1986年全國(guó)高中數(shù)學(xué)聯(lián)賽試題及解析 蘇教版_第1頁(yè)
1986年全國(guó)高中數(shù)學(xué)聯(lián)賽試題及解析 蘇教版_第2頁(yè)
1986年全國(guó)高中數(shù)學(xué)聯(lián)賽試題及解析 蘇教版_第3頁(yè)
1986年全國(guó)高中數(shù)學(xué)聯(lián)賽試題及解析 蘇教版_第4頁(yè)
1986年全國(guó)高中數(shù)學(xué)聯(lián)賽試題及解析 蘇教版_第5頁(yè)
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、1986年全國(guó)高中數(shù)學(xué)聯(lián)賽試題第一試1選擇題(本題滿分42分,每小題7分,每小題答對(duì)得7分,答錯(cuò)得0分不答得1分) 設(shè)1<a<0,=arcsina,那么不等式sinx<a的解集為( ) Ax|2n+<x<(2n+1),nZ Bx|2n<x<(2n+1)+,nZ Cx|(2n1)+<x<2n,nZ Dx|2n+<x<(2n+1),nZ 設(shè)x為復(fù)數(shù),M=z|(z1)2=|z1|2,那么( ) AM=純虛數(shù) BM=實(shí)數(shù) C實(shí)數(shù) M 復(fù)數(shù) DM=復(fù)數(shù) 設(shè)實(shí)數(shù)a、b、c滿足 那么,a的取值范圍是( ) A(,+) B(,19,+) C(0

2、,7) D1,9 如果四面體的每一個(gè)面都不是等腰三角形,那么其長(zhǎng)度不等的棱的條數(shù)最少為( ) A3 B4 C5 D6 平面上有一個(gè)點(diǎn)集和七個(gè)不同的圓C1,C2,C7,其中圓C7恰好經(jīng)過(guò)M中的7個(gè)點(diǎn),圓C6恰好經(jīng)過(guò)M中的6個(gè)點(diǎn),圓C1恰好經(jīng)過(guò)M中的1個(gè)點(diǎn),那么M中的點(diǎn)數(shù)最少為( ) A11 B12 C21 D28 邊長(zhǎng)為a、b、c的三角形,其面積等于,而外接圓半徑為1,若 s=+,t=+,則s與t的大小關(guān)系是 As>t Bs=t Cs<t D不確定2填空題(本題滿分28分,每小題7分): 本題共有4個(gè)小題,每小題的答案都是000到999的某一個(gè)整數(shù),請(qǐng)把你認(rèn)為正確的答案填在 上 在底

3、面半徑為6的圓柱內(nèi),有兩個(gè)半徑也為6的球面,其球心距為13,若作一平面與這二球面相切,且與圓柱面交成一個(gè)橢圓,則這個(gè)橢圓的長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)之和是 已知f(x)=|12x|,x0,1,那么方程 f(f(f(x)=x的解的個(gè)數(shù)是 設(shè)f(x)=,那么和式f()+f()+f()+f()的值等于 ; 設(shè)x、y、z為非負(fù)實(shí)數(shù),且滿足方程468´2+256=0,那么x+y+z的最大值與最小值的乘積等于 第二試1(本題滿分17分)已知實(shí)數(shù)列a0,a1,a2,滿足 ai1+ai+1=2ai,(i=1,2,3,)求證:對(duì)于任何自然數(shù)n, P(x)=a0C(1-x)n+a1Cx(1-x)n-1+a2Cx2(

4、1-x)n-2+an-1Cxn-1(1-x)+anCxn是一次多項(xiàng)式(本題應(yīng)增加條件:a0a1)2(本題滿分17分)已知銳角三角形ABC的外接圓半徑為R,點(diǎn)D、E、F分別在邊BC、CA、AB上,求證:AD,BE,CF是ABC的三條高的充要條件是S=(EF+FD+DE)式中S是三角形ABC的面積 3平面直角坐標(biāo)系中,縱橫坐標(biāo)都是整數(shù)的點(diǎn)稱為整點(diǎn),請(qǐng)?jiān)O(shè)計(jì)一種染色方法將所有的整點(diǎn)都染色,每一個(gè)整點(diǎn)染成白色、紅色或黑色中的一種顏色,使得 每一種顏色的點(diǎn)出現(xiàn)在無(wú)窮多條平行于橫軸的直線上; 對(duì)任意白色A、紅點(diǎn)B和黑點(diǎn)C,總可以找到一個(gè)紅點(diǎn)D,使得ABCD為一平行四邊形證明你設(shè)計(jì)的方法符合上述要求1986年

