圓的切線課件.ppt_第1頁
圓的切線課件.ppt_第2頁
圓的切線課件.ppt_第3頁
圓的切線課件.ppt_第4頁
圓的切線課件.ppt_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、王莊子學校歡迎您,圓的切線,授課教師:鄒春雨,0,dr,1,d=r,切點,切線,2,dr,交點,割線,l,d,r,l,d,r,O,l,d,r,.,A,C,B,.,.,相離,相切,相交,問題1:下雨天,轉動的雨傘上的水滴是順著傘的什么方向飛出去的?,問題2:砂輪轉動時,火花是沿著砂輪的什么方向飛出去的?,畫一個圓O及半徑OA,畫一條直線l經過O的半徑OA的外端點A,且垂直于這條半徑OA,這條直線與圓有幾個交點?,想一想,過圓0內一點作直線,這條直線與圓有怎樣的位置關系?過半徑OA上一點(A除外)能作圓O的切線嗎?過點A呢?,O,r,l,A,切線的判定定理 經過半徑的外端并且垂直于這 條半徑的直線

2、是圓的切線。, OA是半徑,OAl于A l是O的切線。,幾何符號表達:,一、切線的判定定理,判斷,1. 過半徑的外端的直線是圓的切線( ) 2. 與半徑垂直的的直線是圓的切線( ) 3. 過半徑的端點與半徑垂直的直線是圓的切線( ),利用判定定理時,要注意直線須具備以下兩個條件,缺一不可: (1)直線經過半徑的外端; (2)直線與這半徑垂直。,判斷一條直線是圓的切線,你現在會有多少種方法?,切線判定有以下三種方法: 1.利用切線的定義:與圓有唯一公共點的直線是圓的切線。 2.利用d與r的關系作判斷:當dr時直線是圓的切線。 3.利用切線的判定定理:經過半徑的外端并且垂直于這條半徑的直線是圓的切

3、線。,想一想,例1,已知:直線AB經過O上的點C,并且OA=OB,CA=CB。 求證:直線AB是O的切線。,O,B,A,C,分析:由于AB過O上的點C,所以連接OC,只要證明 ABOC即可。,證明:連結OC(如圖)。 OAOB,CACB, ABOC(三線合一) OC是O的半徑 AB是O的切線。,證明:連結OP。 AB=AC,B=C。 OB=OP,B=OPB, OPB=C。 OPAC。 PEAC, PEC=90 OPE=PEC=90 PEOP。 PE為0的切線。,如圖,ABC中,AB=AC,以AB為直徑的O交邊BC于P, PEAC于E。 求證:PE是O的切線。,基礎練習,O,A,B,C,E,P,

4、拓展例題 :如圖所示,等腰ABC,BC邊過圓心O,且滿足OB=OC,AB邊交O于點D,連結AO,并且滿足ODAB。求證:AC與O相切。,證明:過點O作OEAC于E。,ABC是等腰ABC AB=AC,又OB=OC OAB=OAC,又ODAB, OEAC ADO=AEO=90,又AO=AO AODAOE OD=OE,即OE是O的半徑 AC與O相切,基礎練習,已知:O為BAC平分線上一點,ODAB于D,以O為圓心,OD為 半徑作O。 求證:O與AC相切。,O,A,B,C,D,證明:過O作OEAC于E。 AO平分BAC,ODAB ODAB于點D OEOD OD是O的半徑 OE也是半徑 AC是O的切線。

5、,小結,(例1)與(拓展例題)的證法有何不同? (1)如果已知直線經過圓上一點,則連結這點和圓心,得到輔助半徑,再證所作半徑與這直線垂直。簡記為:有交點,連半徑,證垂直。 (2)如果已知條件中不知直線與圓是否有公共點,則過圓心作直線的垂線段為輔助線,再證垂線段長等于半徑長。簡記為:無交點,作垂直,證半徑。,能力提升 :如圖所示,已知AB是O的直徑, O過BC的中點D,且DEAC。 (1)求證:DE是O的切線。 (2)若C=30,CD=10cm,求: O的半徑。,(1)證明:連接OD,BD=CD,OB=OA,OD是BAC的中位線,ACOD,又DEAC DEOD,又OD是O的半徑 DE是O的切線,

6、能力提升 :如圖所示,已知AB是O的直徑, O過BC的中點D,且DEAC。 (2)若C=30,CD=10cm,求: O的半徑。,解:連接AD,由(1)可知,ACOD,BD=CD=10 C=ODB=30,AB是O的直徑 BDA=90,OB=OD B=ODB=30,在RtABD中, 2AD=AB,BD+AD=AB 10+AD=(2AD),AD= 即O的半徑是 cm,課堂小結,1. 判定切線的方法有哪些?,直線l,與圓有唯一公共點,與圓心的距離等于圓的半徑,經過半徑外端且垂直這條半徑,l是圓的切線,2. 常用的添輔助線方法?,直線與圓的公共點已知時,作出過公共點的半徑,再證半徑垂直于該直線。(連半徑,證垂

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論