2024-2025學年江蘇省淮安市四星級高中高三第四次聯(lián)考數(shù)學試題試卷含解析_第1頁
2024-2025學年江蘇省淮安市四星級高中高三第四次聯(lián)考數(shù)學試題試卷含解析_第2頁
2024-2025學年江蘇省淮安市四星級高中高三第四次聯(lián)考數(shù)學試題試卷含解析_第3頁
2024-2025學年江蘇省淮安市四星級高中高三第四次聯(lián)考數(shù)學試題試卷含解析_第4頁
2024-2025學年江蘇省淮安市四星級高中高三第四次聯(lián)考數(shù)學試題試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024-2025學年江蘇省淮安市四星級高中高三第四次聯(lián)考數(shù)學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,函數(shù),若函數(shù)恰有三個零點,則()A. B.C. D.2.已知三棱錐中,為的中點,平面,,,則有下列四個結論:①若為的外心,則;②若為等邊三角形,則;③當時,與平面所成的角的范圍為;④當時,為平面內一動點,若OM∥平面,則在內軌跡的長度為1.其中正確的個數(shù)是().A.1 B.1 C.3 D.43.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.4.已知雙曲線與雙曲線沒有公共點,則雙曲線的離心率的取值范圍是()A. B. C. D.5.已知函數(shù)的最小正周期為,且滿足,則要得到函數(shù)的圖像,可將函數(shù)的圖像()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度6.已知函數(shù),,,,則,,的大小關系為()A. B. C. D.7.若實數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.8.已知復數(shù)(為虛數(shù)單位)在復平面內對應的點的坐標是()A. B. C. D.9.在中,分別為所對的邊,若函數(shù)有極值點,則的范圍是()A. B.C. D.10.已知雙曲線的右焦點為,過原點的直線與雙曲線的左、右兩支分別交于兩點,延長交右支于點,若,則雙曲線的離心率是()A. B. C. D.11.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.12.若雙曲線:繞其對稱中心旋轉后可得某一函數(shù)的圖象,則的離心率等于()A. B. C.2或 D.2或二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的焦點為,過點且斜率為1的直線與拋物線交于點,以線段為直徑的圓上存在點,使得以為直徑的圓過點,則實數(shù)的取值范圍為________.14.在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當三棱錐的體積最大值為時,三棱錐的外接球的表面積為______.15.已知點M是曲線y=2lnx+x2﹣3x上一動點,當曲線在M處的切線斜率取得最小值時,該切線的方程為_______.16.已知單位向量的夾角為,則=_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)的內角A,B,C的對邊分別為a,b,c,已知,.求C;若,求,的面積18.(12分)已知函數(shù),.(1)若不等式的解集為,求的值.(2)若當時,,求的取值范圍.19.(12分)已知,如圖,曲線由曲線:和曲線:組成,其中點為曲線所在圓錐曲線的焦點,點為曲線所在圓錐曲線的焦點.(Ⅰ)若,求曲線的方程;(Ⅱ)如圖,作直線平行于曲線的漸近線,交曲線于點,求證:弦的中點必在曲線的另一條漸近線上;(Ⅲ)對于(Ⅰ)中的曲線,若直線過點交曲線于點,求面積的最大值.20.(12分)橢圓的左、右焦點分別為,橢圓上兩動點使得四邊形為平行四邊形,且平行四邊形的周長和最大面積分別為8和.(1)求橢圓的標準方程;(2)設直線與橢圓的另一交點為,當點在以線段為直徑的圓上時,求直線的方程.21.(12分)設函數(shù).(Ⅰ)討論函數(shù)的單調性;(Ⅱ)若函數(shù)有兩個極值點,求證:.22.(10分)已知圓外有一點,過點作直線.(1)當直線與圓相切時,求直線的方程;(2)當直線的傾斜角為時,求直線被圓所截得的弦長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

當時,最多一個零點;當時,,利用導數(shù)研究函數(shù)的單調性,根據(jù)單調性畫函數(shù)草圖,根據(jù)草圖可得.【詳解】當時,,得;最多一個零點;當時,,,當,即時,,在,上遞增,最多一個零點.不合題意;當,即時,令得,,函數(shù)遞增,令得,,函數(shù)遞減;函數(shù)最多有2個零點;根據(jù)題意函數(shù)恰有3個零點函數(shù)在上有一個零點,在,上有2個零點,如圖:且,解得,,.故選.遇到此類問題,不少考生會一籌莫展.由于方程中涉及兩個參數(shù),故按“一元化”想法,逐步分類討論,這一過程中有可能分類不全面、不徹底.2.C【解析】

