初中數(shù)學知識點小結全_第1頁
初中數(shù)學知識點小結全_第2頁
初中數(shù)學知識點小結全_第3頁
初中數(shù)學知識點小結全_第4頁
初中數(shù)學知識點小結全_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、初中數(shù)學知識點總結一、基本知識(一)、數(shù)與代數(shù)a、數(shù)與式:1、有理數(shù)有理數(shù): 整數(shù):正整數(shù)、0、負整數(shù); 分數(shù):正分數(shù)、負分數(shù);數(shù)軸:畫一條水平直線,在直線上取一點表示0(原點),選取某一長度作為單位長度,規(guī)定直線上向右的方向為正方向,就得到數(shù)軸。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。如果兩個數(shù)只有符號不同,那么我們稱其中一個數(shù)為另外一個數(shù)的相反數(shù),也稱這兩個數(shù)互為相反數(shù)。在數(shù)軸上,表示互為相反數(shù)的兩個點,位于原點的兩側,并且與原點距離相等。數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大。正數(shù)大于0,負數(shù)小于0,正數(shù)大于負數(shù)。絕對值:在數(shù)軸上,一個數(shù)所對應的點與原點的距離叫做該數(shù)的絕對值。正數(shù)

2、的絕對值是他的本身、負數(shù)的絕對值是他的相反數(shù)、0的絕對值是0。兩個負數(shù)比較大小,絕對值大的反而小。有理數(shù)的運算:加法:同號相加,取相同的符號,把絕對值相加。異號相加,絕對值相等時和為0;絕對值不等時,取絕對值較大的數(shù)的符號,并用較大的絕對值減去較小的絕對值。一個數(shù)與0相加不變。減法:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。乘法:兩數(shù)相乘,同號得正,異號得負,絕對值相乘。任何數(shù)與0相乘得0。乘積為1的兩個有理數(shù)互為倒數(shù)。除法:除以一個數(shù)等于乘以這個數(shù)的倒數(shù)。 0不能作除數(shù)。乘方:求個相同因數(shù)的積的運算叫做乘方,乘方的結果叫冪,a叫底數(shù),n叫次數(shù)?;旌享樞颍合人愠朔?,再算乘除,最后算加減,有括號要先算

3、括號里的。2、實數(shù) 無理數(shù):無限不循環(huán)小數(shù)叫無理數(shù)平方根:如果一個正數(shù)的平方等于,那么這個正數(shù)就叫做的算術平方根。如果一個數(shù)的平方等于,那么這個數(shù)就叫做的平方根。一個正數(shù)有2個平方根,0的平方根為0,負數(shù)沒有平方根。求一個數(shù)的平方根運算,叫做開平方,其中叫做被開方數(shù)。立方根:如果一個數(shù)的立方等于,那么這個數(shù)就叫做的立方根。正數(shù)的立方根是正數(shù)、0的立方根是0、負數(shù)的立方根是負數(shù)。求一個數(shù)的立方根的運算叫開立方,其中叫做被開方數(shù)。實數(shù):實數(shù)分有理數(shù)和無理數(shù)。在實數(shù)范圍內,相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內的相反數(shù),倒數(shù),絕對值的意義完全一樣。每一個實數(shù)都可以在數(shù)軸上的一個點來表示。3、代數(shù)式

4、:代數(shù)式:單獨一個數(shù)或者一個字母也是代數(shù)式。合并同類項:所含字母相同,并且相同字母的指數(shù)也相同的項,叫做同類項。把同類項合并成一項就叫做合并同類項。在合并同類項時,我們把同類項的系數(shù)相加,字母和字母的指數(shù)不變。4、整式與分式整式:數(shù)與字母的乘積的代數(shù)式叫單項式,幾個單項式的和叫多項式,單項式和多項式統(tǒng)稱整式。一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。一個多項式中,次數(shù)最高的項的次數(shù)叫做這個多項式的次數(shù)。整式運算:加減運算時,如果遇到括號先去括號,再合并同類項。冪的運算: ;整式的乘法:單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。單項

