




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
ResearchReport
JAMESRYSEFF,BRANDONDEBRUHL,SYDNEJ.NEWBERRY
TheRootCausesofFailure
forArtificialIntelligence
ProjectsandHowThey
CanSucceed
AvoidingtheAnti-PatternsofAI
rtificialintelligence(AI)iswidelyrecognizedastechnologywiththepotentialtohavea
transformativeeffectonorganizations.1AlthoughAIwasoncereservedforadvancedtech-
nologycompanieswiththeabilitytohiretoptalentandspendmillionsofdollars,alltypes
A
oforganizationsareadoptingAItoday.Private-sectorinvestmentinAIincreased18-foldfrom2013to2022,2andonesurveyfoundthat58percentofmidsizecorporations3haddeployedatleastoneAImodeltoproduction.4Similarly,theU.S.DepartmentofDefense(DoD)isspending$1.8billioneachyearonmilitaryapplicationsforAI,andDoDleadershaveidentifiedAIasoneofthemostcrucialtechnologiestothefutureofwarfare.5
AIisalreadymakingimpactsacrossawidevarietyofindustries.Pharmaceuticalcompaniesareusingittoacceleratethepaceandsuccessrateofdrugdevelopment.6Retailers,suchasWalmart,aredeployingAIforpredictiveanalyticssothattheyknowwhentorestockinventoryandhowtooptimizetheirend-to-endsupplychains.7Finally,inthedefenserealm,AIispilotingfighterjets,8detecting
enemysubmarines,9andimprovingcommanders’awarenessofthebattlefield.10Theseexamplesdem-onstratetherelevanceofAItoorganizationsinavarietyofindustriesandforavarietyofusecases.
However,despitethepromiseandhypearoundAI,manyorganizationsarestrugglingto
deliverworkingAIapplications.Onesurveyfoundthatonly14percentoforganizationsrespondedthattheywerefullyreadytoadoptAI,eventhough84percentofbusinessleadersreportedthat
theybelievethatAIwillhaveasignificantimpactontheirbusiness.11Managersanddirectorsfindthemselvesunderenormouspressuretodosomething—anything—withAItodemonstratetotheirsuperiorsthattheyarekeepingupwiththerapidadvanceoftechnology.12Buttoomanymanagershavelittleunderstandingofhowtotranslatethisdesireintoaction.Bysomeestimates,morethan80percentofAIprojectsfail.13Thisistwicethealready-highrateoffailureincorporateinformationtechnology(IT)projectsthatdonotinvolveAI.14
SUMMARY
2
Background
Althoughleaderswidelyrecognizetheimportanceofartificialintelligence(AI),successfullyimplementingAI
projectsremainsaseriouschallenge.aAccordingtoonesurvey,84percentofbusinessleadersrespondedthattheybelievethatAIwillhaveasignificantimpactontheirbusiness,and97percentofbusinessleadersreportedthattheurgencytodeployAI-poweredtechnologieshasincreased.bDespitethis,thesamesurveyfoundthat
only14percentoforganizationsrespondedthattheywerefullyreadytointegrateAIintotheirbusinesses.
Bysomeestimates,morethan80percentofAIprojectsfail—twicetherateoffailureforinformationtechnol-
ogyprojectsthatdonotinvolveAI.cThus,understandinghowtotranslateAI’senormouspotentialintoconcreteresultsremainsanurgentchallenge.Inthisreport,wedocumentlessonslearnedfromthosewhohavealreadyappliedAI/MLsothatU.S.DepartmentofDefenseleadershipandotherscanavoidthesefailuresormitigate
risksintheirplanning.
Approach
ToinvestigatewhyAIprojectsfail,weinterviewed65experienceddatascientistsandengineers.ParticipantshadatleastfiveyearsofexperiencebuildingAI/MLmodelsinindustryoracademia.Weselectedparticipantsacrossavarietyofcompanysizesandindustriestoensurethatthesefindingswouldbebroadlyrepresentative.Theoutputoftheseinterviewsissummarizedinthisanalysis.
