教學(xué)案例3 (2)_第1頁
教學(xué)案例3 (2)_第2頁
教學(xué)案例3 (2)_第3頁
教學(xué)案例3 (2)_第4頁
教學(xué)案例3 (2)_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、案例3:一位教師的習(xí)題課,內(nèi)容是“特殊四邊形”。該教師設(shè)計(jì)了如下習(xí)題:AOFEBHGC題1 (例題)順次連接四邊形各邊的中點(diǎn),所得的四邊形是怎樣的四邊形?并證明你的結(jié)論。題2  如右圖所示,ABC中,中線BE、CF交于O, G、H分別是BO、CO的中點(diǎn)。(1)              求證:FGEH;(2)         &

2、#160;    求證:OF=CH.OFAECBD題3  (拓展練習(xí))當(dāng)原四邊形具有什么條件時(shí),其中點(diǎn)四邊形為矩形、菱形、正方形?題4  (課外作業(yè))如右圖所示,DE是ABC的中位線,AF是邊BC上的中線,DE、AF相交于點(diǎn)O.(1)求證:AF與DE互相平分;(2)當(dāng)ABC具有什么條件時(shí),AF = DE。(3)當(dāng)ABC具有什么條件時(shí),AFDE。 FGEHDCBA教師先讓學(xué)生思考第一題(例題)。教師引導(dǎo)學(xué)生畫圖、觀察后,進(jìn)入證明教學(xué)。師:如圖,由條件E、F、G、H是各邊的中點(diǎn),可聯(lián)想到三

3、角形中位線定理,所以連接BD,可得EH、FG都平行且等于BD,所以EH平行且等于FG,所以四邊形EFGH是平行四邊形,下面,請(qǐng)同學(xué)們寫出證明過程。只經(jīng)過五六分鐘,證明過程的教學(xué)就“順利”完成了,學(xué)生也覺得不難。但讓學(xué)生做題2,只有幾個(gè)學(xué)生會(huì)做。題3對(duì)學(xué)生的困難更大,有的模仿例題,畫圖觀察,但卻得不到矩形等特殊的四邊形;有的先畫矩形,但矩形的頂點(diǎn)卻不是原四邊形各邊的中點(diǎn)。評(píng)課:本課習(xí)題的選擇設(shè)計(jì)比較好,涵蓋了三角形中位線定理及特殊四邊形的性質(zhì)與判定等數(shù)學(xué)知識(shí)。運(yùn)用的主要方法有:(1)通過畫圖(實(shí)驗(yàn))、觀察、猜想、證明等活動(dòng),研究數(shù)學(xué);(2)溝通條件與結(jié)論的聯(lián)系,實(shí)現(xiàn)轉(zhuǎn)化,添加輔助線;(3)由于習(xí)

4、題具備了一定的開放性、解法的多樣性,因此思維也要具有一定的深廣度。為什么學(xué)生仍然不會(huì)解題呢?學(xué)生基礎(chǔ)較差是一個(gè)原因,在教學(xué)上有沒有原因?我個(gè)人感覺,主要存在這樣三個(gè)問題:(1)學(xué)生思維沒有形成。教師只講怎么做,沒有講為什么這么做。教師把證明思路都說了出來,沒有引導(dǎo)學(xué)生如何去分析,剝奪了學(xué)生思維空間;(2)缺少數(shù)學(xué)思想、方法的歸納,沒有揭示數(shù)學(xué)的本質(zhì)。出現(xiàn)講了這道題會(huì)做,換一道題不會(huì)做的狀況;(3)題3是動(dòng)態(tài)的條件開放題,相對(duì)于題1是逆向思維,思維要求高,學(xué)生難把握,教師缺少必要的指導(dǎo)與點(diǎn)撥。修正:根據(jù)上述分析,題1的教學(xué)設(shè)計(jì)可做如下改進(jìn):首先,對(duì)于開始例題證明的教學(xué),提出“序列化”思考題:(1

