PN Diode ProjectPN結(jié)二極管項目_第1頁
PN Diode ProjectPN結(jié)二極管項目_第2頁
PN Diode ProjectPN結(jié)二極管項目_第3頁
PN Diode ProjectPN結(jié)二極管項目_第4頁
PN Diode ProjectPN結(jié)二極管項目_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、acute: pn diode modeling dragica vasileska and gerhard klimeck equilibrium solver: you are provided with a matlab script of an equilibrium 1d poisson equation solver for a pn-diode. please try to understand and run the code for the following doping densities: (a) na = 1016 cm-3, nd =1016 cm-3 (b) na

2、 = 1016 cm-3, nd =1018 cm-3 (c) na = 1018 cm-3, nd =1018 cm-3 for each of these cases plot the potential and electric field profiles, the electron and hole densities and the total charge densities. from these plots extract the width of the depletion region and the peak electric field. compare your s

3、imulated data with the depletion charge approximation analytical results. non-equilibrium solver: develop a one-dimensional (1d) drift-diffusion simulator for modeling pn-junctions (diodes) under forward and reverse bias conditions. include both types of carriers in your model (electrons and holes).

4、 use the finite-difference expressions for the electron and hole current continuity equations that utilize the sharfetter-gummel discretization scheme. model: silicon diode, with permittivity and intrinsic carrier concentration f/m 1005 . 1 10 sc at t=300k. in all your simulations assume that t=300k

5、. use concentration- 310 cm 105 . 1 i n dependent and field-dependent mobility models and srh generation-recombination process. assume ohmic contacts and charge neutrality at both ends to get the appropriate boundary conditions for the potential and the electron and hole concentrations. for the elec

6、tron and hole mobility use 1500 and 1000 cm2/v-s, respectively. for the srh generation-recombination, use taun0=taup0=0.1 us. to simplify your calculations, assume that the trap energy level coincides with the intrinsic level. doping: use and as a net doping of the p- and n-regions, ncm a 1016 3 ncm

7、 d 1017 3 respectively. numerical methods: use the lu decomposition method for the solution of the 1d poisson and the two 1d continuity equations for electrons and holes individually. use gummels decoupled scheme, described in the class, to solve the resultant set of coupled set of algebraic equatio

8、ns. outputs: plot the conduction band edge under equilibrium conditions (no current flow) and for va=0.625 v. plot the electron and hole densities under equilibrium conditions (no current flow) and for va=0.625 v. plot the electric field profile under equilibrium conditions (no current flow) and for

9、 va=0.625 v. vary the anode bias from 0 to 0.625 v, in voltage increments that are fraction of the va thermal voltage , to have stable convergence. plot the resulting i-v vk t q tb / characteristics. the current will be in a/unit area, since you are doing 1d modeling. check the conservation of curre

10、nt when going from the cathode to the anode, which also means conservation of particles in your system. for the calculation of the current density, use the results given in the notes. for =0.625 v, plot the position of the electron and hole quasi-fermi levels, with respect va to the equilibrium ferm

11、i level, assumed to be the reference energy level. final note: when you submit your project report, in addition to the final results, give a brief explanation of the problem you are solving with reference to the listing of your program that you need to turn in with the report. % % % % 1d poisson equ

12、ation solver for pn diodes % % % % % defining the fundamental and material constants % q = 1.602e-19; % c or j/ev kb = 1.38e-23; % j/k eps = 1.05e-12; % this includes the eps = 11.7 for si f/cm t = 300; % k ni = 1.45e10; % intrinsic carrier concentration 1/cm3 vt = kb*t/q; % ev rnc = 2.82e19; % effe

13、ctive dos of the conduction band dec = vt*log(rnc/ni); % define doping values % na = 1e18; % 1/cm3 nd = 1e18; % 1/cm3 % calculate relevant parameters for the simulation % vbi = vt*log(na*nd/(ni*ni); w = sqrt(2*eps*(na+nd)*vbi/(q*na*nd) % cm wn = w*sqrt(na/(na+nd) % cm wp = w*sqrt(nd/(na+nd) % cm won

14、e = sqrt(2*eps*vbi/(q*na) % cm e_p = q*nd*wn/eps % v/cm ldn = sqrt(eps*vt/(q*nd); ldp = sqrt(eps*vt/(q*na); ldi = sqrt(eps*vt/(q*ni); % calculate relevant parameters in an input file % % write to a file save input_params.txt na nd vbi w wn wp e_p ldn ldp %material_constants %define some material con

15、stants % setting the size of the simulation domain based % on the analytical results for the width of the depletion regions % for a simple pn-diode % x_max = 0; if(x_max wn) x_max = wn; end if(x_max ldp) dx=ldp; end dx = dx/20; % calculate the required number of grid points and renormalize dx % n_ma

16、x = x_max/dx; n_max = round(n_max); dx = dx/ldi; % renormalize lengths with ldi % set up the doping c(x) = nd(x) - na(x) that is normalized with ni % for i = 1:n_max if(i n_max/2) dop(i) = nd/ni; end end % initialize the potential based on the requirement of charge % neutrality throughout the whole

17、structure for i = 1: n_max zz = 0.5*dop(i); if(zz 0) xx = zz*(1 + sqrt(1+1/(zz*zz); elseif(zz delta_max) delta_max=xx; end %sprintf(delta_max = %d,delta_max) %k_iter = %d,k_iter, end %delta_max=max(abs(delta); % test convergence and recalculate forcing function and % central coefficient b if necessa

18、ry if(delta_max delta_acc) flag_conv = 1; else for i = 2: n_max-1 b(i) = -(2/dx2 + exp(fi(i) + exp(-fi(i); f(i) = exp(fi(i) - exp(-fi(i) - dop(i) - fi(i)*(exp(fi(i) + exp(-fi(i); end end end % write the results of the simulation in files % xx1(1) = dx*1e4; for i = 2:n_max-1 ec(i) = dec - vt*fi(i); %

19、values from the second node% ro(i) = -ni*(exp(fi(i) - exp(-fi(i) - dop(i); el_field1(i) = -(fi(i+1) - fi(i)*vt/(dx*ldi); el_field2(i) = -(fi(i+1) - fi(i-1)*vt/(2*dx*ldi); n(i) = exp(fi(i); p(i) = exp(-fi(i); xx1(i) = xx1(i-1) + dx*ldi*1e4; end ec(1) = ec(2); ec(n_max) = ec(n_max-1); xx1(n_max) = xx1(n_max-1) + dx*ldi*1e4; el_field1(1) = el_field1(2); el_field2(1) = el_field2(2); el_field1(n_max) = el_field1(n_max-1); el_field2(n_max) = el_field2(n_max-1); nf = n*ni; pf = p*ni; ro(1) = ro(2); ro(n_max) = ro(n_max-1); figure(1) plot(xx1,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論