立體幾何中的常見(jiàn)題型及基本思路_第1頁(yè)
立體幾何中的常見(jiàn)題型及基本思路_第2頁(yè)
立體幾何中的常見(jiàn)題型及基本思路_第3頁(yè)
立體幾何中的常見(jiàn)題型及基本思路_第4頁(yè)
立體幾何中的常見(jiàn)題型及基本思路_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、立體幾何中的常見(jiàn)題型及基本思路解決一切空間幾何問(wèn)題的核心目標(biāo)是把空間問(wèn)題轉(zhuǎn)化為平面問(wèn)題。1. 線線平行(是線面平行和面面平行的基礎(chǔ) )的證明思路:(1)找到或者構(gòu)建含兩線的平行四邊形(2)看兩直線是否構(gòu)成一個(gè)三角形的中位線或者等分線的關(guān)系(3)垂直于同一平面的兩直線平行。即:若.(4)平行于同一直線的兩直線平行。即:若(5)線面平行性質(zhì)得到線線平行:如果一條直線和一個(gè)平面平行,經(jīng)過(guò)這條直線的平面和已知平面相交,那么這條直線和交線平行。即:若.(6)面面平行性質(zhì)得到線線平行:兩平行平面與同一個(gè)平面相交,那么兩條交線平行。即:若(7)如果一條直線和兩個(gè)相交平面都平行,那么這條直線與這兩個(gè)平面的交線

2、平行。即若。2.線面平行的證明思路:(1)定義:若一條直線和平面沒(méi)有公共點(diǎn),則這直線與這個(gè)平面平行(不常用)。(2)判定定理:在平面內(nèi)找到一條和已知直線(在平面外)平行的直線。即:若(3)由面面平行得到的線面平行:兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線平行于另一個(gè)平面,即:若。例見(jiàn)T9山東12年高考(4)如果一個(gè)平面和平面外的一條直線都垂直于同一平面,那么這條直線和這個(gè)平面平行.即若。(5)如果兩條平行直線中的一條平行于一個(gè)平面,那么另一條也平行于這個(gè)平面(或在這個(gè)平面內(nèi)),即若ab,a,b(或b)(6)兩個(gè)平行平面外的一條直線與其中一個(gè)平面平行,也與另一個(gè)平面平行,即若,a,a,a,則.(7)如

3、果一條直線與一個(gè)平面垂直,則平面外與這條直線垂直的直線與該平面平行,即若a,b,ba,則b.(8)在一個(gè)平面同側(cè)的兩個(gè)點(diǎn),如果它們與這個(gè)平面的距離相等,那么過(guò)這兩個(gè)點(diǎn)的直線與這個(gè)平面平行,即若A,B,A、B在同側(cè),且A、B到等距,則AB.3.面面平行的證明思路:(1)定義:如果兩個(gè)平面沒(méi)有公共點(diǎn),那么這兩個(gè)平面平行,即無(wú)公共點(diǎn).(不常用)(2)判定定理:如果一個(gè)平面內(nèi)有兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行,即若a,b,ab=P,a,b,則.(3)垂直于同一直線的兩平面平行.即若a,a,則.(4)平行于同一平面的兩平面平行.即若,則.(5)一個(gè)平面內(nèi)的兩條直線分別平行于另一平面內(nèi)的

4、兩條相交直線,則這兩個(gè)平面平行,即若a,b,c,d,ab=P,ac,bd,則.4.線線垂直(是線面垂直和面面垂直的基礎(chǔ))的證明思路:(1)勾股定理(2)等腰三角形底邊上的中線與底邊垂直(3) 矩形(正方形)臨邊,菱形(正方形)對(duì)角線相互垂直(4)線面垂直性質(zhì)()(5)定義:若兩直線成90°角,則這兩直線互相垂直.(6)一條直線與兩條平行直線中的一條垂直,也必與另一條垂直.即若bc,ab,則ac(7)三垂線定理和它的逆定理:在平面內(nèi)的一條直線,若和這個(gè)平面的一條斜線的射影垂直,則它也和這條斜線垂直.(8)如果一條直線與一個(gè)平面平行,那么這條直線與這個(gè)平面的垂線垂直.即若a,b,則ab.

5、(9)三個(gè)兩兩垂直的平面的交線兩兩垂直,即若,,,且=a,=b,=c,則ab,bc,ca.例見(jiàn)T8陜西12年文,T14安徽12年文5.線面垂直的證明思路:(1)判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。即:若m,n,mn=A,lm,ln,則l(2)找一個(gè)面或者線的平行面或者線,將問(wèn)題轉(zhuǎn)化:或(3)面面垂直性質(zhì):如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于它們交線的直線垂直于另一個(gè)平面。即:(4)定義:若一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,則這條直線和這個(gè)平面垂直.(不常用)(5)如果兩條平行線中的一條垂直于一個(gè)平面,那么另一條也垂直于同一平面.即若

6、la,a,則l.(6)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面,即若,l,則l.(7)如果兩個(gè)相交平面都垂直于第三個(gè)平面,則它們的交線也垂直于第三個(gè)平面,即若,且a=,則a.6.面面垂直的證明思路:(1)判定定理:如果一個(gè)平面經(jīng)過(guò)另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。即:(2)定義法(二面角是直角):兩個(gè)平面相交,如果所成的二面角是直二面角,那么這兩個(gè)平面互相垂直。即:(3)一個(gè)平面垂直于兩個(gè)平行平面中的一個(gè),也垂直于另一個(gè)。即:若,則例見(jiàn)T6天津12年文科7.求角:一作二證三計(jì)算(1)線線角(異面直線所成角)轉(zhuǎn)化成相交直線,并且交點(diǎn)往往取其中一條直線的端點(diǎn)或中點(diǎn)(2)線面角射影轉(zhuǎn)換法:做垂線、找射影,求夾角(3)二面角定義法:在兩平面內(nèi)分別做交線的垂線,解三角形、三垂線法垂面法8.求體積:例見(jiàn)T8陜西12文,T10湖南12文,T11廣東12文9.折疊:例見(jiàn)T13北京12文10.最值:例見(jiàn)福建12文11.交點(diǎn)與交線問(wèn)題:1)線面交點(diǎn):求直線a與平面的交點(diǎn),可通過(guò)直線a做一個(gè)平面,且與的交線記為b,則a與b的交點(diǎn)即為直線a與平面的交點(diǎn)2)面面交線:在兩個(gè)平面內(nèi)找到兩個(gè)公共點(diǎn),連線即為交線若在圖形上只能找到一個(gè)公共點(diǎn),可以

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論