




已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1.常用不等式:(1)(當(dāng)且僅當(dāng)ab時取“=”號)(2)(當(dāng)且僅當(dāng)ab時取“=”號)(3)(4)柯西不等式(5).2.極值定理已知都是正數(shù),則有(1)若積是定值,則當(dāng)時和有最小值;(2)若和是定值,則當(dāng)時積有最大值.推廣 已知,則有(1)若積是定值,則當(dāng)最大時,最大;當(dāng)最小時,最小.(2)若和是定值,則當(dāng)最大時, 最小;當(dāng)最小時, 最大.3.一元二次不等式,如果與同號,則其解集在兩根之外;如果與異號,則其解集在兩根之間.簡言之:同號兩根之外,異號兩根之間.;.4.含有絕對值的不等式 當(dāng)a 0時,有.或.5.無理不等式(1) .(2).(3).6.指數(shù)不等式與對數(shù)不等式 (1)當(dāng)時,; .(2)當(dāng)時,;7.斜率公式 (、).8.直線的五種方程 (1)點(diǎn)斜式 (直線過點(diǎn),且斜率為)(2)斜截式 (b為直線在y軸上的截距).(3)兩點(diǎn)式 ()(、 ().(4)截距式 (分別為直線的橫、縱截距,)(5)一般式 (其中A、B不同時為0).9.兩條直線的平行和垂直 (1)若,;.(2)若,且A1、A2、B1、B2都不為零,;10.夾角公式 (1).(,,)(2).(,).直線時,直線l1與l2的夾角是.11. 到的角公式 (1).(,,)(2).(,).直線時,直線l1到l2的角是.12四種常用直線系方程 (1)定點(diǎn)直線系方程:經(jīng)過定點(diǎn)的直線系方程為(除直線),其中是待定的系數(shù); 經(jīng)過定點(diǎn)的直線系方程為,其中是待定的系數(shù)(2)共點(diǎn)直線系方程:經(jīng)過兩直線,的交點(diǎn)的直線系方程為(除),其中是待定的系數(shù)(3)平行直線系方程:直線中當(dāng)斜率k一定而b變動時,表示平行直線系方程與直線平行的直線系方程是(),是參變量(4)垂直直線系方程:與直線 (A0,B0)垂直的直線系方程是,是參變量13.點(diǎn)到直線的距離 (點(diǎn),直線:).14. 或所表示的平面區(qū)域設(shè)直線,則或所表示的平面區(qū)域是:若,當(dāng)與同號時,表示直線的上方的區(qū)域;當(dāng)與異號時,表示直線的下方的區(qū)域.簡言之,同號在上,異號在下.若,當(dāng)與同號時,表示直線的右方的區(qū)域;當(dāng)與異號時,表示直線的左方的區(qū)域. 簡言之,同號在右,異號在左.15. 或所表示的平面區(qū)域設(shè)曲線(),則或所表示的平面區(qū)域是:所表示的平面區(qū)域上下兩部分;所表示的平面區(qū)域上下兩部分. 16. 圓的四種方程(1)圓的標(biāo)準(zhǔn)方程 .(2)圓的一般方程 (0).(3)圓的參數(shù)方程 .(4)圓的直徑式方程 (圓的直徑的端點(diǎn)是、).17. 圓系方程(1)過點(diǎn),的圓系方程是,其中是直線的方程,是待定的系數(shù)(2)過直線:與圓:的交點(diǎn)的圓系方程是,是待定的系數(shù)(3) 過圓:與圓:的交點(diǎn)的圓系方程是,是待定的系數(shù)18.點(diǎn)與圓的位置關(guān)系點(diǎn)與圓的位置關(guān)系有三種若,則點(diǎn)在圓外;點(diǎn)在圓上;點(diǎn)在圓內(nèi).19.直線與圓的位置關(guān)系直線與圓的位置關(guān)系有三種:;.其中.20.兩圓位置關(guān)系的判定方法設(shè)兩圓圓心分別為O1,O2,半徑分別為r1,r2,;.21.圓的切線方程(1)已知圓若已知切點(diǎn)在圓上,則切線只有一條,其方程是 .當(dāng)圓外時, 表示過兩個切點(diǎn)的切點(diǎn)弦方程過圓外一點(diǎn)的切線方程可設(shè)為,再利用相切條件求k,這時必有兩條切線,注意不要漏掉平行于y軸的切線斜率為k的切線方程可設(shè)為,再利用相切條件求b,必有兩條切線(2)已知圓過圓上的點(diǎn)的切線方程為;斜率為的圓的切線方程為.22.