畢業(yè)論文外文翻譯基于DSP高速無(wú)刷直流電機(jī)控制使用直流環(huán)節(jié)電壓控制.doc_第1頁(yè)
畢業(yè)論文外文翻譯基于DSP高速無(wú)刷直流電機(jī)控制使用直流環(huán)節(jié)電壓控制.doc_第2頁(yè)
畢業(yè)論文外文翻譯基于DSP高速無(wú)刷直流電機(jī)控制使用直流環(huán)節(jié)電壓控制.doc_第3頁(yè)
畢業(yè)論文外文翻譯基于DSP高速無(wú)刷直流電機(jī)控制使用直流環(huán)節(jié)電壓控制.doc_第4頁(yè)
畢業(yè)論文外文翻譯基于DSP高速無(wú)刷直流電機(jī)控制使用直流環(huán)節(jié)電壓控制.doc_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

畢業(yè)設(shè)計(jì)/論文外 文 文 獻(xiàn) 翻 譯院 系 機(jī)電與自動(dòng)化學(xué)院 專 業(yè) 班 級(jí) 電氣工程及其自動(dòng)化0801 姓 名 原 文 出 處 中國(guó)土木水利水電工程學(xué)刊 評(píng) 分 指 導(dǎo) 教 師 華中科技大學(xué)武昌分校2012 年 2月 22日6畢業(yè)設(shè)計(jì)/論文外文文獻(xiàn)翻譯要求:1外文文獻(xiàn)翻譯的內(nèi)容應(yīng)與畢業(yè)設(shè)計(jì)/論文課題相關(guān)。2外文文獻(xiàn)翻譯的字?jǐn)?shù):非英語(yǔ)專業(yè)學(xué)生應(yīng)完成與畢業(yè)設(shè)計(jì)/論文課題內(nèi)容相關(guān)的不少于2000漢字的外文文獻(xiàn)翻譯任務(wù)(其中,漢語(yǔ)言文學(xué)專業(yè)、藝術(shù)類專業(yè)不作要求),英語(yǔ)專業(yè)學(xué)生應(yīng)完成不少于2000漢字的二外文獻(xiàn)翻譯任務(wù)。格式按華中科技大學(xué)武昌分校本科畢業(yè)設(shè)計(jì)/論文撰寫規(guī)范的要求撰寫。3外文文獻(xiàn)翻譯附于開題報(bào)告之后:第一部分為譯文,第二部分為外文文獻(xiàn)原文,譯文與原文均需單獨(dú)編制頁(yè)碼(底端居中)并注明出處。本附件為封面,封面上不得出現(xiàn)頁(yè)碼。4外文文獻(xiàn)翻譯原文由指導(dǎo)教師指定,同一指導(dǎo)教師指導(dǎo)的學(xué)生不得選用相同的外文原文。 基于DSP高速無(wú)刷直流電機(jī)控制使用直流環(huán)節(jié)電壓控制金李康-華李明博伍中妍電氣工程部門韓國(guó)先進(jìn)的科學(xué)技術(shù)學(xué)院韓國(guó)大田一個(gè)基于DSP高速度傳感器控制無(wú)刷直流電機(jī)(無(wú)刷直流)汽車使用直流環(huán)節(jié)電壓控制方案被提出了。無(wú)刷直流電機(jī)的運(yùn)行在一個(gè)高速度范圍、驅(qū)動(dòng)系統(tǒng)可以有一個(gè)比較輕體積小,在同一輸出等級(jí)。在現(xiàn)有的無(wú)傳感器控制方案,通常采用PWM(脈寬調(diào)制)技術(shù)作為一個(gè)速度控制。然而,由于PWM技術(shù)和變頻變換不能履行獨(dú)立,明顯的變換延遲存在于高速地區(qū)。另一方面,使用的直流母線電壓控制方案,變頻器操作與方波120傳導(dǎo)速度控制是通過(guò)調(diào)節(jié)斬波直流環(huán)節(jié)逆變器的輸入電壓實(shí)現(xiàn)。利用這項(xiàng)技術(shù),因?yàn)殡妷嚎刂坪妥儞Q就可以實(shí)現(xiàn)獨(dú)立,延遲不存在運(yùn)算可以交換甚至在一個(gè)高速地區(qū)。此外,以有一個(gè)波形相位目前類似的矩形波和終端電壓更有效率的處理在位置檢測(cè)電路。實(shí)際應(yīng)用變換議題延遲的一個(gè)高速度的無(wú)傳感器控制進(jìn)行了討論。整個(gè)控制系統(tǒng)的實(shí)施應(yīng)用DSP芯片的無(wú)刷直流電機(jī)TMS320C240和有效性的比較驗(yàn)證了仿真和實(shí)驗(yàn)。關(guān)鍵詞 無(wú)刷直流電機(jī)、無(wú)傳感器控制、DSP控制。1.介紹在許多工業(yè)領(lǐng)域,需要安裝一個(gè)軸傳感器可能會(huì)大幅度增加推動(dòng)成本以及復(fù)雜的電機(jī)配置1。特別是,為電動(dòng)機(jī)建在一個(gè)完全密封壓縮機(jī)、軸傳感器是難以運(yùn)用由于傳感器可靠性降低高溫需要額外的導(dǎo)線。此外,這些傳感器,尤其是霍爾傳感器,溫度敏感,限制了電機(jī)運(yùn)行大約75以下1。一個(gè)絕對(duì)速度傳感器通常限于大約6000轉(zhuǎn)速與旋轉(zhuǎn)需要一個(gè)特殊的外部電路。同時(shí),傳感器的精度也會(huì)受到安裝的準(zhǔn)確性。要克服這些弊端,無(wú)位置傳感器無(wú)刷直流電機(jī)控制技術(shù)提出了一個(gè)1 5。有兩類位置檢測(cè)方案,即,該方法利用電機(jī)的反電勢(shì)2,該方法基于檢測(cè)間隔進(jìn)行隨心所欲的二極管3。在現(xiàn)有的無(wú)傳感器控制方案、PWM技術(shù)技術(shù)通常用于一個(gè)速度控制。然而,由于PWM技術(shù)和變頻變換不能履行獨(dú)立,明顯的變換延遲的一個(gè)高速度可能存在的區(qū)域。最近,以提高驅(qū)動(dòng)器E的效率,并提供所需的電流波形,一個(gè)傳感器控制計(jì)劃使用準(zhǔn)電流源逆變器已提出6。這樣的電路裝置被稱為一個(gè)變量直流環(huán)節(jié)逆變器7。在該方案中,逆變頻率控制供應(yīng)電流有三相矩形脈沖寬度120度及馬達(dá)速度控制電壓調(diào)節(jié)采用降壓斬波器作為降壓轉(zhuǎn)換器。然而,一些優(yōu)勢(shì)的直流母線電壓超過(guò)傳統(tǒng)的兩相PWM在高轉(zhuǎn)速傳感器控制計(jì)劃控制計(jì)劃都沒(méi)有得到解決。