Takeaways
OurinterviewshighlightedfiveleadingrootcausesofthefailureofAIprojects.First,industrystakeholdersoftenmisunderstand—ormiscommunicate—whatproblemneedstobesolvedusingAI.Toooften,trainedAImodelsaredeployedthathavebeenoptimizedforthewrongmetricsordonotfitintotheoverallbusinessworkflowandcontext.Second,manyAIprojectsfailbecausetheorganizationlacksthenecessarydatatoadequatelytrain
aneffectiveAImodel.Third,insomecases,AIprojectsfailbecausetheorganizationfocusesmoreonusingthelatestandgreatesttechnologythanonsolvingrealproblemsforitsintendedusers.Fourth,organizationsmightnothaveadequateinfrastructuretomanagetheirdataanddeploycompletedAImodels,whichincreasesthe
likelihoodofprojectfailure.Finally,insomecases,AIprojectsfailbecausethetechnologyisappliedtoprob-lemsthataretoodifficultforAItosolve.AIisnotamagicwandthatcanmakeanychallengingproblemdisap-pear;insomecases,eventhemostadvancedAImodelscannotautomateawayadifficulttask.
IndustryRecommendations
Toovercometheseissues,leadersshouldconsiderthesefiveprinciplesforsuccessinAIprojects:
?Ensurethattechnicalstaffunderstandtheprojectpurposeanddomaincontext:Misunderstandingsand
miscommunicationsabouttheintentandpurposeoftheprojectarethemostcommonreasonsforAIproj-ectfailure.EnsuringeffectiveinteractionsbetweenthetechnologistsandthebusinessexpertscanbethedifferencebetweensuccessandfailureforanAIproject.
?Chooseenduringproblems:AIprojectsrequiretimeandpatiencetocomplete.BeforetheybeginanyAIproject,leadersshouldbepreparedtocommiteachproductteamtosolvingaspecificproblemforat
leastayear.IfanAIprojectisnotworthsuchalong-termcommitment,itmostlikelyisnotworthcommit-tingtoatall.
?Focusontheproblem,notthetechnology:Successfulprojectsarelaser-focusedontheproblemtobesolved,notthetechnologyusedtosolveit.ChasingthelatestandgreatestadvancesinAIfortheirownsakeisoneofthemostfrequentpathwaystofailure.
3
?Investininfrastructure:Up-frontinvestmentsininfrastructuretosupportdatagovernanceandmodel
deploymentcansubstantiallyreducethetimerequiredtocompleteAIprojectsandcanincreasethevolumeofhigh-qualitydataavailabletotraineffectiveAImodels.
?UnderstandAI’slimitations:DespiteallthehypearoundAIasatechnology,AIstillhastechnicallimitationsthatcannotalwaysbeovercome.WhenconsideringapotentialAIproject,leadersneedtoincludetechnicalexpertstoassesstheproject’sfeasibility.
AcademiaRecommendations
Toovercometheissuesdescribedbyouracademicinterviewees,leadersshouldconsiderthesetworecommendations:
?Overcomedata-collectionbarriersthroughpartnershipswithgovernment:Partnershipsbetween
academiaandgovernmentagenciescouldgiveresearchersaccesstodataoftheprovenanceneededforacademicresearch.ThefederalgovernmentshouldexpanditsinvestmentinsuchprogramsasD(theU.S.government’sopendatasite)andseektoincreasethenumberofdatasetsavailableforresearch.
?Expanddoctoralprogramsindatascienceforpractitioners:Neweracademicsoftenfeelpressuretofocusonresearchthatleadstocareersuccessasopposedtoresearchthathasthemostpotentialtosolveimportantproblems.Computerscienceanddatascienceprogramleadersshouldlearnfromdisciplines,
suchasinternationalrelations,inwhichpractitionerdoctoralprogramsoftenexistsidebysideateventhetop-rankeduniversitiestoprovidepathwaysforthemost-advancedresearcherstoapplytheirfindingstourgentproblems.
aForthisproject,wefocusedonthemachinelearning(ML)branchofAIbecausethatisthetechnologyunderpinningmostbusinessapplicationsofAItoday.ThisincludesAImodelstrainedusingsupervisedlearning,unsupervisedlearning,or
reinforcementlearningapproachesandlargelanguagemodels(LLMs).ProjectsthatsimplyusedpretrainedLLMs(some-timesknownaspromptengineering)werenotincludedinthescopeofthiswork.
bCiscoAIReadinessIndex.
cKahn,“WantYourCompany’sAIProjecttoSucceed?”