5、式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。多項式與多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。公式兩條:平方差公式:;完全平方公式:整式的除法:單項式相除,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。分解因式:把一個多項式化成幾個整式的積的形式,這種變化叫做把這個多項式分解因式。方法:提公因式法、運用公式法、分組分解法、十字相乘法。分式:整式a除以整式b,如果除式b中含有分母,那么這個就是分式

6、,對于任何一個分式,分母不能為0。分式的分子與分母同乘以或除以同一個不等于0的整式,分式的值不變。分式的運算:乘法:把分子相乘的積作為積的分子,把分母相乘的積作為積的分母。除法:除以一個分式等于乘以這個分式的倒數(shù)。加減法:同分母分式相加減,分母不變,把分子相加減。異分母的分式先通分,化為同分母的分式,再加減。分式方程:分母中含有未知數(shù)的方程叫分式方程。使方程的分母為0的解稱為原方程的增根。b、方程與不等式1、方程與方程組一元一次方程:在一個方程中,只含有一個未知數(shù),并且未知數(shù)的指數(shù)是1,這樣的方程叫一元一次方程。等式兩邊同時加上或減去或乘以或除以(不為0)一個代數(shù)式,所得結果仍是等式。解一元一

7、次方程的步驟:去分母,移項,合并同類項,將未知數(shù)系數(shù)化為1。二元一次方程:含有兩個未知數(shù),并且所含未知數(shù)的項的次數(shù)都是1的方程叫做二元一次方程。適合一個二元一次方程的一組未知數(shù)的值,叫做這個二元一次方程的一個解。二元一次方程組:兩個二元一次方程組成的方程組叫做二元一次方程組。二元一次方程組中各個方程的公共解,叫做這個二元一次方程的解。解二元一次方程組的方法:代入消元法、加減消元法。一元二次方程:只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程1)一元二次方程的二次函數(shù)的關系二次函數(shù)(如拋物線),一元二次方程的解可在二次函數(shù)圖象中表示,一元二次方程也是二次函數(shù)的一個特殊情況,就是當y為0的時候

8、就構成了一元二次方程了。那如果在平面直角坐標系中表示出來,一元二次方程就是二次函數(shù)中,圖象與x軸的交點就是該方程的解。2)一元二次方程的解法:二次函數(shù)圖像有頂點:,利用他可以求出所有的一元二次方程的解(1)配方法:利用配方,使方程變?yōu)橥耆椒焦?,再開平方法去求解。(2)分解因式法:提取公因式,利用公式法、十字相乘法。把方程化為幾個乘積的形式去解(3)公式法:這方法也可以是在解一元二次方程的萬能方法了,方程的根為:3)解一元二次方程的步驟:(1)配方法的步驟:先把常數(shù)項移到方程的右邊,再把二次項的系數(shù)化為1,再同時加上1次項的系數(shù)的一半的平方,最后配成完全平方公式(2)分解因式法的步驟:把方程

9、右邊化為0,然后看看是否能用提取公因式,公式法(這里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化為乘積的形式(3)公式法:就把一元二次方程的各系數(shù)分別代入,二次項的系數(shù)為a,一次項的系數(shù)為b,常數(shù)項的系數(shù)為c4)韋達定理:韋達定理就是在一元二次方程中,二根之和,二根之積:利用韋達定理,可以求出一元二次方程中的各系數(shù),在題目中很常用5)一元一次方程根的情況:根的判別式: ,i當>0時,一元二次方程有2個不相等的實數(shù)根;ii當=0時,一元二次方程有2個相同的實數(shù)根;iii當<0時,一元二次方程沒有實數(shù)根;2、不等式與不等式組不等式:用符號“>”,或“<”,號連接

10、的式子叫不等式。不等式的兩邊都加上或減去同一個整式,不等號的方向不變。不等式的兩邊都乘以或者除以一個正數(shù),不等號方向不變。不等式的兩邊都乘以或除以同一個負數(shù),不等號方向相反。不等式的解集:能使不等式成立的未知數(shù)的值,叫做不等式的解。一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。求不等式解集的過程叫做解不等式。一元一次不等式:左右兩邊都是整式,只含有一個未知數(shù),且未知數(shù)的最高次數(shù)是1的不等式叫一元一次不等式。一元一次不等式組:關于同一個未知數(shù)的幾個一元一次不等式合在一起,就組成了一元一次不等式組。一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。求不等式組解集

