家長的滿意度等級高于高二家長的滿意度等級”,則事件發(fā)生的概率為__________.15.若復(fù)數(shù)z滿足,其中i是虛數(shù)單位,則z的模是______.16.已知,則_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在中,,,點在線段上.(1)若,求的長;(2)若,,求的面積.18.(12分)如圖,四棱錐中,平面平面,底面為梯形.,且與均為正三角形.為的中點為重心,與相交于點.(1)求證:平面;(2)求三棱錐的體積.19.(12分)在中,內(nèi)角所對的邊分別為,已知,且.(I)求角的大?。唬á颍┤?,求面積的取值范圍.20.(12分)已知橢圓C:()的左、右焦點分別為,,離心率為,且過點.(1)求橢圓C的方程;(2)過左焦點的直線l與橢圓C交于不同的A,B兩點,若,求直線l的斜率k.21.(12分)如圖,在正三棱柱中,,,分別為,的中點.(1)求證:平面;(2)求平面與平面所成二面角銳角的余弦值.22.(10分)已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求的普通方程和的直角坐標(biāo)方程;(2)若過點的直線與交于,兩點,與交于,兩點,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

根據(jù)空余部分體積相等列出等式即可求解.【詳解】在圖1中,液面以上空余部分的體積為;在圖2中,液面以上空余部分的體積為.因為,所以.故選:B【點睛】本題考查圓柱的體積,屬于基礎(chǔ)題.2、C【解析】

利用證得數(shù)列為常數(shù)列,并由此求得的通項公式.【詳解】由,得,可得().相減得,則(),又由,,得,所以,所以為常數(shù)列,所以,故.故選:C【點睛】本小題考查數(shù)列的通項與前項和的關(guān)系等基礎(chǔ)知識;考查運算求解能力,邏輯推理能力,應(yīng)用意識.3、A【解析】分析:設(shè),則,把用表示,然后令,由導(dǎo)數(shù)求得的最小值.詳解:設(shè),則,,,∴,令,則,,∴是上的增函數(shù),又,∴當(dāng)時,,當(dāng)時,,即在上單調(diào)遞減,在上單調(diào)遞增,是極小值也是最小值,,∴的最小值是.故選A.點睛:本題易錯選B,利用導(dǎo)數(shù)法求函數(shù)的最值,解題時學(xué)生可能不會將其中求的最小值問題,通過構(gòu)造新函數(shù),轉(zhuǎn)化為求函數(shù)的最小值問題,另外通過二次求導(dǎo),確定函數(shù)的單調(diào)區(qū)間也很容易出錯.4、A【解析】

由得,然后分子分母同時乘以分母的共軛復(fù)數(shù)可得復(fù)數(shù),從而可得的虛部.【詳解】因為,所以,所以復(fù)數(shù)的虛部為.故選A.【點睛】本題考查了復(fù)數(shù)的除法運算和復(fù)數(shù)的概念,屬于基礎(chǔ)題.復(fù)數(shù)除法運算的方法是分子分母同時乘以分母的共軛復(fù)數(shù),轉(zhuǎn)化為乘法運算.5、B【解析】

根據(jù)規(guī)則,觀察黑螞蟻與白螞蟻經(jīng)過幾段后又回到起點,得到每爬1步回到起點,周期為1.計算黑螞蟻爬完2020段后實質(zhì)是到達(dá)哪個點以及計算白螞蟻爬完2020段后實質(zhì)是到達(dá)哪個點,即可計算出它們的距離.【詳解】由題意,白螞蟻爬行路線為AA1→A1D1→D1C1→C1C→CB→BA,即過1段后又回到起點,可以看作以1為周期,由,白螞蟻爬完2020段后到回到C點;同理,黑螞蟻爬行路線為AB→BB1→B1C1→C1D1→D1D→DA,黑螞蟻爬完2020段后回到D1點,所以它們此時的距離為.故選B.【點睛】本題考查多面體和旋轉(zhuǎn)體表面上的最短距離問題,考查空間想象與推理能力,屬于中等題.6、B【解析】

