數(shù)列求和7種方法(方法全例子多)_第1頁
數(shù)列求和7種方法(方法全例子多)_第2頁
數(shù)列求和7種方法(方法全例子多)_第3頁
數(shù)列求和7種方法(方法全例子多)_第4頁
數(shù)列求和7種方法(方法全例子多)_第5頁
已閱讀5頁,還剩3頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、精選優(yōu)質(zhì)文檔-傾情為你奉上數(shù)列求和的基本方法和技巧(配以相應(yīng)的練習(xí))一、總論:數(shù)列求和7種方法: 利用等差、等比數(shù)列求和公式錯(cuò)位相減法求和反序相加法求和分組相加法求和裂項(xiàng)消去法求和二、等差數(shù)列求和的方法是逆序相加法,等比數(shù)列的求和方法是錯(cuò)位相減法,三、逆序相加法、錯(cuò)位相減法是數(shù)列求和的二個(gè)基本方法。一、利用常用求和公式求和 利用下列常用求和公式求和是數(shù)列求和的最基本最重要的方法. 1、 等差數(shù)列求和公式: 2、等比數(shù)列求和公式:3、 4、5、例1 已知,求的前n項(xiàng)和.解:由等比數(shù)列求和公式得 (利用常用公式) 1 例2 設(shè)Sn1+2+3+n,nN*,求的最大值. 解:由等差數(shù)列求和公式得 ,

2、(利用常用公式) 當(dāng) ,即n8時(shí),二、錯(cuò)位相減法求和這種方法是在推導(dǎo)等比數(shù)列的前n項(xiàng)和公式時(shí)所用的方法,這種方法主要用于求數(shù)列an·bn的前n項(xiàng)和,其中 an 、 bn 分別是等差數(shù)列和等比數(shù)列.例3 求和:解:由題可知,的通項(xiàng)是等差數(shù)列2n1的通項(xiàng)與等比數(shù)列的通項(xiàng)之積設(shè). (設(shè)制錯(cuò)位)得 (錯(cuò)位相減)再利用等比數(shù)列的求和公式得: 例4 求數(shù)列前n項(xiàng)的和.解:由題可知,的通項(xiàng)是等差數(shù)列2n的通項(xiàng)與等比數(shù)列的通項(xiàng)之積設(shè) (設(shè)制錯(cuò)位)得 (錯(cuò)位相減) 練習(xí)題1 已知 ,求數(shù)列an的前n項(xiàng)和Sn.答案:練習(xí)題 的前n項(xiàng)和為_答案:三、逆序相加法求和這是推導(dǎo)等差數(shù)列的前n項(xiàng)和公式時(shí)所用的方法

3、,就是將一個(gè)數(shù)列倒過來排列(反序),再把它與原數(shù)列相加,就可以得到n個(gè).例5 求證:證明: 設(shè). 把式右邊倒轉(zhuǎn)過來得 (反序) 又由可得 . +得 (反序相加) 題1 已知函數(shù)(1)證明:;(2)求的值.解:(1)先利用指數(shù)的相關(guān)性質(zhì)對(duì)函數(shù)化簡,后證明左邊=右邊(2)利用第(1)小題已經(jīng)證明的結(jié)論可知,兩式相加得: 所以.四、分組法求和有一類數(shù)列,既不是等差數(shù)列,也不是等比數(shù)列,若將這類數(shù)列適當(dāng)拆開,可分為幾個(gè)等差、等比或常見的數(shù)列,然后分別求和,再將其合并即可.例7 求數(shù)列的前n項(xiàng)和:,解:設(shè)將其每一項(xiàng)拆開再重新組合得 (分組)當(dāng)a1時(shí), (分組求和)當(dāng)時(shí),例8 求數(shù)列n(n+1)(2n+1

4、)的前n項(xiàng)和.解:設(shè) 將其每一項(xiàng)拆開再重新組合得 Sn (分組) (分組求和) 五、裂項(xiàng)法求和這是分解與組合思想在數(shù)列求和中的具體應(yīng)用. 裂項(xiàng)法的實(shí)質(zhì)是將數(shù)列中的每項(xiàng)(通項(xiàng))分解,然后重新組合,使之能消去一些項(xiàng),最終達(dá)到求和的目的. 通項(xiàng)分解(裂項(xiàng))如:(1) (2)(3) (4)(5)(6) (7)(8)例9 求數(shù)列的前n項(xiàng)和.解:設(shè) (裂項(xiàng))則 (裂項(xiàng)求和) 例10 在數(shù)列an中,又,求數(shù)列bn的前n項(xiàng)的和.解: (裂項(xiàng)) 數(shù)列bn的前n項(xiàng)和 (裂項(xiàng)求和) (2009年廣東文)20.(本小題滿分14分)已知點(diǎn)(1,)是函數(shù)且)的圖象上一點(diǎn),等比數(shù)列的前n項(xiàng)和為,數(shù)列的首項(xiàng)為c,且前n項(xiàng)和滿足=+(n2).(1)求數(shù)列和的通項(xiàng)公式;(2)若數(shù)列前n項(xiàng)和為,問>的最小正整數(shù)n是多少?0.【解析】(1), , .又?jǐn)?shù)列成等比數(shù)列, ,所以 ;又公比,所以 ; 又, ;數(shù)列構(gòu)成一個(gè)首相為1公差為1的等差數(shù)列, , 當(dāng), ;();(2) ; 由得,滿足的最小正整數(shù)為112. 練習(xí)題1. .練習(xí)題2。 =答案:求數(shù)列通項(xiàng)公式的常用方法(1)求差(商)法練習(xí)數(shù)列滿足,求注意到,代入得;又,是等比數(shù)列,時(shí),(2)疊乘法 如:數(shù)列中,求解 ,又,.(3)等差型遞推公式由,求,用迭加法時(shí),兩邊相加得練習(xí)數(shù)列中,求()已知數(shù)列滿足,求。解:由條件知:分別令,代入上式得個(gè)等式累加之,即

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論