




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、acute: pn diode modeling dragica vasileska and gerhard klimeck equilibrium solver: you are provided with a matlab script of an equilibrium 1d poisson equation solver for a pn-diode. please try to understand and run the code for the following doping densities: (a) na = 1016 cm-3, nd =1016 cm-3 (b) na
2、 = 1016 cm-3, nd =1018 cm-3 (c) na = 1018 cm-3, nd =1018 cm-3 for each of these cases plot the potential and electric field profiles, the electron and hole densities and the total charge densities. from these plots extract the width of the depletion region and the peak electric field. compare your s
3、imulated data with the depletion charge approximation analytical results. non-equilibrium solver: develop a one-dimensional (1d) drift-diffusion simulator for modeling pn-junctions (diodes) under forward and reverse bias conditions. include both types of carriers in your model (electrons and holes).
4、 use the finite-difference expressions for the electron and hole current continuity equations that utilize the sharfetter-gummel discretization scheme. model: silicon diode, with permittivity and intrinsic carrier concentration f/m 1005 . 1 10 sc at t=300k. in all your simulations assume that t=300k
5、. use concentration- 310 cm 105 . 1 i n dependent and field-dependent mobility models and srh generation-recombination process. assume ohmic contacts and charge neutrality at both ends to get the appropriate boundary conditions for the potential and the electron and hole concentrations. for the elec
6、tron and hole mobility use 1500 and 1000 cm2/v-s, respectively. for the srh generation-recombination, use taun0=taup0=0.1 us. to simplify your calculations, assume that the trap energy level coincides with the intrinsic level. doping: use and as a net doping of the p- and n-regions, ncm a 1016 3 ncm
7、 d 1017 3 respectively. numerical methods: use the lu decomposition method for the solution of the 1d poisson and the two 1d continuity equations for electrons and holes individually. use gummels decoupled scheme, described in the class, to solve the resultant set of coupled set of algebraic equatio
8、ns. outputs: plot the conduction band edge under equilibrium conditions (no current flow) and for va=0.625 v. plot the electron and hole densities under equilibrium conditions (no current flow) and for va=0.625 v. plot the electric field profile under equilibrium conditions (no current flow) and for
9、 va=0.625 v. vary the anode bias from 0 to 0.625 v, in voltage increments that are fraction of the va thermal voltage , to have stable convergence. plot the resulting i-v vk t q tb / characteristics. the current will be in a/unit area, since you are doing 1d modeling. check the conservation of curre
10、nt when going from the cathode to the anode, which also means conservation of particles in your system. for the calculation of the current density, use the results given in the notes. for =0.625 v, plot the position of the electron and hole quasi-fermi levels, with respect va to the equilibrium ferm
11、i level, assumed to be the reference energy level. final note: when you submit your project report, in addition to the final results, give a brief explanation of the problem you are solving with reference to the listing of your program that you need to turn in with the report. % % % % 1d poisson equ
12、ation solver for pn diodes % % % % % defining the fundamental and material constants % q = 1.602e-19; % c or j/ev kb = 1.38e-23; % j/k eps = 1.05e-12; % this includes the eps = 11.7 for si f/cm t = 300; % k ni = 1.45e10; % intrinsic carrier concentration 1/cm3 vt = kb*t/q; % ev rnc = 2.82e19; % effe
