




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
1、專題07極化恒等式問題1 uuur 2Z|BC13.極化恒等式平行四邊形模型:在平行四邊形uur uuur uur uuur 122ABCD, AB AD (| AD | BD | )4曙師綜述二%-_ 奇.她極化恒等式這個概念雖在課本上沒有涉及,但在處理一類向量數(shù)量積時有奇效,備受師生喜愛r r1 , rJ、2jJ、21.極化恒等式:a b (ab)(ab)4uuir uuur uur 22.極化恒等式三角形模型:在ABC中,D為BC的中點,則 AB AC |AD|典例剖析J類型一利用極化恒等式求值典例1.如圖在三角形 ABC中,D是BC的中點,E,F是AD上的兩個三等分點,uur uur
2、uuu uuinBA CA 4, BF CF1,則uuu uuuBE CE值為8【解析】uurr uurr uuu uur uuur _ uur_ r 2r 2設(shè) DCa,DFb, BACA | AD |2|BD129ba4uuu 2 |BD|22 b2解得b2 a138uuu uuuuuruuirr 227BE CE|ED | BD |4ba一8類型二利用極化恒等式求最值或范圍典例2在三角形ABC中,D為AB中點,C 90 , AC 4,BC3,E,F分別為BC,AC上的動點,且EF=1,uuur 則DEuuurDF最小值為151設(shè)EF的中點為M,連接CM則|CM | 1即點M在如圖所示的圓
3、弧上,uuur uuuruuur則 DE DF | DM |2uuuu uuuur| EM |2 | DM |21、 _-=|CD |4類型三利用極化恒等式求參數(shù)uuu uum uur . BF CF |FD rP,恒有典例3 設(shè)三角形 ABC, P0是邊AB上的一定點,滿足PoB=1AB,且對于邊 AB上任一點4uur uur uuir uuurPB PC FOB PC,則三角形ABC形狀為.【答案】C為頂角的等腰三角形【解析】取BC的中點D,連接PD,PoD.uuu uuu uuur uuur Q PB PC - F0B F0Cuuur 2 |PD |21 uuir 241BC11 uuu
4、r uu r 27BC |2-P)b4uuur r r| PD |P0DP0D AB,設(shè)。為BC的中點,OC AB AC BC即三角形ABC為以C為頂角的等腰三角形.藤 Ci-a*總 占 9看 oAi . 4> AZetQ精選名校模坂!uuu uur uur1.已知 ABC是邊長為2的等邊三角形,P為平面ABC內(nèi)一點,則PA (PB PC)的最小值是【解析】uuuu i uuur2| PM |2 - | AO |2uuuu 2 21PM |2設(shè)BC的中點為 O, OC的中點為 M,連接OP,PM,uuu uuu uuur uuur uuuPA (PB PC) 2PO PA當(dāng)且僅當(dāng)M與P重
5、合時取等號2.直線 ax by c 0 與圓 0:x2 y2216相交于兩點M,N,若c22a b , P為圓O上任意一點,則uuuu uuurPM PN的取值范圍為【答案】6,10【解析】圓心O到直線ax by c 0的距離為d , |c|1, a2 b2設(shè)MN的中點為A,uuuu uuu uuu _ uuur _ uuu .PM PN |PA|2 |MA|2 |PA|2 15uuu uuu uuuQ|OP| |OA倒 |PA|uur|OP|uur|OA|uuu uuur uuur3蒯 |PA| 5,PM PNuuu|PA|15 6, 10uuur _3.如圖,已知 B,D是直角C兩邊上的動
6、點,AD BD,|AD| J3,uuuu uuu uuu1BAD -,CM 2 (CA CB)6uuur i uuin uuu uuur uuurCN - (CD CA),則CM CN的最大值為 【答案】1( .13 4) 4【解析】uuur uuur uur 1設(shè)MN的中點為G, BD的中點為H, CM CN | CG |2 -4uuuruult1| MN |2 |CG |216(、.13 4)4uuuruuuruuur1 . 13 uuuu uuur1T31Q|CG| 釧CH| | HG | CM CN 一242416uuuu lut所以CM CN的最大值為1(.1344)4.如圖在同一平
7、面內(nèi),點A位于兩平行直線 m,n的同側(cè),且A到m,n的距離分別為1, 3,點B,C分別在m,nuuir uur上,且| AB AC| 5,則uuu uuurAB AC的最大值為214【解析】uuu uur連接BC,取BC的中點D,則AB AC1 uur uur 5 又 AD -| AB AC | 一 22uur uuur 故 AB AC25BD2254-BC 4又因為BCmin 3 1 2uur uuur21所以(AB AC)max2r5.在半彳至為1的扇形AOB中,uuu uuuAOB 60 ,C為弧上的動點,AB與OC交于點P,則OP BP的最小值為【解析】uur取OB的中點D,連接PD,