根據(jù)題意計算,,,計算,,,得到答案.【詳解】是等差數(shù)列的前項和,若,故,,,,故,當(dāng)時,,,,,當(dāng)時,,故前項和最大.故選:.【點睛】本題考查了數(shù)列和的最值問題,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.7、D【解析】由雙曲線的方程的左右焦點分別為,為雙曲線上的一點,為雙曲線的漸近線上的一點,且都位于第一象限,且,可知為的三等分點,且,點在直線上,并且,則,,設(shè),則,解得,即,代入雙曲線的方程可得,解得,故選D.點睛:本題考查了雙曲線的幾何性質(zhì),離心率的求法,考查了轉(zhuǎn)化思想以及運算能力,雙曲線的離心率是雙曲線最重要的幾何性質(zhì),求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據(jù)一個條件得到關(guān)于的齊次式,轉(zhuǎn)化為的齊次式,然后轉(zhuǎn)化為關(guān)于的方程(不等式),解方程(不等式),即可得(的取值范圍).8、B【解析】

先解不等式化簡兩個條件,利用集合法判斷充分必要條件即可【詳解】解不等式可得,解絕對值不等式可得,由于為的子集,據(jù)此可知“”是“”的必要不充分條件.故選:B【點睛】本題考查了必要不充分條件的判定,考查了學(xué)生數(shù)學(xué)運算,邏輯推理能力,屬于基礎(chǔ)題.9、B【解析】

根據(jù)兩個函數(shù)相等,求出所有交點的橫坐標(biāo),然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數(shù)的圖象與函數(shù)的圖象交點的橫坐標(biāo)的和,故選B.【點睛】本題主要考查三角函數(shù)的圖象及給值求角,側(cè)重考查數(shù)學(xué)建模和數(shù)學(xué)運算的核心素養(yǎng).10、B【解析】

先利用對稱得,根據(jù)可得,由幾何性質(zhì)可得,即,從而解得漸近線方程.【詳解】如圖所示:由對稱性可得:為的中點,且,所以,因為,所以,故而由幾何性質(zhì)可得,即,故漸近線方程為,故選B.【點睛】本題考查了點關(guān)于直線對稱點的知識,考查了雙曲線漸近線方程,由題意得出是解題的關(guān)鍵,屬于中檔題.11、D【解析】

作,垂足為,過點N作,垂足為G,設(shè),則,結(jié)合圖形可得,,從而可求出,進而可求得,,由的面積即可求出,再結(jié)合為線段的中點,即可求出到的距離.【詳解】如圖所示,作,垂足為,設(shè),由,得,則,.過點N作,垂足為G,則,,所以在中,,,所以,所以,在中,,所以,所以,,所以.解得,因為,所以為線段的中點,所以F到l的距離為.故選:D【點睛】本題主要考查拋物線的幾何性質(zhì)及平面幾何的有關(guān)知識,屬于中檔題.12、B【解析】

由題意畫出圖形,設(shè)球0得半徑為R,AB=x,AC=y,由球0的表面積為20π,可得R2=5,再求出三角形ABC外接圓的半徑,利用余弦定理及基本不等式求xy的最大值,代入棱錐體積公式得答案.【詳解】設(shè)球的半徑為,,,由,得.如圖:設(shè)三角形的外心為,連接,,,可得,則.在中,由正弦定理可得:,即,由余弦定理可得,,.則三棱錐的體積的最大值為.故選:.【點睛】本題考查三棱錐的外接球、三棱錐的側(cè)面積、體積,基本不等式等基礎(chǔ)知識,考查空間想象能力、邏輯思維能力、運算求解能力,考查數(shù)學(xué)轉(zhuǎn)化思想方法與數(shù)形結(jié)合的解題思想方法,是中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】∵多項式滿足∴令,得,則∴∴該多項式的一次項系數(shù)為∴∴∴令,得故答案為5,7214、0.42【解析】

