版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、勾股定理全章知識(shí)點(diǎn)歸納總結(jié)一基礎(chǔ)知識(shí)點(diǎn):1:勾股定理直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2c2)要點(diǎn)詮釋:勾股定理反映了直角三角形三邊之間的關(guān)系,是直角三角形的重要性質(zhì)之一,其主要應(yīng)用:(1)已知直角三角形的兩邊求第三邊(在中,則,)(2)已知直角三角形的一邊與另兩邊的關(guān)系,求直角三角形的另兩邊(3)利用勾股定理可以證明線段平方關(guān)系的問題2:勾股定理的逆定理如果三角形的三邊長(zhǎng):a、b、c,則有關(guān)系a2+b2c2,那么這個(gè)三角形是直角三角形。要點(diǎn)詮釋:勾股定理的逆定理是判定一個(gè)三角形是否是直角三角形的一種重要方法,它通過“數(shù)轉(zhuǎn)化為形”來確定三角形的可能形狀,在運(yùn)用這一
2、定理時(shí)應(yīng)注意:(1)首先確定最大邊,不妨設(shè)最長(zhǎng)邊長(zhǎng)為:c;(2)驗(yàn)證c2與a2+b2是否具有相等關(guān)系,若c2a2+b2,則ABC是以C為直角的直角三角形(若c2a2+b2,則ABC是以C為鈍角的鈍角三角形;若c2a2+b2,則ABC為銳角三角形)。(定理中,及只是一種表現(xiàn)形式,不可認(rèn)為是唯一的,如若三角形三邊長(zhǎng),滿足,那么以,為三邊的三角形是直角三角形,但是為斜邊)3:勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系區(qū)別:勾股定理是直角三角形的性質(zhì)定理,而其逆定理是判定定理;聯(lián)系:勾股定理與其逆定理的題設(shè)和結(jié)論正好相反,都與直角三角形有關(guān)。4:互逆命題的概念如果一個(gè)命題的題設(shè)和結(jié)論分別是另一個(gè)命題的結(jié)論和
3、題設(shè),這樣的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。規(guī)律方法指導(dǎo)1勾股定理的證明實(shí)際采用的是圖形面積與代數(shù)恒等式的關(guān)系相互轉(zhuǎn)化證明的。2勾股定理反映的是直角三角形的三邊的數(shù)量關(guān)系,可以用于解決求解直角三角形邊邊關(guān)系的題目。3勾股定理在應(yīng)用時(shí)一定要注意弄清誰是斜邊誰直角邊,這是這個(gè)知識(shí)在應(yīng)用過程中易犯的主要錯(cuò)誤。4. 勾股定理的逆定理:如果三角形的三條邊長(zhǎng)a,b,c有下列關(guān)系:a2+b2c2,那么這個(gè)三角形是直角三角形;該逆定理給出判定一個(gè)三角形是否是直角三角形的判定方法5.應(yīng)用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形的過程主要是進(jìn)行代數(shù)運(yùn)算,通過學(xué)習(xí)加深
4、對(duì)“數(shù)形結(jié)合”的理解我們把題設(shè)、結(jié)論正好相反的兩個(gè)命題叫做互逆命題。如果把其中一個(gè)叫做原命題,那么另一個(gè)叫做它的逆命題。(例:勾股定理與勾股定理逆定理) 5:勾股定理的證明勾股定理的證明方法很多,常見的是拼圖的方法用拼圖的方法驗(yàn)證勾股定理的思路是圖形進(jìn)過割補(bǔ)拼接后,只要沒有重疊,沒有空隙,面積不會(huì)改變根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理常見方法如下:方法一:,化簡(jiǎn)可證方法二:四個(gè)直角三角形的面積與小正方形面積的和等于大正方形的面積四個(gè)直角三角形的面積與小正方形面積的和為大正方形面積為 所以方法三:,化簡(jiǎn)得證6:勾股數(shù)能夠構(gòu)成直角三角形的三邊長(zhǎng)的三個(gè)正整數(shù)稱為勾股數(shù),即中
5、,為正整數(shù)時(shí),稱,為一組勾股數(shù)記住常見的勾股數(shù)可以提高解題速度,如;等用含字母的代數(shù)式表示組勾股數(shù):(為正整數(shù));(為正整數(shù))(,為正整數(shù))二、經(jīng)典例題精講題型一:直接考查勾股定理例.在中,已知,求的長(zhǎng)已知,求的長(zhǎng)分析:直接應(yīng)用勾股定理解:題型二:利用勾股定理測(cè)量長(zhǎng)度例題1 如果梯子的底端離建筑物9米,那么15米長(zhǎng)的梯子可以到達(dá)建筑物的高度是多少米?解析:這是一道大家熟知的典型的“知二求一”的題。把實(shí)物模型轉(zhuǎn)化為數(shù)學(xué)模型后,.已知斜邊長(zhǎng)和一條直角邊長(zhǎng),求另外一條直角邊的長(zhǎng)度,可以直接利用勾股定理!根據(jù)勾股定理AC2+BC2=AB2, 即AC2+92=152,所以AC2=144,所以AC=12.