Thepurposeofthisexploratoryanalysisistohelpleadersandmanagerswithinalltypesoforga-nizationswhoarestrugglingtounderstandhow
toexecuteAIprojectsintheirorganizationavoid
someofthemostcommonreasonsforAIproject
failures.Todoso,weinterviewed65experiencedAIengineersandresearchersacrossavarietyofcom-paniesandindustries,aswellasacademia.From
theseinterviews,weidentifiedthemostfrequentlyreportedanti-patternsofAI—commonresponsestorecurringproblemsthataretypicallyineffectiveorevencounterproductive.15Wehopetohelporga-nizationsavoidmakingthesecommonmistakes
andtoprovideleadersandmanagersendeavoringtounderstandAIwithpracticaladvicetohelpthemgetstarted.
AIprojectshavetwocomponents:thetechnologyasaplatform(i.e.,thedevelopment,use,anddeploy-mentofAItocompletesomesetofbusinesstasks)andtheorganizationoftheproject(i.e.,theprocess,struc-
ture,andplaceintheoverallorganization).ThesetwoelementsenableorganizationsandAItoolstowork
togethertosolvepressingbusinessproblems.16
IT-typeprojectscanfailformanyreasonsnot
relatedtothetechnologyitself.Forexample,projectscanfailbecauseofprocessfailures(i.e.,flawsinthewaytheprojectisexecuted),interactionfailures(i.e.,problemswithhowhumansinteractwiththetech-nology),orexpectationfailures(i.e.,amisalignmentintheanticipatedvalueoftheproject).17Breakdownsinanycomponentcouldresultinaprojectfailure,
whichresultsinincreasedcostsforthesponsoring
enterprise.ThereisalargebodyofliteratureonhowITprojectsfail.However,AIseemstohavedifferentprojectcharacteristics,suchascostlylaborandcapi-talrequirementsandhighalgorithmcomplexity,thatmakethemunlikeatraditionalinformationsystem.18
Thehigh-profilenatureofAImayincreasethedesireforstakeholderstobetterunderstandwhatdrivestheriskofITprojectsrelatedtoAI.
4
Mostpriorworkonthistopichastakenoneoftwoforms.Insomecases,anindividualdatascien-tistormanagerdiscussestheirpersonalexperiencesandbeliefsaboutwhatcausesAIprojectstofail.19Inothercases,consultingfirmsconductawidespreadsurveyofITleaderstodiscusstheirexperiences
withAI.20Forexample,McKinseyhasconducted
anannualsurveyaboutAIforseveralyears.21Addi-tionally,onestudyconductedasystematicliteraturereviewandinterviewswithsixexpertstoexplorethefactorsthatmightcausegeneralAIprojectstofail.22
Ourstudydiffersfromthispriorworkinseveralways.First,wefocusontheperspectiveoftheindi-
vidualsbuildingAIapplicationsasopposedtothe
businessleadersoftheorganization.Abottom-up
approachallowsustodiscusswhyAIprojectsfail
fromthepointofviewofthepeoplewhointimatelyunderstandthespecificsofthetechnology.Second,weconductedsemistructuredinterviewsasopposedtorelyingonmultiple-choiceorshort-answersurveyquestions.Althoughtheburdenofconducting
interviewsmeansthatthesamplesizeofthisstudyissmallercomparedwiththoseofmultiple-choice
surveystudies,thisapproachallowedustoexploretheissuesraisedingreaternuanceanddepth.Finally,weconductedsubstantiallymoresemistructured
interviewswithexpertscomparedwithpriorauthorswhotookthisapproach.
Methods
Togatherdataforthisreport,weconductedsemi-
structuredinterviewswithexperiencedAIpractitio-nersinbothindustryandacademia.Duringthese
interviews,wedefinedthefailureofanAIprojectasaprojectthatwasperceivedtobeafailurebytheorga-
nization.Weincludedbothtechnicalfailuresand
businessfailureswithinthisdefinition.Eachinter-
vieweewasaskedtodiscussthetypesoffailuresthattheyperceivedtobethemostfrequentorimpactful
andwhattheybelievedtherootcausesofthesefail-ureswere.Wethenidentifiedcommonrootcauses
basedontheinterviewresponses.Theinterviews
wereconductedbetweenAugustandDecember2023.