5、)平行四邊形有哪些判定方法?(2)本題能否直接證明EFFG , EH=FG? 在不能直接證明的情況下,通??紤]間接證明,即借助第三條線段分別把EH和FG的位置關(guān)系(平行)和數(shù)量關(guān)系聯(lián)系起來,分析一下,那條線段具有這樣的作用?(3)由E、F、G、H是各邊的中點(diǎn),你能聯(lián)想到什么數(shù)學(xué)知識(shí)?(4)圖中有沒有現(xiàn)成的三角形及其中位線?如何構(gòu)造?設(shè)計(jì)意圖:上述問題(1)激活知識(shí);問題(2)暗示輔助線添加的必要性,滲透間接解決問題的思想方法;問題(3)、(4)引導(dǎo)學(xué)生發(fā)現(xiàn)輔助線的具體做法。其次,證明完成后,教師可引導(dǎo)歸納:我們把四邊形ABCD稱為原四邊形,四邊形EFGH稱為中點(diǎn)四邊形,得到結(jié)論:任意

6、四邊形的中點(diǎn)四邊形是平行四邊形;輔助線溝通了條件與結(jié)論的聯(lián)系,實(shí)現(xiàn)了轉(zhuǎn)化。原四邊形的一條對(duì)角線溝通了中點(diǎn)四邊形一組對(duì)邊的位置和數(shù)量關(guān)系。這種溝通來源于原四邊形的對(duì)角線同時(shí)又是以中點(diǎn)四邊形的邊為中位線的兩個(gè)三角形的公共邊,由此可感受到,起到這種溝通作用的往往是圖形中的公共元素,因此,在證明中一定要關(guān)注這種公共元素。然后,增設(shè)“過渡題”:原四邊形具備什么條件時(shí),其中點(diǎn)四邊形為矩形?教師可點(diǎn)撥思考:怎樣的平行四邊形是矩形?結(jié)合本題特點(diǎn),你選擇哪種方法?考慮一個(gè)直角,即中點(diǎn)四邊形一組鄰邊的位置關(guān)系。一組鄰邊位置和數(shù)量關(guān)系的變化,原四邊形兩條對(duì)角線的位置和數(shù)量關(guān)系也隨之變化。根據(jù)修正后的教學(xué)設(shè)計(jì)換個(gè)班重

7、上這節(jié)課,這是效果明顯,大部分學(xué)生獲得了解題的成功,幾個(gè)題都出現(xiàn)了不同的證法。啟示:習(xí)題課教學(xué),例題教學(xué)是關(guān)鍵。例題與習(xí)題的關(guān)系是綱目關(guān)系,綱舉則目張。在例題教學(xué)中,教師要指導(dǎo)學(xué)生學(xué)會(huì)思維,揭示數(shù)學(xué)思想,歸納解題方法策略??梢試L試以下方法:(1)激活、檢索與題相關(guān)的數(shù)學(xué)知識(shí)。知識(shí)的激活、檢索緣于題目信息,如由條件聯(lián)想知識(shí),由結(jié)論聯(lián)系知識(shí)。知識(shí)的激活和檢索標(biāo)志著思維開始運(yùn)作;(2)在思維的障礙處啟迪思維。思維源于問題,數(shù)學(xué)思維是隱性的心理活動(dòng),教師要設(shè)法采取一定的形式,凸顯思維過程,如:設(shè)計(jì)相關(guān)的思考問題,分解題設(shè)障礙,啟迪學(xué)生有效思維。(3)及時(shí)歸納思想方法與解題策略。從方法論的角度考慮,數(shù)學(xué)習(xí)題教學(xué),意義不在習(xí)題本身,數(shù)學(xué)思想方法、策略才是數(shù)學(xué)本質(zhì),習(xí)題僅是學(xué)習(xí)方法策略的載體,因此,方法策略的總結(jié)是很有必要的。題1的歸納

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論