5、全國(guó)高中數(shù)學(xué)聯(lián)賽解答第一試1選擇題(本題滿分42分,每小題7分,每小題答對(duì)得7分,答錯(cuò)得0分不答得1分) 設(shè)1<a<0,=arcsina,那么不等式sinx<a的解集為( ) Ax|2n+<x<(2n+1),nZ Bx|2n<x<(2n+1)+,nZ Cx|(2n1)+<x<2n,nZ Dx|(2n1)<x<2n+,nZ 解:<<0,在(,0)內(nèi)滿足sinx<a的角為<x<,由單位圓易得解為D 設(shè)x為復(fù)數(shù),M=z|(z1)2=|z1|2,那么( ) AM=純虛數(shù) BM=實(shí)數(shù) C實(shí)數(shù) M 復(fù)數(shù) DM=

6、復(fù)數(shù) 解:即(z1)2(z1)(1)=0,Þ(z1)(z)=0,Þz=1或z=,總之,z為實(shí)數(shù)選B 設(shè)實(shí)數(shù)a、b、c滿足 那么,a的取值范圍是( ) A(,+) B(,19,+) C(0,7) D1,9 解:×3+:b2+c22bc+3a230a+27=0,Þ(bc)2+3(a1)(a9)=0,Þ1a9選Db2+c2+2bca2+2a1=0,(b+c)2=(a1)2,Þb+c=a1,或b+c=a+1 如果四面體的每一個(gè)面都不是等腰三角形,那么其長(zhǎng)度不等的棱的條數(shù)最少為( ) A3 B4 C5 D6 解:取等腰四面體,其棱長(zhǎng)至多2種長(zhǎng)度

7、棱長(zhǎng)少于3時(shí),必出現(xiàn)等腰三角形選A 平面上有一個(gè)點(diǎn)集和七個(gè)不同的圓C1,C2,C7,其中圓C7恰好經(jīng)過(guò)M中的7個(gè)點(diǎn),圓C6恰好經(jīng)過(guò)M中的6個(gè)點(diǎn),圓C1恰好經(jīng)過(guò)M中的1個(gè)點(diǎn),那么M中的點(diǎn)數(shù)最少為( ) A11 B12 C21 D28 解:首先,C7經(jīng)過(guò)M中7個(gè)點(diǎn),C6與C7至多2個(gè)公共點(diǎn),故C6中至少另有4個(gè)M中的點(diǎn),C5至少經(jīng)過(guò)M中另外1個(gè)點(diǎn),共有至少7+4+1=12個(gè)點(diǎn) 邊長(zhǎng)為a、b、c的三角形,其面積等于,而外接圓半徑為1,若 s=+,t=+,則s與t的大小關(guān)系是 As>t Bs=t Cs<t D不確定 解:=absinC=,由R=1,=,知abc=1且三角形不是等邊三角形 +

8、=+(等號(hào)不成立)選C2填空題(本題滿分28分,每小題7分): 本題共有4個(gè)小題,每小題的答案都是000到999的某一個(gè)整數(shù),請(qǐng)把你認(rèn)為正確的答案填在 上 在底面半徑為6的圓柱內(nèi),有兩個(gè)半徑也為6的球面,其球心距為13,若作一平面與這二球面相切,且與圓柱面交成一個(gè)橢圓,則這個(gè)橢圓的長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)之和是 解:易得cos=,于是橢圓長(zhǎng)軸=13,短軸=12所求和=25 已知f(x)=|12x|,x0,1,那么方程 f(f(f(x)=x的解的個(gè)數(shù)是 解:f(f(x)=|12|12x|=同樣f(f(f(x)的圖象為8條線段,其斜率分別為±8,夾在y=0與y=1,x=0,x=1之內(nèi)它們各與線段y