11、的過程,叫做解不等式組。一元一次不等式的符號方向:在一元一次不等式中,不像等式那樣,等號是不變的,他是隨著你加或乘的運算改變。在不等式中,如果加上同一個數(shù),不等式符號不改向;例如: 在不等式中,如果減去同一個數(shù),不等式符號不改向;例如:在不等式中,如果乘以同一個正數(shù),不等號不改向;例如:在不等式中,如果乘以同一個負數(shù),不等號反向;例如:如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立; 3、函數(shù):變量:因變量,自變量。在用圖象表示變量之間的關系時,通常用水平方向的數(shù)軸x上的點表示

12、自變量,用豎直方向的數(shù)軸y上的點表示因變量。一次函數(shù):若兩個變量x、y間的關系式可以表示成:(b為常數(shù),k不等于0)的形式,則稱y是x的一次函數(shù)。當b=0時,即:稱y是x的正比例函數(shù)。一次函數(shù)的圖象:把一個函數(shù)的自變量x與對應的因變量y的值分別作為點的橫坐標與縱坐標,在直角坐標系內描出它的對應點,所有這些點組成的圖形叫做該函數(shù)的圖象。正比例函數(shù)的圖象是經過原點的一條直線。在一次函數(shù)中,當k<0,b<o,則經2、3、4象限;當k>0,b>0時,則經1、2、4象限;當k>0,b<0時,則經1、3、4象限;當k>0,b>0時,則經1、2、3象限。當k&

13、gt;0時,y的值隨x值的增大而增大,當k<0時,y的值隨x值的增大而減少。(二)空間與圖形a、圖形的認識1、點,線,面:圖形是由點,線,面構成的。面與面相交得線,線與線相交得點。點動成線,線動成面,面動成體。展開與折疊:在棱柱中,任何相鄰的兩個面的交線叫做棱,側棱是相鄰兩個側面的交線,棱柱的所有側棱長相等,棱柱的上下底面的形狀相同,側面的形狀都是長方體。n棱柱就是底面圖形有n條邊的棱柱。截一個幾何體:用一個平面去截一個圖形,截出的面叫做截面。視圖:主視圖,左視圖,俯視圖。多邊形:他們是由一些不在同一條直線上的線段依次首尾相連組成的封閉圖形?;?、扇形:由一條弧和經過這條弧的端點的兩條半徑

14、所組成的圖形叫扇形。圓可以分割成若干個扇形。2、角線:線段有兩個端點。將線段向一個方向無限延長就形成了射線。射線只有一個端點。將線段的兩端無限延長就形成了直線。直線沒有端點。經過兩點有且只有一條直線。比較長短:兩點之間的所有連線中,線段最短。兩點之間線段的長度,叫做這兩點之間的距離。角的度量與表示:角由兩條具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。一度的是一分,一分的是一秒。1°=60;1=60;角的比較:角也可以看成是由一條射線繞著他的端點旋轉而成的。一條射線繞著他的端點旋轉,當終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉,當他又和始邊重合時,所成的角叫做

15、周角。從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。平行:同一平面內,不相交的兩條直線叫做平行線。經過直線外一點,有且只有一條直線與這條直線平行。如果兩條直線都與第三條直線平行,那么這兩條直線互相平行。垂直:如果兩條直線相交成直角,那么這兩條直線互相垂直。互相垂直的兩條直線的交點叫做垂足。平面內,過一點有且只有一條直線與已知直線垂直。垂直平分線:垂直和平分一條線段的直線叫垂直平分線。垂直平分線垂直平分的一定是線段,不能是射線或直線,這根射線和直線可以無限延長有關,垂直平分線是一條直線,所以在畫垂直平分線的時候,確定了兩點后,一定要把線段穿出兩點。角平分線:

16、把一個角平分的射線叫該角的角平分線。定義中有幾個要點要注意,角的角平分線是一條射線,不是線段也不是直線,在題目中會出現(xiàn)直線,這是角平分線作為對稱軸才會用直線的,這也涉及到軌跡的問題,一個角的角平分線就是到角兩邊距離相等的點的軌跡。正方形:一組鄰邊相等的矩形是正方形性質:正方形具有平行四邊形、菱形、矩形的一切性質判定:1、對角線相等的菱形2、鄰邊相等的矩形二、基本定理1、過兩點有且只有一條直線 2、兩點之間線段最短3、同角或等角的補角相等 4、同角或等角的余角相等5、過一點有且只有一條直線和已知直線垂直6、直線外一點與直線上各點連接的所有線段中,垂線段最短7、平行公理: 經過直線外一點,有且只有

17、一條直線與這條直線平行8、如果兩條直線都和第三條直線平行,這兩條直線也互相平行9、同位角相等,兩直線平行10、內錯角相等,兩直線平行11、同旁內角互補,兩直線平行12、兩直線平行,同位角相等13、兩直線平行,內錯角相等14、兩直線平行,同旁內角互補15、定理: 三角形兩邊的和大于第三邊16、推論: 三角形兩邊的差小于第三邊17、三角形內角和定理: 三角形三個內角的和等于180°18、推論1: 直角三角形的兩個銳角互余19、推論2:三角形的一個外角等于和它不相鄰的兩個內角的和20、推論3:三角形的一個外角大于任何一個和它不相鄰的內角21、全等三角形的對應邊、對應角相等22、邊角邊公理(

18、sas): 有兩邊和它們的夾角對應相等的兩個三角形全等23、角邊角公理( asa)有兩角和它們的夾邊對應相等的兩個三角形全等24、推論(aas):有兩角和其中一角的對邊對應相等的兩個三角形全等25、邊邊邊公理(sss) :有三邊對應相等的兩個三角形全等26、斜邊、直角邊公理(hl):有斜邊和一條直角邊對應相等的兩個直角三角形全等27、定理1:在角的平分線上的點到這個角的兩邊的距離相等28、定理2:到一個角的兩邊的距離相同的點,在這個角的平分線上29、角的平分線是到角的兩邊距離相等的所有點的集合30、等腰三角形的性質定理:等腰三角形的兩個底角相等 (即等邊對等角)31、推論1:等腰三角形頂角的平

19、分線平分底邊并且垂直于底邊32、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合33、推論3 等邊三角形的各角都相等,并且每一個角都等于60°34、等腰三角形的判定定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)35、推論1:三個角都相等的三角形是等邊三角形36、推論2:有一個角等于60°的等腰三角形是等邊三角形37、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半38、直角三角形斜邊上的中線等于斜邊的一半39、定理:線段垂直平分線上的點和這條線段兩個端點的距離相等40、逆定理:和一條線段兩個端點距離相等的點

20、,在這條線段的垂直平分線上41、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合42、定理1:關于某條直線對稱的兩個圖形是全等形43、定理2:如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線44、定理3:兩個圖形關于某直線對稱,如果它們的對應線段或延長線相交,那么交點在對稱軸上45、逆定理:如果兩個圖形的對應點連線被同一條直線垂直平分,那么這兩個圖形關于這條直線對稱46、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即:47、勾股定理的逆定理:如果三角形的三邊長a、b、c有關系,那么這個三角形是直角三角形48、定理:四邊形的內角和等于360°49、

21、四邊形的外角和等于360°50、多邊形內角和定理:n邊形的內角的和等于(n-2)×180°51、推論:任意多邊的外角和等于360°52、平行四邊形性質定理1:平行四邊形的對角相等53、平行四邊形性質定理2:平行四邊形的對邊相等54、推論:夾在兩條平行線間的平行線段相等55、平行四邊形性質定理3:平行四邊形的對角線互相平分56、平行四邊形判定定理1:兩組對角分別相等的四邊形是平行四邊形57、平行四邊形判定定理2:兩組對邊分別相等的四邊形是平行四邊形58、平行四邊形判定定理3:對角線互相平分的四邊形是平行四邊形59、平行四邊形判定定理4:一組對邊平行相等的四