本文提出了一種基于DSP高速無(wú)刷直流電機(jī)無(wú)位置傳感器控制使用直流環(huán)節(jié)電壓控制方案。無(wú)刷直流電機(jī)推在一個(gè)重量輕在相同的額定功率。控制高速無(wú)刷直流電機(jī)無(wú)轉(zhuǎn)軸偵測(cè)元件傳感器、基于DSP開發(fā)利用TMS320C240控制器。使用直流母線電壓控制計(jì)劃,逆變器的操作與方波120度傳導(dǎo)間隔和速度控制是通過(guò)調(diào)節(jié)斬波直流環(huán)節(jié)逆變器的輸入電壓來(lái)實(shí)現(xiàn)。利用這項(xiàng)技術(shù),因?yàn)殡妷嚎刂坪妥儞Q就可以實(shí)現(xiàn)獨(dú)立,如運(yùn)算可以交換延遲傳統(tǒng)PWM方法二段式激勵(lì)是不存在的。甚至在一個(gè)高速地區(qū),將討論在以后的部分。轉(zhuǎn)子位置信息利用反電動(dòng)勢(shì)檢測(cè)電壓從終端電機(jī)和逆變器的開關(guān)順序的2。反電動(dòng)勢(shì)的感覺(jué)到用于集成電路和比較得到變換信號(hào)。檢測(cè)變換信號(hào)用于申請(qǐng)適當(dāng)?shù)南乱粋€(gè)序列,得到了轉(zhuǎn)速逆變器在DSP。計(jì)算速度的數(shù)字控制,控制算法和控制器的輸出應(yīng)用到斬波器。實(shí)際應(yīng)用議題變換時(shí)延的激勵(lì)方案二段式PWM高速進(jìn)行了論述,并對(duì)直流環(huán)節(jié)電壓的優(yōu)勢(shì)控制方案在高速度傳感器控制提及。整個(gè)控制系統(tǒng)的實(shí)施應(yīng)用DSP芯片的無(wú)刷直流電機(jī)TMS320C240和有效性的比較驗(yàn)證了仿真和實(shí)驗(yàn)。2、無(wú)刷直流電機(jī)的無(wú)傳感器控制一個(gè)無(wú)刷直流電機(jī)本文認(rèn)為由永磁體安裝對(duì)轉(zhuǎn)子表面和三相集中而流離失所的定子120度。定子電流勵(lì)磁方案段提供的地方只有兩三個(gè)階段都很興奮在任何緊急的時(shí)間和一階段在120年期間進(jìn)行8。這激勵(lì)方案不需要死亡的時(shí)間電力設(shè)備的發(fā)動(dòng)的軟鐵轉(zhuǎn)子,即使它沒(méi)有持續(xù)的扭矩。永磁類型都有徑向非磁化轉(zhuǎn)子。這種類型在展,可以有效進(jìn)行非全相利用得到的轉(zhuǎn)子位置信息。轉(zhuǎn)子位置信息通常得到間接檢測(cè)方法利用電機(jī)反電動(dòng)勢(shì)無(wú)刷電機(jī)無(wú)位置傳感器控制1 _4。在文獻(xiàn)2的基礎(chǔ)上,從轉(zhuǎn)子位置估計(jì)的整合反電動(dòng)勢(shì)波形。該方法是眾所周知的提供等優(yōu)點(diǎn)減少開關(guān)噪聲靈敏度和自動(dòng)調(diào)節(jié)的開關(guān)瞬間不相移30度。因此,該檢測(cè)方案本文采用。速度的信息可從衍生工具檢測(cè)信號(hào)的位置。自從變換信號(hào)輸入DSP每隔60度期內(nèi),時(shí)鐘在DSP臺(tái)TC數(shù)量和計(jì)數(shù)的期間是一個(gè)60度,機(jī)械轉(zhuǎn)子速度可計(jì)算轉(zhuǎn)速如下:在P是大量的增長(zhǎng)極。3、傳感器存在的問(wèn)題的速度控制方案在現(xiàn)有的無(wú)傳感器控制方案,二段式激勵(lì)技術(shù)是PWM(脈寬調(diào)制)通常用于一個(gè)速度控制?;诖朔椒▓?zhí)行PWM(脈寬調(diào)制),脈寬調(diào)制方案的經(jīng)典歌曲了單極和雙相性精神交換的方法。在單極開關(guān)的方法,PWM技術(shù)是疊加在那兩人中的一個(gè)主動(dòng)開關(guān)在國(guó)家,而其他開關(guān)仍在狀態(tài)。另一方面一方面,在雙極切換方法,這兩個(gè)積極執(zhí)行PWM開關(guān)在同一時(shí)間內(nèi)。自從單極開關(guān)有一個(gè)優(yōu)勢(shì)的減少開關(guān)損耗,這個(gè)方案是首選的4。此外,基于位置的脈寬調(diào)制疊加,單極開關(guān)的方法是分類為持續(xù)的階段,將相位調(diào)制,上下開關(guān)開關(guān)脈寬調(diào)制,脈寬調(diào)制。在PWM調(diào)制方式進(jìn)行的階段,每一個(gè)開關(guān)被執(zhí)行PWM技術(shù)在第一個(gè)60度程度的活躍時(shí)間和保留在國(guó)家的期間第二個(gè)60度區(qū)在間,去相PWM調(diào)制方式,反之亦然3,4。在上面的開關(guān)PWM調(diào)制方式、PWM(脈寬調(diào)制)被執(zhí)行的時(shí)候,只有在上部之一兩個(gè)活躍的開關(guān),在較低的開關(guān)PWM調(diào)制方式,反之亦然。根據(jù)基于其使用的PWM調(diào)制方式,該控制技術(shù)可能導(dǎo)致減刑延遲或者一個(gè)不規(guī)則的開關(guān)頻率的電力設(shè)備在高速度傳感器控制。圖1顯示PWM開關(guān)周期和PWM方案2相勵(lì)磁整流在瞬間之間的關(guān)系。在圖1,T年代和f年代表示PWM技術(shù)轉(zhuǎn)換期間和頻率,分別。圖1(一)說(shuō)明情況理想的變換。作為古雷中可以看出,如果運(yùn)算可以交換的瞬間同步,與去年底PWM開關(guān)期間, 可以得到一個(gè)理想的換相逆變器序列的變化沒(méi)有任何延遲。然而,由于運(yùn)算可以交換即時(shí)以同步進(jìn)行,與去年底目前PWM周期開始下一個(gè)逆變器順序圖1(b),這是一般使用方法。這個(gè)結(jié)果在一個(gè)不受歡迎的變換延遲和最大的價(jià)值這次延誤PWM技術(shù)轉(zhuǎn)換期間來(lái)。如果開關(guān)頻率被選擇作為16千赫,最高價(jià)值的變換將是62.5秒的延遲。盡管這些減刑延遲可以忽略一個(gè)速度范圍,它具有重大影響的相電流響應(yīng)和驅(qū)動(dòng)器的性能在高速度。 