高一家長的滿意度等級高于高二家長的滿意度等級有三種情況,分別求出三種情況的概率,再利用加法公式即可.【詳解】由已知,高一家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高二家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高一家長的滿意度等級高于高二家長的滿意度等級有三種情況:1.高一家長滿意,高二家長不滿意,其概率為;2.高一家長非常滿意,高二家長不滿意,其概率為;3.高一家長非常滿意,高二家長滿意,其概率為.由加法公式,知事件發(fā)生的概率為.故答案為:【點睛】本題考查獨立事件的概率,涉及到概率的加法公式,是一道中檔題.15、【解析】

先求得復(fù)數(shù),再由復(fù)數(shù)模的計算公式即得.【詳解】,,則.故答案為:【點睛】本題考查復(fù)數(shù)的四則運算和求復(fù)數(shù)的模,是基礎(chǔ)題.16、【解析】

對原方程兩邊求導(dǎo),然后令求得表達(dá)式的值.【詳解】對等式兩邊求導(dǎo),得,令,則.【點睛】本小題主要考查二項式展開式,考查利用導(dǎo)數(shù)轉(zhuǎn)化已知條件,考查賦值法,屬于中檔題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)先根據(jù)平方關(guān)系求出,再根據(jù)正弦定理即可求出;(2)分別在和中,根據(jù)正弦定理列出兩個等式,兩式相除,利用題目條件即可求出,再根據(jù)余弦定理求出,即可根據(jù)求出的面積.【詳解】(1)由,得,所以.由正弦定理得,,即,得.(2)由正弦定理,在中,,①在中,,②又,,,由得,由余弦定理得,即,解得,所以的面積.【點睛】本題主要考查正余弦定理在解三角形中的應(yīng)用,以及三角形面積公式的應(yīng)用,意在考查學(xué)生的數(shù)學(xué)運算能力,屬于基礎(chǔ)題.18、(1)見解析(2)【解析】

(1)第(1)問,連交于,連接.證明//,即證平面.(2)第(2)問,主要是利用體積變換,,求得三棱錐的體積.【詳解】(1)方法一:連交于,連接.由梯形,且,知又為的中點,為的重心,∴在中,,故//.又平面,平面,∴平面.方法二:過作交PD于N,過F作FM||AD交CD于M,連接MN,G為△PAD的重心,又ABCD為梯形,AB||CD,又由所作GN||AD,FM||AD,得//,所以GNMF為平行四邊形.因為GF||MN,(2)方法一:由平面平面,與均為正三角形,為的中點∴,,得平面,且由(1)知//平面,∴又由梯形ABCD,AB||CD,且,知又為正三角形,得,∴,得∴三棱錐的體積為.方法二:由平面平面,與均為正三角形,為的中點∴,,得平面,且由,∴而又為正三角形,得,得.∴,∴三棱錐的體積為.19、(Ⅰ);(Ⅱ)【解析】

(I)根據(jù),利用二倍角公式得到,再由輔助角公式得到,然后根據(jù)正弦函數(shù)的性質(zhì)求解.(Ⅱ)根據(jù)(I)由余弦定理得到,再利用重要不等式得到,然后由求解.【詳解】(I)因為,所以,,,或,或,因為,所以所以;(Ⅱ)由余弦定理得:,所以,所以,當(dāng)且僅當(dāng)取等號,又因為,所以,所以【點睛】本題主要考查二倍角公式,輔助角公式以及余弦定理,還考查了運算求解的能力,屬于中檔題.20、(1)(2)直線l的斜率為或【解析】

(1)根據(jù)已知列出方程組即可解得橢圓方程;(2)設(shè)直線方程,與橢圓方程聯(lián)立,轉(zhuǎn)化為,借助向量的數(shù)量積的坐標(biāo)表示,及韋達(dá)定理即可求得結(jié)果.【詳解】(1)由題意得解得故橢圓C的方程為.(2)直線l的方程為,設(shè),,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論