22、邊形是平行四邊形60、矩形性質定理1:矩形的四個角都是直角61、矩形性質定理2:矩形的對角線相等62、矩形判定定理1:有三個角是直角的四邊形是矩形63、矩形判定定理2:對角線相等的平行四邊形是矩形64、菱形性質定理1:菱形的四條邊都相等65、菱形性質定理2:菱形的對角線互相垂直,并且每一條對角線平分一組對角66、菱形面積等于對角線乘積的一半,即:67、菱形判定定理1:四邊都相等的四邊形是菱形68、菱形判定定理2:對角線互相垂直的平行四邊形是菱形69、正方形性質定理1:正方形的四個角都是直角,四條邊都相等70、正方形性質定理2:正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角71

23、、定理1:關于中心對稱的兩個圖形是全等的72、定理2:關于中心對稱的兩個圖形,對稱點連線都經過對稱中心,并且被對稱中心平分73、逆定理:如果兩個圖形的對應點連線都經過某一點,并且被這一點平分,那么這兩個圖形關于這一點對稱74、等腰梯形性質定理:等腰梯形在同一底上的兩個角相等75、等腰梯形的兩條對角線相等76、等腰梯形判定定理:在同一底上的兩個角相等的梯 形是等腰梯形77、對角線相等的梯形是等腰梯形78、平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等79、推論1:經過梯形一腰的中點與底平行的直線,必平分另一腰80、推論2:經過三角形一邊的中點與另一

24、邊平行的直線,必平分第三邊81、三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半82、梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半 83、(1)比例的基本性質: 84、(2)合比性質: 85、(3)等比性質: 86、平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例 87、推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例88、定理:如果一條直線截三角形的兩邊(或兩邊的延長線)所得的對應線段成比例,那么這條直線平行于三角形的第三邊89、平行于三角形的一邊,并且和其他兩邊相交的直線,所截得的三角形的三邊與原三角形三邊對應成

25、比例90、定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長線)相交,所構成的三角形與原三角形相似91、相似三角形判定定理1 :兩角對應相等,兩三角形相似(asa)92、直角三角形被斜邊上的高分成的兩個直角三角形和原三角形相似93、判定定理2:兩邊對應成比例且夾角相等,兩三角形相似(sas)94、判定定理3:三邊對應成比例,兩三角形相似(sss)95、定理:如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似96、性質定理1:相似三角形對應高的比,對應中線的比與對應角平分線的比都等于相似比97、性質定理2:相似三角形周長的比等于相似比9

26、8、性質定理3:相似三角形面積的比等于相似比的平方99、任意銳角的正弦值等于它的余角的余弦值,任意銳角的余弦值等于它的余角的正弦值100、任意銳角的正切值等于它的余角的余切值,任意銳角的余切值等于它的余角的正切值101、圓是到定點的距離等于定長的點的集合102、圓的內部可以看作是到圓心的距離小于半徑的點的集合103、圓的外部可以看作是到圓心的距離大于半徑的點的集合104、同圓或等圓的半徑相等105、到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓106、和已知線段兩個端點的距離相等的點的軌跡,是這條線段的垂直平分線107、到已知角的兩邊距離相等的點的軌跡,是這個角的平分線108、

27、到兩條平行線距離相等的點的軌跡,是和這兩條平行線平行且距離相等的一條直線109、定理:不在同一直線上的三點確定一個圓。110、垂徑定理:垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧111、推論1平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧弦的垂直平分線經過圓心,并且平分弦所對的兩條弧平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧112、推論2:圓的兩條平行弦所夾的弧相等113、圓是以圓心為對稱中心的中心對稱圖形114、定理:在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等115、推論:在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦

28、的弦心距中有一組量相等,那么它們所對應的其余各組量都相等116、定理:一條弧所對的圓周角等于它所對的圓心角的一半117、推論1:同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等118、推論2:半圓(或直徑)所對的圓周角是直角;90°的圓周角所對的弦是直徑119、推論3:如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形120、定理:圓的內接四邊形的對角互補,并且任何一個外角都等于它的內對角121、直線l和o相交:dr 直線l和o相切:d=r 直線l和o相離:dr122、切線的判定定理:經過半徑的外端并且垂直于這條半徑的直線是圓的切線123、切線的性質