Theapproachtakeninthisreporthasstrengthsandweaknesses.Conductinginterviewswithopen-
endedquestionsofexperienceddatascientistsandMLengineersallowedustodiscoverwhatthese
professionalsbelievearethegreatestproblemsandchallengeswhenattemptingtoexecuteAIprojects.However,becausethemajorityofourinterviewees
werenonmanagerialengineersinsteadofbusinessexecutives,theresultsmaydisproportionatelyreflecttheperspectiveofindividualswhodonotholdlead-ershippositions.Thus,theresultsmaybeskewed
towardidentifyingleadershipfailures.
IndustryParticipants
WeidentifiedpotentialindustryparticipantsusingtheLinkedInRecruitertoolandLinkedInInMail
messages.Potentialparticipantshadatleastfive
yearsofAI/MLexperienceinindustryandjobtitlesthatindicatedthattheywereeitheranindividual
contributororamanagerinthedatascienceorMLengineeringtechnicaldisciplines.23Weselected
participantstorepresentavarietyofexperiences
andbackgrounds.Inparticular,weselectedpar-
ticipantsfromdifferentcompanysizes(start-ups,
largecompanies,andmedium-sizedcompanies)andindustries(technology,healthcare,finance,retail,consulting,andothers).Industryparticipantswereoffereda$100honorariumforagreeingtotakepartina45-minuteinterview.
Atotalof379potentialindustrycandidateswereidentifiedandcontacted.Ofthese,50individuals
ultimatelyparticipatedinaninterview,represent-ingmorethan50uniqueorganizations.24Fourteenindividualssentamessagedecliningtoparticipateinthestudy;theseindividualswereremovedfromthecandidatepoolandhadnofurthercontactfromthestudyteam.25Table1illustratesthepercentagesofpotentialcandidateswhoeitherparticipatedordeclinedtoparticipateinthestudy.
Industryinterviewsusedaconsistentbatteryofquestions,whichisprovidedinAppendixA.Allinterviewswereconductedwithapromiseofanonymitytoensurethatparticipantsfeltfreetospeakcandidlyabouttheirexperiences.
5
AcademiaParticipants
Weconducted15interviewsofacademicsdrawn
fromconveniencesamplesduringconferencesandfromindividualsknowntotheresearchteam.Theseinterviewsrangedacrossschooltypes(e.g.,engi-
neeringprogramsandbusinessschools)anddegreelevels(e.g.,tenure-trackresearcher,non–tenure-trackresearcher,graduatestudent,andundergraduate
orresearchassistant).Theseinterviewsusedacon-sistentbatteryofquestions,whichispresentedin
AppendixB.Ourinterviewswereconductedwith
thepromiseofanonymitytoallownon–tenure-trackacademicresearchersandnonresearcherengineerswhosupporttheresearcheffortstohaveanopportu-nitytospeakwithoutattribution.Table2illustratestheacademiccandidateresponserates.
FindingsfromIndustryInterviews
Acrossalloftheinterviewsconductedwithexperi-encedAIpractitionersfromindustry,fivedominantrootcausesemergeddescribingwhyAIprojects
fail.Overall,intervieweesexpressedthatthemostcommonrootcauseoffailurewasthebusiness
leadershipoftheorganizationmisunderstanding
howtosettheprojectonapathwaytosuccess.Ourintervieweesalsonotedthatthesetypesoffailureshadthemostimpactontheultimateoutcomeoftheprojectcomparedwiththeotherrootcausesoffail-uretheydiscussed.
Theothernotablerootcauseoffailureidentifiedbyintervieweeswaslimitationsinthequalityand
utilityofdataavailabletotraintheAImodels.Thesetworootcauseswerecitedspontaneouslybymorethanone-halfoftheintervieweesastheprimaryrea-sonsthatAIprojectsfailedorunderperformed.