例如,當(dāng)一個(gè)兩極電動(dòng)機(jī)轉(zhuǎn)速為50000轉(zhuǎn)/分,60度間隔200秒。這就可以減少運(yùn)算可以交換延遲增加PWM開關(guān)頻率。然而事實(shí)上,這些開關(guān)頻率不能增加無(wú)極限,因?yàn)樵黾拥拈_關(guān)損耗。同時(shí),開關(guān)頻率的商用電力設(shè)備是少于20 kHz。因此,為了避免不良變換延遲,接下來(lái)的逆變器應(yīng)用序列一旦變換信號(hào)中斷發(fā)生。那么,現(xiàn)在的PWM周期必須終止和新型PWM周期的同步變換中斷信號(hào)必須開始了。在上部和下部開關(guān)PWM(脈寬調(diào)制)方案,這可能會(huì)得到一個(gè)不規(guī)則的開關(guān)頻率大大高于f年代高職條件下如圖1(c)。在持續(xù)的和持續(xù)相PWM方案,這種不規(guī)則的開關(guān)頻率不會(huì)發(fā)生以來(lái)階段執(zhí)行PWM不斷改變每60度間隔。因此,對(duì)正在進(jìn)行的和持續(xù)的PWM方法在圖1(c)計(jì)劃階段,可以是一個(gè)很高的速度傳感器控制的首選方式。不過(guò),仍然有一個(gè)問(wèn)題。在高速度,只有少數(shù)的PWM脈沖可以用于速度控制在60度間隔。因?yàn)橐粋€(gè)60度區(qū)間的兩極成為200秒內(nèi)每秒電機(jī)50000轉(zhuǎn)/分,如果開關(guān)頻率被選擇作為16千赫,一定數(shù)量的PWM脈沖在60僅為3.2,導(dǎo)致不平等的PWM脈沖數(shù)3或4在60度間隔。除非解決脈沖寬度相當(dāng)高,這可能導(dǎo)致速度脈動(dòng)在穩(wěn)態(tài)和降解精度的位置信號(hào)的檢測(cè)。這個(gè)問(wèn)題比較嚴(yán)重的地區(qū)以更高的速度,可以有效克服,通過(guò)控制電壓和頻率直流環(huán)節(jié)電壓獨(dú)立的控制方案。圖1 PWM開關(guān)周期之間的關(guān)系和運(yùn)算可以交換即時(shí):(a)理想的變換,變換(b)的情況下延遲和(c)不規(guī)則的情況下切換頻率。Electric Power Components and Systems, 30:889900, 2002Copyright c 2002 Taylor & Francis1532-5008/ 02 $12.00 + .00DO I: 10.1080/ 15325000290085190 DSP-Based High-Speed SensorlessControl for a Brushless DC Motor Using a DC Link Voltage ControlKYEONG-HWA KIMMYUNG-JOONG YOUNDepartment of Electrical EngineeringKorea Advanced Institute of Science and TechnologyTaejon, KoreaA DSP-based high speed sensorless control for a brushless DC (BLDC) motor using a DC link voltage control scheme is presented. By operating the BLDC motor in a high speed range, the drive system can have a small size and be light weight at the same output rating. In the existing sensorless control schemes, the PW M technique is generally used as a speed control. However, since the PWM and inverter commutation cannot be performed independently, a significant commutation delay may exist in a high-speed region. On the other hand, using the DC link voltage control scheme, the inverter is operated with the squarewave of 120 conduction and the speed control is achieved by regulating the DC link input voltage of the inverter through the chopper. By using this technique,since the voltage control and commutation can be achieved independently, a commutating delay does not exist even in a high speed region. Also, the phase current can have a waveform similar to the rectangular wave and the terminal voltage is more e -cient to deal with in the position detection circuits. The practical implementation issues concerning the commutation delay in a high speed sensorless control are discussed. The whole control system is implemented on a BLDC motor using DSP TMS320C240 and the eectiveness is veried through the comparative simulations and experiments.Keywords brushless DC motor, sensorless