由線面垂直的性質,結合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質可判斷②錯誤;由線面角的定義和轉化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質定理可得線面平行,可得④正確.【詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯誤;若,設與平面所成角為可得,設到平面的距離為由可得即有,當且僅當取等號.可得的最大值為,即的范圍為,③正確;取中點,的中點,連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C此題考查立體幾何中與點、線、面位置關系有關的命題的真假判斷,處理這類問題,可以用已知的定理或性質來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.3.A【解析】

由函數(shù)性質,結合特殊值驗證,通過排除法求得結果.【詳解】對于選項B,為奇函數(shù)可判斷B錯誤;對于選項C,當時,,可判斷C錯誤;對于選項D,,可知函數(shù)在第一象限的圖象無增區(qū)間,故D錯誤;故選:A.本題考查已知函數(shù)的圖象判斷解析式問題,通過函數(shù)性質及特殊值利用排除法是解決本題的關鍵,難度一般.4.C【解析】

先求得的漸近線方程,根據(jù)沒有公共點,判斷出漸近線斜率的取值范圍,由此求得離心率的取值范圍.【詳解】雙曲線的漸近線方程為,由于雙曲線與雙曲線沒有公共點,所以雙曲線的漸近線的斜率,所以雙曲線的離心率.故選:C本小題主要考查雙曲線的漸近線,考查雙曲線離心率的取值范圍的求法,屬于基礎題.5.C【解析】

依題意可得,且是的一條對稱軸,即可求出的值,再根據(jù)三角函數(shù)的平移規(guī)則計算可得;【詳解】解:由已知得,是的一條對稱軸,且使取得最值,則,,,,故選:C.本題考查三角函數(shù)的性質以及三角函數(shù)的變換規(guī)則,屬于基礎題.6.B【解析】

可判斷函數(shù)在上單調遞增,且,所以.【詳解】在上單調遞增,且,所以.故選:B本題主要考查了函數(shù)單調性的判定,指數(shù)函數(shù)與對數(shù)函數(shù)的性質,利用單調性比大小等知識,考查了學生的運算求解能力.7.B【解析】

根據(jù)所給不等式組,畫出不等式表示的可行域,將目標函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標函數(shù)化為,則將平移,平移后結合圖像可知,當經(jīng)過原點時截距最小,;當經(jīng)過時,截距最大值,,所以線性目標函數(shù)的取值范圍為,故選:B.本題考查了線性規(guī)劃的簡單應用,線性目標函數(shù)取值范圍的求法,屬于基礎題.8.A【解析】

直接利用復數(shù)代數(shù)形式的乘除運算化簡,求得的坐標得出答案.【詳解】解:,在復平面內對應的點的坐標是.故選:A.本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的代數(shù)表示法及其幾何意義,屬于基礎題.9.D【解析】試題分析:由已知可得有兩個不等實根.考點:1、余弦定理;2、函數(shù)的極值.【方法點晴】本題考查余弦定理,函數(shù)的極值,涉及函數(shù)與方程思想思想、數(shù)形結合思想和轉化化歸思想,考查邏輯思維能力、等價轉化能力、運算求解能力,綜合性較強,屬于較難題型.首先利用轉化化歸思想將原命題轉化為有兩個不等實根,從而可得.10.D【解析】

設雙曲線的左焦點為,連接,,,設,則,,,和中,利用勾股定理計算得到答案.【詳解】設雙曲線的左焦點為,連接,,,設,則,,,,根據(jù)對稱性知四邊形為矩形,中:,即,解得;中:,即,故,故.故選:.本題考查了雙曲線離心率,意在考查學生的計算能力和綜合應用能力.11.D【解析】

先根據(jù)已知條件求解出的通項公式,然后根據(jù)的單調性以及得到滿足的不等關系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數(shù)列是單調遞增數(shù)列,所以,則,化簡得,所以.故選:D.本題考查數(shù)列通項公式求解以及根據(jù)數(shù)列單調性求解參數(shù)范圍,難度一般.已知數(shù)列單調性,可根據(jù)之間的大小關系分析問題.12.C【解析】

由雙曲線的幾何性質與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,所以或,由離心率公式即可算出結果.【詳解】由雙曲線的幾何性質與函數(shù)的概念可知,此雙曲線的兩條漸近線的夾角為,又雙曲線的焦點既可在軸,又可在軸上,所以或,或.故選:C本題主要考查了雙曲線的簡單幾何性質,函數(shù)的概念,考查了分類討論的數(shù)學思想.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

由題意求出以線段AB為直徑的圓E的方程,且點D恒在圓E外,即圓E上存在點,使得,則當與圓E相切時,此時,由此列出不等式,即可求解。【詳解】由題意可得,直線的方程為,聯(lián)立方程組,可得,設,則,,設,則,,又,所以圓是以為圓心,4為半徑的圓,所以點恒在圓外.圓上存在點,使得以為直徑的圓過點,即圓上存在點,使得,設過點的兩直線分別切圓于點,要滿足題意,則,所以,整理得,解得,故實數(shù)的取值范圍為本題主要考查了直線與拋物線位置關系的應用,以及直線與圓的位置關系的應用,其中解答中準確求得圓E的方程,把圓上存在點,使得以為直徑的圓過點,轉化為圓上存在點,使得是解答的關鍵,著重考查了分析問題和解答問題的能力,屬于中檔試題。14.【解析】