Inadditiontothemostfrequentfailurepatternscited,threeotherrootcauseswerenotedbyamean-ingfulnumberofinterviewees.26First,someinter-vieweesnotedthelackofinvestmentininfrastruc-
turetoempowertheteam.Second,someintervieweesdiscussedthedifferencebetweenthetop-downfail-urescausedbyleadershipandthebottom-upfailurescausedbyindividualcontributorsonthedatascienceteam.Finally,someintervieweesdiscussedproject
TABLE1
IndustryCandidateResponseRates
Candidate
Indicators
Pool
Accepted
Declined
Numberofcandidates
379
50
14
Percentage
100
13.2
3.7
TABLE2
AcademicCandidateResponseRates
Candidate
Indicators
Pool
Accepted
Declined
Numberofcandidates
37
15
22
Percentage
100
40.5
59.5
failurescausedbyfundamentallimitationsinwhatAIcanactuallyachieve.Whilethesefailurepatternswerecitedlessfrequentlythanthetwodominantrootcauses,theyeachwerecitedbyaone-quartertoone-thirdoftheinterviewparticipants.
Leadership-DrivenFailures
Morethananyothertypeofissue,ourintervieweesnotedthatfailuresdrivenbythedecisionsandexpec-tationsoftheorganization’sbusinessleadershipwerefarandawaythemostfrequentcausesofprojectfail-ure.Eighty-fourpercentofourintervieweescitedoneormoreoftheserootcausesastheprimaryreason
thatAIprojectswouldfail.Theseleadership-drivenfailurestookseveralforms.
OptimizingfortheWrongBusinessProblem
First,alltoooften,leadershipinstructsthedatasci-enceteamtosolvethewrongproblemwithAI.This
resultsinthedatascienceteamworkinghardfor
monthstodeliveratrainedAImodelthatmakes
littleimpactonthebusinessororganization.In
manycases,thisisduetoacommunicationbreak-downbetweenthedatascienceteamandtheleadersoftheorganization.
Fewbusinessleadershaveabackgroundindatascience;consequently,theobjectivestheysetneedtobetranslatedbythetechnicalstaffintogoalsthatcan
6
beachievedbyatrainedAImodel.Infailedprojects,eitherthebusinessleadershipdoesnotmakethem-selvesavailabletodiscusswhetherthechoicesmade
bythetechnicalteamalignwiththeirintent,ortheydonotrealizethatthemetricsmeasuringthesuccessoftheAImodeldonottrulyrepresentthemetricsofsuccessforitsintendedpurpose.Forexample,busi-nessleadersmaysaythattheyneedanMLalgorithmthattellsthemthepricetosetforaproduct—but
whattheyactuallyneedisthepricethatgivesthemthegreatestprofitmargininsteadofthepricethat
sellsthemostitems.Thedatascienceteamlacksthisbusinesscontextandthereforemightmakethewrongassumptions.Thesekindsoferrorsoftenbecome
obviousonlyafterthedatascienceteamdeliversacompletedAImodelandattemptstointegrateitintoday-to-daybusinessoperations.
UsingArtificialIntelligencetoSolveSimpleProblems
Inothercases,businessleadersdemandthatthetech-nicalteamapplyMLtoaproblemthatdoesnottrulyrequireit.Noteveryproblemiscomplexenough
torequireanMLsolution:Asoneinterviewee
explained,histeamswouldsometimesbeinstructedtoapplyAItechniquestodatasetswithahandfulofdominantcharacteristicsorpatternsthatcouldhavequicklybeencapturedbyafewsimpleif-thenrules.Thismismatchcanhappenfordifferentreasons.Insomecases,leadersunderstandAIonlyasabuzz-
wordanddonotrealizethatsimplerandcheaper
solutionsareavailable.Inothercases,seniorleaderswhoarefarremovedfromtheimplementationdetailsdemandtheuseofAIbecausetheyareconfident
thattheirbusinessareamusthavecomplexproblems
Manyleadersarenot
preparedforthetime
andcostofacquiring,cleaning,andexploringtheirorganization’sdata.
thatdemandcomplexsolutions.Regardlessofthecause,whilethesetypesofprojectsmightsucceedinanarrowsense,theyfailineffectbecausetheywerenevernecessaryinthefirstplace.
