版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、數(shù)學(xué)高考復(fù)習(xí)公式記憶口訣大全學(xué)習(xí)需要講究方法和技巧,用對(duì)方法做什么事情都會(huì)事半功倍。下面是 為大家整理的數(shù)學(xué)高考復(fù)習(xí)公式口訣大全,希望對(duì)大家有所 幫助!數(shù)學(xué)高考復(fù)習(xí):高中數(shù)學(xué)公式口訣大全一、集合與函數(shù)內(nèi)容子交并補(bǔ)集,還有哥指對(duì)函數(shù)。性質(zhì)奇偶與增減,觀察圖象 最明顯。復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那 定義抓。指數(shù)與對(duì)數(shù)函數(shù),兩者互為反函數(shù)。底數(shù)非 1的正數(shù),1兩邊增 減變故。函數(shù)定義域好求。分母不能等于 0,偶次方根須非負(fù),零和負(fù)數(shù) 無(wú)對(duì)數(shù);正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實(shí)數(shù)集,多種情況 求交集。兩個(gè)互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對(duì)稱,y=x是對(duì) 稱軸;
2、求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來(lái)函數(shù) 的值域。哥函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減 看正負(fù)。二、三角函數(shù)三角函數(shù)是函數(shù),象限符號(hào)坐標(biāo)注。函數(shù)圖象單位圓,周期奇偶 增減現(xiàn)。同角關(guān)系很重要,化簡(jiǎn)證明都需要。正六邊形頂點(diǎn)處,從上到下 弦切割;中心記上數(shù)字1,連結(jié)頂點(diǎn)三角形;向下三角平方和,倒數(shù)關(guān)系是 對(duì)角,頂點(diǎn)任庖緩扔錚竺媼礁s盞脊驕褪嗆茫夯蟠蠡。?nbsp;變成稅角好查表,化簡(jiǎn)證明少不了。二的一半整數(shù)倍,奇數(shù)化余偶不變,將其后者視銳角,符號(hào)原來(lái)函數(shù)判。兩角和的余弦值,化為單角 好求值,余弦積減正
3、弦積,換角變形眾公式。和差化積須同名,互余角度 變名稱。計(jì)算證明角先行,注意結(jié)構(gòu)函數(shù)名,保持基本量不變,繁難向著 簡(jiǎn)易變。逆反原則作指導(dǎo),升哥降次和差積。條件等式的證明,方程思想 指路明。萬(wàn)能公式不一般,化為有理式居先。公式順用和逆用,變形運(yùn)用7加巧用;1加余弦想余弦,1減余弦想正弦,哥開(kāi)一次角減半,升哥降次它為范;三角函數(shù)反函數(shù),實(shí)質(zhì)就是求角度,先求三角函數(shù)值,再判角取值范圍;利用直角三角形,形象直觀好換名,簡(jiǎn)單三角的方程,化為最簡(jiǎn)求解集;三、不等式解不等式的途徑,利用函數(shù)的性質(zhì)。對(duì)指無(wú)理不等式,化為有理不等式。高次向著低次代,步步轉(zhuǎn)化要等價(jià)數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。證不等式的方法,實(shí)
4、數(shù)性質(zhì)威力大。求差與 0比大小,作商和1爭(zhēng)高下。直接困難分析好,思路清晰綜合法非負(fù)常用基本式,正面難則反證法。還有重要不等式,以及數(shù)學(xué)歸納法圖形函數(shù)來(lái)幫助,畫圖建模構(gòu)造法。四、數(shù)列等差等比兩數(shù)列,通項(xiàng)公式 n項(xiàng)和。兩個(gè)有限求極限,四則運(yùn) 算順序換。數(shù)列問(wèn)題多變幻,方程化歸整體算。數(shù)列求和比較難,錯(cuò)位相消巧轉(zhuǎn)換,取長(zhǎng)補(bǔ)短高斯法,裂項(xiàng)求和公式算。歸納思想非常好,編個(gè)程序好思考:一算二看三聯(lián)想,猜測(cè)證明不可少。還有數(shù)學(xué)歸納法,證明步驟 程序化:首先驗(yàn)證再假定,從k向著k加1 ,推論過(guò)程須詳盡,歸納原理 來(lái)肯定。五、復(fù)數(shù)虛數(shù)單位i一出,數(shù)集擴(kuò)大到復(fù)數(shù)。一個(gè)復(fù)數(shù)一對(duì)數(shù),橫縱坐標(biāo) 實(shí)虛部。對(duì)應(yīng)復(fù)平面上點(diǎn),