橢圓的參數(shù)方程是.23.橢圓焦半徑公式 ,.24橢圓的的內(nèi)外部(1)點(diǎn)在橢圓的內(nèi)部.(2)點(diǎn)在橢圓的外部.25. 橢圓的切線方程 (1)橢圓上一點(diǎn)處的切線方程是. (2)過橢圓外一點(diǎn)所引兩條切線的切點(diǎn)弦方程是. (3)橢圓與直線相切的條件是.26.雙曲線的焦半徑公式,.27.雙曲線的內(nèi)外部(1)點(diǎn)在雙曲線的內(nèi)部.(2)點(diǎn)在雙曲線的外部.28.雙曲線的方程與漸近線方程的關(guān)系(1)若雙曲線方程為漸近線方程:. (2)若漸近線方程為雙曲線可設(shè)為. (3)若雙曲線與有公共漸近線,可設(shè)為(,焦點(diǎn)在x軸上,焦點(diǎn)在y軸上).29. 雙曲線的切線方程 (1)雙曲線上一點(diǎn)處的切線方程是. (2)過雙曲線外一點(diǎn)所引兩條切線的切點(diǎn)弦方程是. (3)雙曲線與直線相切的條件是.30. 拋物線的焦半徑公式拋物線焦半徑.過焦點(diǎn)弦長.31.拋物線上的動點(diǎn)可設(shè)為P或 P,其中 .32.二次函數(shù)的圖象是拋物線:(1)頂點(diǎn)坐標(biāo)為;(2)焦點(diǎn)的坐標(biāo)為;(3)準(zhǔn)線方程是.33.拋物線的內(nèi)外部(1)點(diǎn)在拋物線的內(nèi)部.點(diǎn)在拋物線的外部.(2)點(diǎn)在拋物線的內(nèi)部.點(diǎn)在拋物線的外部.(3)點(diǎn)在拋物線的內(nèi)部.點(diǎn)在拋物線的外部.(4) 點(diǎn)在拋物線的內(nèi)部.點(diǎn)在拋物線的外部.34. 拋物線的切線方程(1)拋物線上一點(diǎn)處的切線方程是. (2)過拋物線外一點(diǎn)所引兩條切線的切點(diǎn)弦方程是. (3)拋物線與直線相切的條件是.35.兩個常見的曲線系方程(1)過曲線,的交點(diǎn)的曲線系方程是(為參數(shù)).(2)共焦點(diǎn)的有心圓錐曲線系方程,其中.當(dāng)時,表示橢圓; 當(dāng)時,表示雙曲線.36.直線與圓錐曲線相交的弦長公式 或(弦端點(diǎn)A,由方程 消去y得到,,為直線的傾斜角,為直線的斜率). 37.圓錐曲線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年合同制作光盤協(xié)議模板
- 2025年華南地區(qū)研發(fā)實(shí)驗(yàn)室樓梯扶手及欄桿建設(shè)勞務(wù)合同
- 2025技術(shù)引進(jìn)與設(shè)備、材料購買合同
- 2025年自然人貸款擔(dān)保合同樣本
- 《從阿里巴巴學(xué)數(shù)字化轉(zhuǎn)型》課件
- 《左心衰的概述及護(hù)》課件
- 2025版建筑工程合同示范文本
- 2025年河北省購房合同樣本
- 貨物運(yùn)輸承包合同范本標(biāo)準(zhǔn)模板
- DB12-T3022-2019-停車場電子不停車收費(fèi)系統(tǒng)應(yīng)用技術(shù)要求-天津市
- 蘇教版數(shù)學(xué)六年級下冊期中考試試卷及答案
- 2024年電工(高級技師)考前必刷必練題庫500題(含真題、必會題)
- 生日宴會祝福快閃演示模板
- 2024年青海省中考英語試卷真題(含答案解析)
- 2020中等職業(yè)學(xué)校英語課程標(biāo)準(zhǔn)
- 高標(biāo)準(zhǔn)農(nóng)田設(shè)計(jì)實(shí)施方案(技術(shù)標(biāo))
- 創(chuàng)傷失血性休克中國急診專家共識2023解讀課件
- 云計(jì)算白皮書(2024年)解讀
- 電力電子技術(shù)智慧樹知到期末考試答案章節(jié)答案2024年中國石油大學(xué)(華東)
- 2024年四川省樂山市中考地理·生物合卷試卷真題(含答案)
- 2024年內(nèi)蒙古航開城市投資建設(shè)有限責(zé)任公司招聘筆試沖刺題(帶答案解析)
評論
0/150
提交評論