control, DSP control1. IntroductionIn many industrial elds, the installation of a shaft sensor may signi cantly increase the drive cost as well as complicate the motor configuration 1. In particular, for a motor built in a completely sealed compressor, a shaft sensor is difficult to apply due to the degradation of the sensor reliability in high temperature and the need for extra lead wires. Furthermore, these sensors, particularly Hall sensors, are temperature sensitive, limiting the operation of the motor to below about 75C 1. An absolute sensor is generally speed limited to about 6000 rpm and a resolver needs a special external circuit. Also, the sensor accuracy may be affected by the accuracy of the mounting. To overcome these drawbacks, sensorless control techniques for a BLDC motor have been proposed 1_5. There are two categories of position detection schemes, namely, the method using the back EMF of the motor 2 and themethod based on the detection of the conducting interval of free-wheeling diodes 3.In the existing sensorless control schemes, the PWM technique is generally used for a speed control. However, since the PWM and inverter commutation cannot be performed independently, a signi cant commutation delay may exist in a high speed region. Recently, to improve the drive effciency and provide the desired current waveform, a sensorless control scheme using a quasi-current source inverter has been proposed 6. Such a circuit arrangement is known as a variable DC link inverter 7.In this scheme, the inverter frequency is controlled to supply three-phase rectangular current with a pulse width of 120 and the motor voltage for the speed control is regulated by using a step-down chopper acting as a buck converter. However, some advantages of the DC-link voltage control scheme over the conventional 2-phase PWM scheme in the high speed sensorless control have not been addressed.This article presents a DSP-based high speed sensorless control for a BLDC motor using a DC link voltage control scheme. By driving the BLDC motor at high speed, the overall drive system can have a small size and a light weight at the same power rating. To control the BLDC motor at high speed without a shaft sensor, a DSP-based controller is developed using TMS320C240. Using the DC link voltage control scheme, the inverter is operated with the squarewave of 120conduction interval and the speed control is achieved by regulating the DC link input voltage of inverter through the chopper. By using this technique, since the voltage control and commutation can be achieved independently, the commutating delay such as in the conventional 2-phase excitation PWM methods does not exist even in a high speed region, which will be discussed in the later