9、=x (0x1)有1個(gè)交點(diǎn)故本題共計(jì)8解 設(shè)f(x)=,那么和式f()+f()+f()+f()的值等于 ;解 f(x)+f(1x)= +=+=1 以x=,代入式,即得所求和=500 設(shè)x、y、z為非負(fù)實(shí)數(shù),且滿足方程468´2+256=0,那么x+y+z的最大值與最小值的乘積等于 ; 解:令2=t,則得,t268t+256=0,Þ(t64)(t4)=0,Þt=4,t=64=2Þ5x+9y+4z=4,Þ9(x+y+z)=4+4x+5z4,x+y+z;4(x+y+z)=4x5y4,x+y+z1Þx+y+z,1;=6Þ5x+9y+

10、4z=36,Þ9(x+y+z)=36+4x+5z36,Þx+y+z4; 4(x+y+z)=36x5y36,Þx+y+z9故,所求最大值與最小值的乘積=´9=4第二試1(本題滿分17分)已知實(shí)數(shù)列a0,a1,a2,滿足 ai1+ai+1=2ai,(i=1,2,3,)求證:對(duì)于任何自然數(shù)n, P(x)=a0C(1-x)n+a1Cx(1-x)n-1+a2Cx2(1-x)n-2+an-1Cxn-1(1-x)+anCxn是一次多項(xiàng)式(本題應(yīng)增加條件:a0a1)證明:由已知,得ai+1ai=aiai1,Þ故ai是等差數(shù)列設(shè)aiai1=d0則ak=a0+kd

11、于是P(x)=a0C(1-x)n+a1Cx(1-x)n-1+a2Cx2(1-x)n-2+an-1Cxn-1(1-x)+anCxn = a0C(1-x)n+(a0+d)Cx(1-x)n-1+(a0+2d)Cx2(1-x)n-2+(a0+(n1)d)Cxn-1(1-x)+(a0+nd)Cxn =a0C(1-x)n+Cx(1-x)n-1+Cx2(1-x)n-2+Cxn-1(1-x)+Cxn +dCx(1-x)n-1+2Cx2(1-x)n-2+(n1)Cxn-1(1-x)+nCxn (由kC=nC) =a0(1x+x)n+ndxC(1-x)n-1+Cx(1-x)n-2+Cxn-2(1-x)+Cxn1

12、=a0+ndx(1x+x)n1=a0+ndx=a0+(ana0)x此為一次多項(xiàng)式證畢2(本題滿分17分)已知銳角三角形ABC的外接圓半徑為R,點(diǎn)D、E、F分別在邊BC、CA、AB上,求證:AD,BE,CF是ABC的三條高的充要條件是S=(EF+FD+DE)式中S是三角形ABC的面積 證明 連OA,則由C、E、F、B四點(diǎn)共圓,得ÐAFE=ÐC,又在OAB中,ÐOAF=(180°-2ÐC)/2=90°-ÐC,OAEF SOEAF=EF·=·EF,同理,SOFBD=·DF,SODCE=·DE

13、,故得S=(EF+FD+DE)反之,由S=(EF+FD+DE)得OAEF,OBFD,OCED,否則S<(EF+FD+DE)過(guò)A作O的切線AT,則AFE=TAF=ACB,ÞB、F、E、D共圓,同理,A、F、D、C共圓,A、E、D、B共圓ÞAFC=ADC,AEB=ADB AFC+AEB=ADC+ADB=180°但BFC=BEC,即AFC=AEB=90°,于是F、E為垂足,同理D為垂足故證3(本題16分)平面直角坐標(biāo)系中,縱橫坐標(biāo)都是整數(shù)的點(diǎn)稱為整點(diǎn),請(qǐng)?jiān)O(shè)計(jì)一種染色方法將所有的整點(diǎn)都染色,每一個(gè)整點(diǎn)染成白色、紅色或黑色中的一種顏色,使得 每一種顏色的點(diǎn)出現(xiàn)在無(wú)窮多條平行于橫軸的直線上; 對(duì)任意白色A、紅點(diǎn)B和黑點(diǎn)C,總可以找到一個(gè)紅點(diǎn)D,使得ABCD為一平行四邊形證明你設(shè)計(jì)的方法符合上述要求證明:設(shè)任一點(diǎn)的坐標(biāo)為(x,y),把x+y1(mod 4)的點(diǎn)染白,x+y3(mod 4)的點(diǎn)染黑,x+y0或2(mod4)的點(diǎn)染紅 顯然,這樣染色的點(diǎn)滿足要求首先,每條平行于x

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論