29、定理:圓的切線垂直于經過切點的半徑124、推論1:經過圓心且垂直于切線的直線必經過切點125、推論2:經過切點且垂直于切線的直線必經過圓心126、切線長定理:從圓外一點引圓的兩條切線,它們的切線長相等;圓心和這一點的連線平分兩條切線的夾角127、圓的外切四邊形的兩組對邊的和相等128、弦切角定理 弦切角等于它所夾的弧對的圓周角129、推論:如果兩個弦切角所夾的弧相等,那么這兩個弦切角也相等130、相交弦定理:圓內的兩條相交弦,被交點分成的兩條線段長的積相等131、推論:如果弦與直徑垂直相交,那么弦的一半是它分直徑所成的兩條線段的比例中項132、切割線定理:從圓外一點引圓的切線和割線,切線長是這

30、點到割線與圓交點的兩條線段長的比例中項133、推論:從圓外一點引圓的兩條割線,這一點到每條割線與圓的交點的兩條線段長的積相等134、如果兩個圓相切,那么切點一定在連心線上135、兩圓的位置關系(假設:):兩圓外離: 兩圓外切:兩圓相交 兩圓內切 兩圓內含。136、定理:相交兩圓的連心線垂直平分兩圓的公共弦137、定理:把圓分成n等分(n3):依次連結各分點所得的多邊形是這個圓的內接正n邊形經過各分點作圓的切線,以相鄰切線的交點為頂點的多邊形是這個圓的外切正n邊形138、定理:任何正多邊形都有一個外接圓和一個內切圓,這兩個圓是同心圓139、正n邊形的每個內角都等于:140、定理:正n邊形的半徑和

31、邊心距把正n邊形分成2n個全等的直角三角形141、正n邊形的面積: 其中:。142、邊長為a的正三角形面積:143、弧長計算公式: 其中n為角度數(shù)。144、扇形面積公式: 145.圓錐側面積公式:s=146.圓錐側面?zhèn)让嬲归_圖圓心角的度數(shù):三、常用數(shù)學公式公式分類 公式表達式 乘法與因式分解 一元二次方程一元二次方程根與系數(shù)的關系(韋達定理): 一元二次方程根的判別式: :方程有兩個相等的實根 :方程有兩個不等的實根 :方程沒有實根,有共軛復數(shù)根 某些數(shù)列前n項和 四、基本方法1、配方法:所謂配方,就是把一個解析式利用恒等變形的方法,把其中的某些項配成一個或幾個多項式n次冪的形式。通過配方解決

32、數(shù)學問題的方法叫配方法。其中,用得最多的是配成完全平方式。配方法是數(shù)學中一種重要的恒等變形的方法,它的應用十分非常廣泛,在因式分解、化簡根式、解方程、證明等式和不等式、求函數(shù)的極值和解析式等方面都經常用到。2、因式分解法:因式分解,就是把一個多項式化成幾個整式乘積的形式。因式分解是恒等變形的基礎,它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。因式分解的方法有許多,除中學課本上介紹的提取公因式法、公式法、分組分解法、十字相乘法等外,還有如利用拆項添項、求根分解、換元、待定系數(shù)等等。3、換元法:換元法,是數(shù)學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未

33、知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。4、判別式法與韋達定理:一元二次方程:(a、b、c屬于實數(shù),且a0)根的判別,不僅用來判定根的性質,而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應用。韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。5、待定系數(shù)法在解數(shù)學問題時,若先判斷所求的結果具有某

34、種確定的形式,其中含有某些待定的系數(shù),而后根據(jù)題設條件列出關于待定系數(shù)的等式,最后解出這些待定系數(shù)的值或找到這些待定系數(shù)間的某種關系,從而解答數(shù)學問題,這種解題方法稱為待定系數(shù)法。它是中學數(shù)學中常用的方法之一。6、構造法:在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構造法。運用構造法解題,可以使代數(shù)、三角、幾何等各種數(shù)學知識互相滲透,有利于問題的解決。7、反證法:反證法是一種間接證法,它是先提出一個與命題的結論相反的假

35、設,然后,從這個假設出發(fā),經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。反設,是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一個、一個也沒有;至少有n個、至多有(n一1)個;至多有一個、至少有兩個;唯一、至少有兩個。歸謬,是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。8、面積法:平面幾

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論