根據(jù)題意作出圖象,利用三垂線定理找出二面角的平面角,再設出的長,即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長度,最后根據(jù)球的幾何性質,利用球心距,半徑,底面半徑之間的關系即可求出三棱錐的外接球的表面積.【詳解】如圖所示:過點作面,垂足為,過點作交于點,連接.則為二面角的平面角的補角,即有.∵易證面,∴,而三角形為等邊三角形,∴為的中點.設,.∴.故三棱錐的體積為當且僅當時,,即.∴三點共線.設三棱錐的外接球的球心為,半徑為.過點作于,∴四邊形為矩形.則,,,在中,,解得.三棱錐的外接球的表面積為.故答案為:.本題主要考查三棱錐的外接球的表面積的求法,涉及二面角的運用,基本不等式的應用,以及球的幾何性質的應用,意在考查學生的直觀想象能力,數(shù)學運算能力和邏輯推理能力,屬于較難題.15.【解析】

先求導數(shù)可得切線斜率,利用基本不等式可得切點橫坐標,從而可得切線方程.【詳解】,,=1時有最小值1,此時M(1,﹣2),故切線方程為:,即.故答案為:.本題主要考查導數(shù)的幾何意義,切點處的導數(shù)值等于切線的斜率是求解的關鍵,側重考查數(shù)學運算的核心素養(yǎng).16.【解析】

因為單位向量的夾角為,所以,所以==.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1).(2).【解析】

由已知利用正弦定理,同角三角函數(shù)基本關系式可求,結合范圍,可求,由已知利用二倍角的余弦函數(shù)公式可得,結合范圍,可求A,根據(jù)三角形的內角和定理即可解得C的值.由及正弦定理可得b的值,根據(jù)兩角和的正弦函數(shù)公式可求sinC的值,進而根據(jù)三角形的面積公式即可求解.【詳解】由已知可得,又由正弦定理,可得,即,,,,即,又,,或舍去,可得,.,,,由正弦定理,可得,,.本題主要考查了正弦定理,同角三角函數(shù)基本關系式,二倍角的余弦函數(shù)公式,三角形的內角和定理,兩角和的正弦函數(shù)公式,三角形的面積公式等知識在解三角形中的應用,考查了計算能力和轉化思想,屬于中檔題.18.(1);(2)【解析】試題分析:(1)求得的解集,根據(jù)集合相等,列出方程組,即可求解的值;(2)①當時,恒成立,②當時,轉化為,設,求得函數(shù)的最小值,即可求解的取值范圍.試題解析:(1)由,得,因為不等式的解集為,所以,故不等式可化為,解得,所以,解得.(2)①當時,恒成立,所以.②當時,可化為,設,則,所以當時,,所以.綜上,的取值范圍是.19.(Ⅰ)和.;(Ⅱ)證明見解析;(Ⅲ).【解析】

(Ⅰ)由,可得,解出即可;(Ⅱ)設點,設直線,與橢圓方程聯(lián)立可得:,利用,根與系數(shù)的關系、中點坐標公式,證明即可;(Ⅲ)由(Ⅰ)知,曲線,且,設直線的方程為:,與橢圓方程聯(lián)立可得:,利用根與系數(shù)的關系、弦長公式、三角形的面釈計算公式、基本不等式的性質,即可求解.【詳解】(Ⅰ)由題意:,,解得,則曲線的方程為:和.(Ⅱ)證明:由題意曲線的漸近線為:,設直線,則聯(lián)立,得,,解得:,又由數(shù)形結合知.設點,則,,,,,即點在直線上.(Ⅲ)由(Ⅰ)知,曲線,點,設直線的方程為:,聯(lián)立,得:,,設,,,,面積,令,,當且僅當,即時等號成立,所以面積的最大值為.本題考查了橢圓與雙曲線的標準方程及其性質、直線與橢圓的相交問題、弦長公式、三角形的面積計算公式、基本不等式的性質,考查了推理論證能力與運算求解能力,屬于難題.20.(1)(2)或【解析】

(1)根據(jù)題意計算得到,,得到橢圓方程.(2)設,聯(lián)立方程得到,根據(jù),計算得到答案.【詳解】(1)由平行四邊形的周長為8,可知,即.由平行四邊形的最大面積為,可知,又,解得.所以橢圓方程為.(2)注意到直線的斜率不為0,且過定點.設,由消得,所以,因為,所以.因為點在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論