6、例題2 如圖(8),水池中離岸邊D點(diǎn)1.5米的C處,直立長(zhǎng)著一根蘆葦,出水部分BC的長(zhǎng)是0.5米,把蘆葦拉到岸邊,它的頂端B恰好落到D點(diǎn),并求水池的深度AC.解析:同例題1一樣,先將實(shí)物模型轉(zhuǎn)化為數(shù)學(xué)模型,如圖2. 由題意可知ACD中,ACD=90,在RtACD中,只知道CD=1.5,這是典型的利用勾股定理“知二求一”的類型。標(biāo)準(zhǔn)解題步驟如下(僅供參考):解:如圖2,根據(jù)勾股定理,AC2+CD2=AD2 設(shè)水深A(yù)C= x米,那么AD=AB=AC+CB=x+0.5x2+1.52=( x+0.5)2解之得x=2.故水深為2米.題型三:勾股定理和逆定理并用例題3 如圖3,正方形ABCD中,E是BC邊
7、上的中點(diǎn),F(xiàn)是AB上一點(diǎn),且那么DEF是直角三角形嗎?為什么?解析:這道題把很多條件都隱藏了,乍一看有點(diǎn)摸不著頭腦。仔細(xì)讀題會(huì)意可以發(fā)現(xiàn)規(guī)律,沒有任何條件,我們也可以開創(chuàng)條件,由可以設(shè)AB=4a,那么BE=CE=2 a,AF=3 a,BF= a,那么在RtAFD 、RtBEF和 RtCDE中,分別利用勾股定理求出DF,EF和DE的長(zhǎng),反過來再利用勾股定理逆定理去判斷DEF是否是直角三角形。 詳細(xì)解題步驟如下:解:設(shè)正方形ABCD的邊長(zhǎng)為4a,則BE=CE=2 a,AF=3 a,BF= a在RtCDE中,DE2=CD2+CE2=(4a)2+(2 a)2=20 a2同理EF2=5a2, DF2=2
8、5a2在DEF中,EF2+ DE2=5a2+ 20a2=25a2=DF2DEF是直角三角形,且DEF=90.注:本題利用了四次勾股定理,是掌握勾股定理的必練習(xí)題。題型四:利用勾股定理求線段長(zhǎng)度例題4 如圖4,已知長(zhǎng)方形ABCD中AB=8cm,BC=10cm,在邊CD上取一點(diǎn)E,將ADE折疊使點(diǎn)D恰好落在BC邊上的點(diǎn)F,求CE的長(zhǎng).解析:解題之前先弄清楚折疊中的不變量。合理設(shè)元是關(guān)鍵。詳細(xì)解題過程如下:解:根據(jù)題意得RtADERtAEFAFE=90, AF=10cm, EF=DE設(shè)CE=xcm,則DE=EF=CDCE=8x在RtABF中由勾股定理得:AB2+BF2=AF2,即82+BF2=102
9、,BF=6cmCF=BCBF=106=4(cm)在RtECF中由勾股定理可得:EF2=CE2+CF2,即(8x) 2=x2+426416x+x2=2+16x=3(cm),即CE=3 cm注:本題接下來還可以折痕的長(zhǎng)度和求重疊部分的面積。題型五:利用勾股定理逆定理判斷垂直例題5 如圖5,王師傅想要檢測(cè)桌子的表面AD邊是否垂直與AB邊和CD邊,他測(cè)得AD=80cm,AB=60cm,BD=100cm,AD邊與AB邊垂直嗎?怎樣去驗(yàn)證AD邊與CD邊是否垂直?解析:由于實(shí)物一般比較大,長(zhǎng)度不容易用直尺來方便測(cè)量。我們通常截取部分長(zhǎng)度來驗(yàn)證。如圖4,矩形ABCD表示桌面形狀,在AB上截取AM=12cm,在
10、AD上截取AN=9cm(想想為什么要設(shè)為這兩個(gè)長(zhǎng)度?),連結(jié)MN,測(cè)量MN的長(zhǎng)度。如果MN=15,則AM2+AN2=MN2,所以AD邊與AB邊垂直;如果MN=a15,則92+122=81+144=225, a2225,即92+122 a2,所以A不是直角。利用勾股定理解決實(shí)際問題例題6 有一個(gè)傳感器控制的燈,安裝在門上方,離地高4.5米的墻上,任何東西只要移至5米以內(nèi),燈就自動(dòng)打開,一個(gè)身高1.5米的學(xué)生,要走到離門多遠(yuǎn)的地方燈剛好打開?解析:首先要弄清楚人走過去,是頭先距離燈5米還是腳先距離燈5米,可想而知應(yīng)該是頭先距離燈5米。轉(zhuǎn)化為數(shù)學(xué)模型,如圖6 所示,A點(diǎn)表示控制燈,BM表示人的高度,