5、原點(diǎn)與它連成箭。箭桿與x軸正向,所成便是 輻角度。箭桿的長(zhǎng)即是模,常將數(shù)形來(lái)結(jié)合。代數(shù)幾何三角式,相互轉(zhuǎn)化 試i試。代數(shù)運(yùn)算的實(shí)質(zhì),有i多項(xiàng)式運(yùn)算。i的正整數(shù)次慕,四個(gè)數(shù)值 周期現(xiàn)。一些重要的結(jié)論,熟記巧用得結(jié)果。虛實(shí)互化本領(lǐng)大,復(fù)數(shù)相等 來(lái)轉(zhuǎn)化。利用方程思想解,注意整體代換術(shù)。幾何運(yùn)算圖上看,加法平行四邊形,減法三角法則判;乘法除法的運(yùn)算,逆向順向做旋轉(zhuǎn),伸縮全年 模長(zhǎng)短。三角形式的運(yùn)算,須將輻角和模辨。利用棣莫弗公式,乘方開(kāi)方極方便。輻角運(yùn)算很奇特,和差是由積商得。四條性質(zhì)離不得,相等和模與共甄兩個(gè)不會(huì)為實(shí)數(shù),比較大小要不得。復(fù)數(shù)實(shí)數(shù)很密切,須注意本質(zhì)區(qū)別。六、排列、組合、二項(xiàng)式定理加法乘
6、法兩原理,貫穿始終的法則。與序無(wú)關(guān)是組合,要求有序是排列。兩個(gè)公式兩性質(zhì),兩種思想和方法。歸納出排列組合,應(yīng)用問(wèn)題須轉(zhuǎn)化。排列組合在一起,先選后排是常理。特殊元素和位置,首先注意多考慮。不重不漏多思考,捆綁插空是技巧。排列組合恒等式,定義證明建模試。關(guān)于二項(xiàng)式定理,中國(guó)楊輝三角形。兩條性質(zhì)兩公式,函數(shù)賦值變換式。七、立體幾何點(diǎn)線面三位一體,柱錐臺(tái)球?yàn)榇?。距離都從點(diǎn)出發(fā),角度皆為線線成。垂直平行是重點(diǎn),證明須弄清概念。線線線面和面面、三對(duì)之間循環(huán)現(xiàn)。方程思想整體求,化歸意識(shí)動(dòng)割補(bǔ)。計(jì)算之前須證明,畫好移出 的圖形。立體幾何輔助線,常用垂線和平面。射影概念很重要,對(duì)于解題 最關(guān)鍵。異面直線二面角,體積射影公式活。公理性質(zhì)三垂線,解決問(wèn)題 一大片。八、平面解析幾何有向線段直線圓,橢圓雙曲拋物線,參數(shù)方程極坐標(biāo),數(shù)形結(jié)合 稱典范。笛卡爾的觀點(diǎn)對(duì),點(diǎn)和有序?qū)崝?shù)對(duì),兩者 ;一來(lái)對(duì)應(yīng),開(kāi)創(chuàng)幾何 新途徑。兩種思想相輝映,化歸思想打前陣;都說(shuō)待定系數(shù)法,實(shí)為方程 組思想。三種類型集大成,畫出曲線求方程,給了方程作曲線,曲線位
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年城市軌道交通建設(shè)委托管理合同
- 2024工裝裝修合同范文
- 2024個(gè)人房屋裝修合同范本
- 2024年度安徽省某項(xiàng)環(huán)保設(shè)施建筑工程施工合同
- 母嬰類課件教學(xué)課件
- 2024年員工保密責(zé)任協(xié)議書
- 2024年度計(jì)算機(jī)軟硬件采購(gòu)合同
- 2024年度應(yīng)急物流服務(wù)協(xié)議
- 2024年店鋪?zhàn)赓U協(xié)議(含裝修)
- 2024年度企業(yè)咨詢服務(wù)合同(戰(zhàn)略規(guī)劃)
- 只爭(zhēng)朝夕不負(fù)韶華崗位競(jìng)聘述職報(bào)告
- 農(nóng)場(chǎng)工作制度與農(nóng)民崗位職責(zé)
- 2024年山東公務(wù)員考試行測(cè)真題及解析【完美打印版】
- 田賽裁判法與規(guī)則2
- 社區(qū)心肺復(fù)蘇術(shù)普及
- 冬棗植保知識(shí)培訓(xùn)課件
- 校園突發(fā)事件與應(yīng)急管理課件
- 計(jì)算機(jī)網(wǎng)絡(luò)技術(shù)職業(yè)生涯規(guī)劃
- DR拼接技術(shù)及常規(guī)攝片注意事項(xiàng)
- 《股票入門》課件
- 《不為人知的間歇泉》課件
評(píng)論
0/150
提交評(píng)論