section. The rotor position information is detected using the back EMF from the terminal voltages of the motor and the switching sequence of the inverter 2. The sensed back EMF is used in the integration and comparison circuits to obtain the commutation signals. The detected commutation signals are used to apply the proper next sequence of inverter and obtain the rotational speed within a DSP. The calculated speed is controlled by a digital PI control algorithm and the controller output is applied to the chopper. The practical implementation issues concerning the commutation delay of the 2-phase excitation PWM schemes at high speed are discussed and some advantages of the DC link voltage control scheme in a high speed sensorless control are mentioned. The whole control system is implemented on a BLDC motor using DSP TMS320C240 and the eectiveness is veri ed through the comparative simulations and experiments.2. Sensorless Control of BLDC MotorA BLDC motor considered in this paper consists of permanent magnets mounted on the rotor surface and three-phase concentrated stator windings displaced by 120 . The stator currents are supplied by the 2-phase excitation scheme where only two of the three phases are excited at any instant of time and one phase is conducted during 120 period 8. This excitation scheme does not require dead time of the power devices, and furthermore, the unconducting open-phase can be usefully utilized to obtain the rotor position information. The rotor position information are generally obtained from the indirect detection method using the motor back EMF 1_4. In 2, the rotor position has been estimated from the integration of the back EMF waveform. This method is known to provide the advantages such as the reduced switching noise sensitivity and automatic adjustment of the switching instants without the phase shift of 30 degrees. Thus, this detection scheme is employed in this paper. The speed information can be obtained from the derivative of the detected position signals. Since the commutation signals are fed into a DSP every 60period, if the counter clock in DSP is TC and the number of count during 60 degrees is a, the mechanical rotor speed can be computed in rpm as follows:where P is the number of poles.3. Problems of Existing Sensorless Speed Control SchemesIn the existing sensorless control schemes, the 2-phase excitation PWM technique is generally employed for a speed control. Based on the method executing the PWM,PWM schemes can be classified as the unipolar and bipolar switching methods.In the unipolar switching method, the PWM is superimposed on one of the two active switches in on state, while the other switch remains on state. On the other hand, in the bipolar switching method, the