OverconfidenceinArtificialIntelligence
Additionally,manyseniorleadershaveinflated
expectationsofwhatAIcanbeexpectedtoachieve.Therapidadvancementsandimpressiveachieve-
mentsofAImodelshavegeneratedawaveofhype
aboutthetechnology.PitchesfromsalespeopleandpresentationsbyAIresearchersaddtotheperceptionthatAIcaneasilyachievealmostanything.Inreality,optimizinganAImodelforanorganization’suse
casecanbemoredifficultthanthesepresentationsmakeitappear.AImodelsdevelopedbyacademicresearchersmightnotworkeffectivelyforallofthepeculiaritiesofanorganization’sbusiness.Many
businessleadersalsodonotrealizethatAIalgo-
rithmsareinherentlyprobabilistic:EveryAImodelincorporatessomedegreeofrandomnessanduncer-tainty.Businessleaderswhoexpectrepeatabilityandcertaintycanbedisappointedwhenthemodelfailstoliveuptotheirexpectations,leadingthemtolosefaithintheAIproductandinthedatascienceteam.
UnderestimatingtheTimeCommitmentNeeded
Finally,manyinterviewees(14of50)reportedfindingthatseniorleadersoftenunderestimatedtheamount
oftimethatitwouldtaketotrainanAImodelthat
waseffectiveatsolvingtheirbusinessproblems.
Evenwhenanoff-the-shelfAImodelisavailable,ithasnotbeentrainedonanorganization’sdataandthusitmaynotbeimmediatelyeffectiveinsolvingthespecificbusinessproblems.Manyleadersarenotpreparedforthetimeandcostofacquiring,clean-ing,andexploringtheirorganization’sdata.They
expectAIprojectstotakeweeksinsteadofmonths
tocomplete,andtheywonderwhythedatascienceteamcannotquicklyreplicatethefantasticachieve-mentstheyhearabouteveryday.Evenworse,in
someorganizations,seniorleadersrapidlyswitch
theirprioritieseveryfewweeksormonths.Inthesecases,projectsthatareinprogresscanbediscardedbeforetheyhavetheopportunitytodemonstratereal
7
results,orcompletedprojectscanbeignoredbecausetheynolongeraddresswhatleadershipviewsasthemostimportantprioritiesofthecompany.Evenwhentheprojectissuccessful,leadersmaydirecttheteamtomoveonprematurely.Asoneintervieweeputit,
“Often,modelsaredeliveredas50percentofwhattheycouldhavebeen.”27
Bottom-Up–DrivenFailures
Incontrasttothetop-downfailurepatternsdriven
bytheorganization’sbusinessleadership,manyinter-viewees(16of50)notedadifferenttypeoffailure
patterndrivenbythedatascientistsontheteam.
Technicalstaffoftenenjoypushingtheboundariesofthepossibleandlearningnewtoolsandtechniques.Consequently,theyoftenlookforopportunitiesto
tryoutnewlydevelopedmodelsorframeworksevenwhenolder,more-establishedtoolsmightbeabetterfitforthebusinessusecase.Individualengineersanddatascientistsalsohaveastrongincentivetobuild
uptheirexperienceusingthelatesttechnological
advancementsbecausetheseskillsarehighlydesiredinthehiringmarket.AIprojectsoftenfailwhentheyfocusonthetechnologybeingemployedinsteadoffocusingonsolvingrealproblemsfortheirintendedendusers.Whileitisimportantforanorganizationtoexperimentwithnewtechnologiesandprovideitstechnicalstaffwithopportunitiestoimprovetheir
skillsets,thisshouldbeaconsciouschoicebalancedagainsttheotherobjectivesoftheorganization.
Data-DrivenFailures
Afterleadership-drivenfailures,intervieweesidenti-fieddata-drivenfailuresasthesecondmostcommonreasonthatAIprojectsendinfailure.Thesedifficul-tiesmanifestedinanumberofways.