8、則OPuuuBPPD2 OD2PD2 4于是只要求求PD的最小值即可,由圖可知,當(dāng)PD AB時,PDmin一 一一1即所求最小值為14uuu uur6.已知線段AB的長為2,動點C滿足CA CB., .一1為常數(shù)),且點C總不在以點B為圓心,12為半徑的圓內(nèi),則負(fù)數(shù)的最大值為【解析】如圖取uuu uuuAB的中點為D,連接CD,則CA CBCD2 1CD 11,01 .又由點C總不在以點B為圓心,1為半徑的圓內(nèi), 21則負(fù)數(shù)2的最大值為 34uuir uur7.已知A(0,1),曲線C :y log4x橫過點B,若P是曲線C上的動點,且AB AP的最小值為2,則如圖,B (1,0),則ABJ2
9、,連接BP,取BP的中點C,連接AC,2 (.2)2AB2uuu uuu因為AB AP的最小值為2,則有 AC2 BC2 max上式等價于 AB2 BC2, AC2,即 ABP 90當(dāng)且僅當(dāng)P與B重合時取等號,此時曲線C在B處的切線斜率等于1, rr 1即1 , a elnr r r r - r,r.r,8.若平面向量a, b滿足12a b | 3 ,則a b的最小值為 9【答案】98【解析】22 r r ,2r ,r ,2 =2 -2-r J (2 a b) (2a b) 12abi 12abi 039a b -8888rr& r r當(dāng)且僅當(dāng) 12a b 0,12a bi 3,即ai
10、 3,ibi -, a,b 42,r r =9時a b取最小值- 89.在正方形ABCN, AB=1, A,D分別在x,y軸的非負(fù)半軸上滑動,則ULUT UUUOC OB的最大值為如圖取BC的中點E,取AD的中點F,uur uuuuur uuu _umr uuu .4OC OB (OC OB)2 (OC OB)2uuir _uuu _uuui2(2OE)2 (2 BE)2 4OE 1uuur uuu uuuf2 1 所以 OC OB OE 4uur uuuruuu1 uuur uuu 13而1oe|of|FE|2|AD| |FE1 -1 2,uur uur當(dāng)且僅當(dāng)OF AD,OA OD時取等號
11、,所以 OC OB的最大值為210.已知正方形 ABCD的邊長為2,點E為AB的中點,以A為圓心,AE為半徑作弧交 AD于F,若P為劣弧uuur uurEF上的動點,則 PC PD的最小值為 【答案】5 2,5【解析】如圖取CD的中點M.uur uuruur uur o uuir4PC PD (PC PD)2 (PCuuur o uuur o uuur ouuurkPD)2 (2PM)2 (2DM )2 4PM 4uuir uur uuuu2所以 PC PD PM 1uuuu uuuu uuu uuur而|PM | 1 | PM | | AP | | AE | 百,當(dāng)且僅當(dāng)P,Q重合時等號成立uuiui unr_所以PC PD的最小值為(褥1)2 1 5 2亦MN的長度11.正方體ABCD-ABGDi的棱長為2, MN它的內(nèi)切球的一條弦,P為正方體表面上的動點,uuuu uur最大時,求PM PN的范圍.【答案】0,2【解析】如圖當(dāng)弦
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 3月是故鄉(xiāng)明教學(xué)設(shè)計-2023-2024學(xué)年五年級下冊語文統(tǒng)編版
- 5《鋪滿金色巴掌的水泥道》(教學(xué)設(shè)計)-2024-2025學(xué)年語文三年級上冊統(tǒng)編版
- 2023四年級數(shù)學(xué)上冊 1 大數(shù)的認(rèn)識第12課時 計算工具的認(rèn)識配套教學(xué)設(shè)計 新人教版
- 《口語交際:說新聞》教學(xué)設(shè)計-2023-2024學(xué)年統(tǒng)編版語文四年級下冊
- 糖尿病腎病飲食健康教育
- 肝惡性腫瘤的護(hù)理
- 軟件項目管理經(jīng)驗分享
- 一年級下冊道德與法治教學(xué)設(shè)計(蘇教版)
- 九年級語文下冊 第三單元《課外古詩詞四首》教學(xué)設(shè)計 新人教版
- 6 我家的好鄰居 第二課時 教學(xué)設(shè)計-2023-2024學(xué)年道德與法治三年級下冊統(tǒng)編版
- 社工證筆試題庫及答案
- 高考寫作專項突破之核心概念闡釋要訣 課件
- 2025年全國質(zhì)量月活動總結(jié)參考(2篇)
- 口腔四手操作培訓(xùn)
- 2025年月度工作日歷含農(nóng)歷節(jié)假日電子表格版
- 第37章 真菌學(xué)概論課件
- 總裁助理崗位職責(zé)
- 2024年封頂儀式發(fā)言稿模版(3篇)
- 醫(yī)院檢驗科簡介
- 連鎖藥店年度規(guī)劃
- 2024年10月自考07729倉儲技術(shù)與庫存理論試題及答案
評論
0/150
提交評論