11、BCMN,BCAN當(dāng)頭(B點(diǎn))距離A有5米時(shí),求BC的長(zhǎng)度。已知AN=4.5米,所以AC=3米,由勾股定理,可計(jì)算BC=4米.即使要走到離門4米的時(shí)候燈剛好打開。題型六:旋轉(zhuǎn)問題:例1、如圖,ABC是直角三角形,BC是斜邊,將ABP繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)后,能與ACP重合,若AP=3,求PP的長(zhǎng)。變式1:如圖,P是等邊三角形ABC內(nèi)一點(diǎn),PA=2,PB=,PC=4,求ABC的邊長(zhǎng).分析:利用旋轉(zhuǎn)變換,將BPA繞點(diǎn)B逆時(shí)針選擇60,將三條線段集中到同一個(gè)三角形中,根據(jù)它們的數(shù)量關(guān)系,由勾股定理可知這是一個(gè)直角三角形.變式2、如圖,ABC為等腰直角三角形,BAC=90,E、F是BC上的點(diǎn),且EAF=45
12、,試探究間的關(guān)系,并說明理由. 題型七:關(guān)于翻折問題例1、 如圖,矩形紙片ABCD的邊AB=10cm,BC=6cm,E為BC上一點(diǎn),將矩形紙片沿AE折疊,點(diǎn)B恰好落在CD邊上的點(diǎn)G處,求BE的長(zhǎng).變式:如圖,AD是ABC的中線,ADC=45,把ADC沿直線AD翻折,點(diǎn)C落在點(diǎn)C的位置,BC=4,求BC的長(zhǎng).題型八:關(guān)于勾股定理在實(shí)際中的應(yīng)用:例1、如圖,公路MN和公路PQ在P點(diǎn)處交匯,點(diǎn)A處有一所中學(xué),AP=160米,點(diǎn)A到公路MN的距離為80米,假使拖拉機(jī)行駛時(shí),周圍100米以內(nèi)會(huì)受到噪音影響,那么拖拉機(jī)在公路MN上沿PN方向行駛時(shí),學(xué)校是否會(huì)受到影響,請(qǐng)說明理由;如果受到影響,已知拖拉機(jī)的速度是18千米/小時(shí),那么學(xué)校受到影響的時(shí)間為多少? 題型九:關(guān)于最短性問題例5、如右圖119,壁虎在一座底面半徑為2米,高為4米的油罐的下底邊沿A處,它發(fā)現(xiàn)在自己的正上方油罐上邊緣的B處有一只害蟲,便決定捕捉這只害蟲,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣西梧州市(2024年-2025年小學(xué)五年級(jí)語文)統(tǒng)編版專題練習(xí)((上下)學(xué)期)試卷及答案
- 中西醫(yī)結(jié)合雙向轉(zhuǎn)診協(xié)議書
- 房地產(chǎn)中介租賃合同條款
- 高校餐飲服務(wù)質(zhì)量自查制度
- 兼職工作解除勞動(dòng)合同協(xié)議書
- 糧庫風(fēng)險(xiǎn)控制管理制度
- 水土保持監(jiān)測(cè)數(shù)據(jù)管理制度
- 《“醫(yī)養(yǎng)結(jié)合”服務(wù)合同中法律關(guān)系的研究》
- 債權(quán)轉(zhuǎn)讓合同的糾紛解決方案
- 網(wǎng)絡(luò)安全應(yīng)急管理制度實(shí)施細(xì)則
- 知識(shí)產(chǎn)權(quán)渠道合作協(xié)議
- 旅行計(jì)劃PPT模板
- 水箱清洗衛(wèi)生管理制度
- 國際反洗錢師cams考試真題中文版題庫匯總(含答案)
- 五年級(jí)書法上冊(cè)第11課《集字臨摹練習(xí)三-學(xué)而時(shí)習(xí)之》
- 2023學(xué)年完整公開課版WangfujingStreetinBeijing
- 生態(tài)城再生水專項(xiàng)規(guī)劃說明書
- 世界環(huán)境日減塑撿塑主題PPT模板
- 分?jǐn)?shù)乘法簡(jiǎn)便運(yùn)算練習(xí)
- 物流公司貨物運(yùn)輸方案【三篇】
- 風(fēng)機(jī)塔筒內(nèi)電梯管理規(guī)定
評(píng)論
0/150
提交評(píng)論