13、ctive dos of the conduction band dec = vt*log(rnc/ni); % define doping values % na = 1e18; % 1/cm3 nd = 1e18; % 1/cm3 % calculate relevant parameters for the simulation % vbi = vt*log(na*nd/(ni*ni); w = sqrt(2*eps*(na+nd)*vbi/(q*na*nd) % cm wn = w*sqrt(na/(na+nd) % cm wp = w*sqrt(nd/(na+nd) % cm won
14、e = sqrt(2*eps*vbi/(q*na) % cm e_p = q*nd*wn/eps % v/cm ldn = sqrt(eps*vt/(q*nd); ldp = sqrt(eps*vt/(q*na); ldi = sqrt(eps*vt/(q*ni); % calculate relevant parameters in an input file % % write to a file save input_params.txt na nd vbi w wn wp e_p ldn ldp %material_constants %define some material con
15、stants % setting the size of the simulation domain based % on the analytical results for the width of the depletion regions % for a simple pn-diode % x_max = 0; if(x_max wn) x_max = wn; end if(x_max ldp) dx=ldp; end dx = dx/20; % calculate the required number of grid points and renormalize dx % n_ma
16、x = x_max/dx; n_max = round(n_max); dx = dx/ldi; % renormalize lengths with ldi % set up the doping c(x) = nd(x) - na(x) that is normalized with ni % for i = 1:n_max if(i n_max/2) dop(i) = nd/ni; end end % initialize the potential based on the requirement of charge % neutrality throughout the whole
17、structure for i = 1: n_max zz = 0.5*dop(i); if(zz 0) xx = zz*(1 + sqrt(1+1/(zz*zz); elseif(zz delta_max) delta_max=xx; end %sprintf(delta_max = %d,delta_max) %k_iter = %d,k_iter, end %delta_max=max(abs(delta); % test convergence and recalculate forcing function and % central coefficient b if necessa
18、ry if(delta_max delta_acc) flag_conv = 1; else for i = 2: n_max-1 b(i) = -(2/dx2 + exp(fi(i) + exp(-fi(i); f(i) = exp(fi(i) - exp(-fi(i) - dop(i) - fi(i)*(exp(fi(i) + exp(-fi(i); end end end % write the results of the simulation in files % xx1(1) = dx*1e4; for i = 2:n_max-1 ec(i) = dec - vt*fi(i); %
19、values from the second node% ro(i) = -ni*(exp(fi(i) - exp(-fi(i) - dop(i); el_field1(i) = -(fi(i+1) - fi(i)*vt/(dx*ldi); el_field2(i) = -(fi(i+1) - fi(i-1)*vt/(2*dx*ldi); n(i) = exp(fi(i); p(i) = exp(-fi(i); xx1(i) = xx1(i-1) + dx*ldi*1e4; end ec(1) = ec(2); ec(n_max) = ec(n_max-1); xx1(n_max) = xx1(n_max-1) + dx*ldi*1e4; el_field1(1) = el_field1(2); el_field2(1) = el_field2(2); el_field1(n_max) = el_field1(n_max-1); el_field2(n_max) = el_field2(n_max-1); nf = n*ni; pf = p*ni; ro(1) = ro(2); ro(n_max) = ro(n_max-1); figure(1) plot(xx1,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- Unit11 Trees第1課時(shí)(教學(xué)設(shè)計(jì))-2023-2024學(xué)年滬教牛津版(深圳用)英語六年級(jí)上冊(cè)
- Unit 4 My family Lesson2(教學(xué)設(shè)計(jì))-2023-2024學(xué)年人教新起點(diǎn)版英語三年級(jí)下冊(cè)
- 《小商品 大學(xué)問:3 愛心義賣會(huì)》教學(xué)設(shè)計(jì)-2023-2024學(xué)年四年級(jí)下冊(cè)綜合實(shí)踐活動(dòng)滬科黔科版
- 8 這些東西哪里來 (教學(xué)設(shè)計(jì))統(tǒng)編版道德與法治四年級(jí)下冊(cè)
- Module 6 Hobbies 課時(shí)教學(xué)設(shè)計(jì) 2023-2024學(xué)年外研版英語八年級(jí)下冊(cè)
- 2 走月亮(教學(xué)設(shè)計(jì))-2024-2025學(xué)年統(tǒng)編版語文四年級(jí)上冊(cè)
- Unit 6 Section A Grammar focus -4c教學(xué)設(shè)計(jì) 2024-2025學(xué)年人教版八年級(jí)英語下冊(cè)
- 8《冀中的地道戰(zhàn)》(教學(xué)設(shè)計(jì))-2024-2025學(xué)年統(tǒng)編版語文五年級(jí)上冊(cè)
- 9小水滴的訴說(教學(xué)設(shè)計(jì))部編版道德與法治二年級(jí)下冊(cè)
- 2024秋九年級(jí)語文上冊(cè) 第五單元 18《懷疑與學(xué)問》教學(xué)設(shè)計(jì) 新人教版
- GB/T 18282.1-2025醫(yī)療保健產(chǎn)品滅菌化學(xué)指示物第1部分:通則
- 江蘇省建筑與裝飾工程計(jì)價(jià)定額(2014)電子表格版
- CCRW程序簡(jiǎn)介匯總課件
- 中醫(yī)拔罐技術(shù)課件
- 西藏自治區(qū)山南市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會(huì)明細(xì)
- 2022年菏澤市鄆城縣中醫(yī)院醫(yī)護(hù)人員招聘考試筆試題庫及答案解析
- 青樓韻語嫖經(jīng)、明代嫖經(jīng)全文-古籍
- 中小學(xué)教師職業(yè)道德規(guī)范
- 無創(chuàng)呼吸機(jī)臨床應(yīng)用護(hù)士操作手冊(cè)
- 7S管理標(biāo)準(zhǔn)-目視化管理標(biāo)準(zhǔn)
- 高填方路基施工危險(xiǎn)源辨識(shí)及風(fēng)險(xiǎn)評(píng)價(jià)
評(píng)論
0/150
提交評(píng)論