two active switches execute the PWM at the same time. Since the unipolar switching has an advantage of the reduced switching loss, this scheme is generally preferred 4. Also, based on the position that the PWM is superimposed on, the unipolar switching method is classi ed as the on-going phase PWM, off-going phase PWM, upper switch PWM, and lower switch PWM schemes. In the on-going phase PWM scheme, each switch executes the PWM during the rst 60 degrees of active interval and is held in on state during the second 60interval, and in the off-going phase PWM scheme, vice versa 3, 4.In the upper switch PWM scheme, the PWM is executed only on the upper one of two active switches, and in the lower switch PWM scheme, vice versa. Depending on the used PWM scheme, this control technique may cause a commutation delay or an irregular switching frequency of the power devices in a high speed sensorless control.Figure 1 shows the relation between the PWM switching period and commutating instant in the 2-phase excitation PWM scheme. In Figure 1, Ts and fs denote the PWM switching period and frequency, respectively. Figure 1(a) shows a case of the ideal commutation. As can be seen in the gure, if the commutating instant is synchronized with the end of the PWM switching period, an ideal commutation can be obtained without any delay in the inverter sequence change. However,since the commutating instant depends on the rotor position, it does not usually coincide with the end of the PWM period. In this case, the commutation can be performed synchronized with the end of the present PWM period to start a next inverter sequence as Figure 1(b) , which is the normally used method. This results in an undesirable commutation delay and the maximum value of this delay becomes the PWM switching period. If the switching frequency is chosen as 16 kHz,the maximum value of the commutation delay will be 62.5 sec. Even though this commutation delay can be neglected for a medium speed range, it has significant in uences on the phase current response and drive performance at high speed since the 60-degree interval that the commutation arises in is relatively small. For example, when a 2-pole motor is rotating at 50,000 rpm, 60-degree interval becomes 200 sec. This commutating delay can be reduced by increasing the PWM switching frequency. In practice, however, the switching frequency cannot be increased without limit because of the increased switching loss. Also, the switching frequency of commercially available power devices is less than 20 kHz. Thus, to avoid an undesirable commutation delay, the next inverter sequence has to be applied as soon as the commutation signal interrupt occurs. Then, th

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論