Manyinterviewees(30of50)discussedpersistent
issueswithdataquality.Oneintervieweenoted,80percentofAIisthedirtyworkofdataengi-neering.Youneedgoodpeopledoingthedirtywork—otherwisetheirmistakespoisonthe
algorithms.Thechallengeis,howdowecon-vincegoodpeopletodoboringwork?28
TooFewDataEngineers
Thelackofprestigeassociatedwithdataengineer-
ingactsasanadditionalbarrier:Oneinterviewee
referredtodataengineersas“theplumbersofdata
science.”29Dataengineersdothehardworkof
designingandmaintainingtheinfrastructurethat
ingests,cleans,andtransformsdataintoaformat
suitablefordatascientiststotrainmodelson.Despitethis,oftenthedatascientiststrainingtheAImodelsareseenasdoing“therealAIwork,”whiledata
engineeringislookeddownonasamenialtask.30
Thegoalformanydataengineersistogrowtheir
skillsandtransitionintotheroleofdatascientist;
consequently,someorganizationsfacehighturnoverratesinthedataengineeringgroup.Evenworse,
theseindividualstakealloftheirknowledgeabout
theorganization’sdataandinfrastructurewhentheyleave.Inorganizationsthatlackeffectivedocumen-tation,thelossofadataengineermightmeanthat
nooneknowswhichdatasetsarereliableorhowthe
meaningofadatasetmighthaveshiftedovertime.
PainstakinglyrediscoveringthatknowledgeincreasesthecostandtimerequiredtocompleteanAIproject,whichincreasesthelikelihoodthatleadershipwill
loseinterestandabandonit.
LackofSuitableData
Additionally,insomecases,organizationslacktherightkindofdatatotrainAImodels.ThisfailurepatternisparticularlycommonwhenthebusinessisapplyingAIforthefirsttimeortoanewdomain.Intervieweesnotedthatbusinessleadersoften
wouldbesurprisedtolearnthattheirorganizationlackedsufficientdatatotrainAIalgorithms.Asoneintervieweeputit,“Theythinktheyhavegreatdatabecausetheygetweeklysalesreports,buttheydon’trealizethedatatheyhavecurrentlymaynotmeetitsnewpurpose.”31Inmanycases,legacydatasetswereintendedtopreservedataforcomplianceor
loggingpurposes.Unfortunately,structuringdataforanalysiscanbequitedifferent:Itoftenrequiresconsiderablecontextaboutwhythingshappened
asopposedtosimplywhathappened.Forexample,ane-commercewebsitemighthaveloggedwhat
linksusersclickon—butnotafulllistofwhatitemsappearedonthescreenwhentheuserselectedone
8
orwhatsearchqueryledtheusertoseethatiteminthefirstplace.Thismaymeanthatdifferentfieldsneedtobepreserved,ordifferentlevelsofgranular-ityandqualitymaybenecessary.Thus,evenifanorganizationhasalargequantityofhistoricaldata,thatdatamaynotbesufficienttotrainaneffectiveAIalgorith
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑耐磨材料性能與施工考核試卷
- 海洋浮標(biāo)制造考核試卷
- 地震勘探儀器的多功能一體化設(shè)計(jì)考核試卷
- 文具企業(yè)市場(chǎng)營銷網(wǎng)絡(luò)構(gòu)建考核試卷
- 漆器藝術(shù)的社會(huì)影響與評(píng)價(jià)考核試卷
- 期刊出版營銷案例分析考核試卷
- 煤炭洗選廠環(huán)境保護(hù)法規(guī)與標(biāo)準(zhǔn)執(zhí)行考核試卷
- 2025年醋酸乙烯項(xiàng)目可行性研究報(bào)告
- 2025年一級(jí)建造師《建設(shè)工程法規(guī)及相關(guān)知識(shí)》考試大綱
- 2025年通便貼項(xiàng)目可行性研究報(bào)告
- 工業(yè)園區(qū)智慧能源管理平臺(tái)建設(shè)方案 產(chǎn)業(yè)園區(qū)智慧能源管理平臺(tái)建設(shè)方案
- 《客艙安全與應(yīng)急處置》-課件:滅火設(shè)備:防護(hù)式呼吸裝置
- 《幼兒園混齡民間游戲的研究》課題研究方案
- 《脊柱腫瘤》課件
- 禮儀部計(jì)劃書
- H酒店品牌管理策略研究
- 物業(yè)費(fèi)用測(cè)算表
- S7-200-SMART-PLC-應(yīng)用教程電課件
- 無人機(jī)地形匹配導(dǎo)航
- 新人教版高中英語必修第二冊(cè)-Unit-5THE-VIRTUAL-CHOIR精美課件
- 一身邊的“雷鋒”(課件)五年級(jí)下冊(cè)綜合實(shí)踐活動(dòng)
評(píng)論
0/150
提交評(píng)論