版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、中考數(shù)學總復習資料第一部分-數(shù)與式實數(shù)基礎知識點一、實數(shù)的分類:,.'正整數(shù)、整數(shù)零有理數(shù)、負整數(shù)有限小數(shù)或無限循環(huán)小數(shù)實數(shù)1八班,正分數(shù)分數(shù)八m、負分數(shù),正無理數(shù)1無理數(shù)乙r;無限不循環(huán)小數(shù)次無理數(shù):判斷一個實數(shù)的數(shù)性不能僅憑表面上的感覺,往往要經(jīng)過整理化簡后才下結論。二、實數(shù)中的幾個概念1、相反數(shù)(符號不同)的兩個數(shù)叫做互為相反數(shù)(a和b互為相反數(shù)wa+b=0)12、倒數(shù):(1)實數(shù)a(a0)的倒數(shù)是(2)a和b互為倒數(shù)yab=1;(3)0沒有倒數(shù)aa,a03、絕對值:a=«0,a=0a,a0(2)實數(shù)的絕對值-非負數(shù),從數(shù)軸上看,一個實數(shù)的絕對值,就是數(shù)軸上表示這個數(shù)的
2、點到原點的距離。(3)化簡必須要對絕對值符號里面的實數(shù)進行數(shù)性(正、負)確認,再去掉絕對值符號。4、n次方根(1)平方根,算術平方根:設a>0,稱土Ja叫a的平方根,Qa叫a的算術平方根。正數(shù)的平方根有兩個,它們互為相反數(shù);0的平方根是0;負數(shù)沒有平方根。(2)立方根:Va叫實數(shù)a的立方根。一個正數(shù)有一個正的立方根;0的立方根是0;一個負數(shù)有一個負的立方根。三、實數(shù)與數(shù)軸1、數(shù)軸:規(guī)定了原點、正方向、單位長度的直線稱為數(shù)軸-數(shù)軸的三要素。2、實數(shù)和數(shù)軸上的點是對應的關系。四、實數(shù)大小的比較1、在數(shù)軸上表示兩個數(shù),右邊的數(shù)總比左邊的數(shù)大。2、正數(shù)大于0;負數(shù)小于0;正數(shù)大于一切負數(shù);兩個負
3、數(shù)絕對值大的反而小。五、實數(shù)的運算1、加法:(1)同號兩數(shù)相加,取原來的符號,并把它們的絕對值相加;(2)異號兩數(shù)相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值??墒褂眉臃ń粨Q律、結合律。2、減法一減去一個數(shù)等于加上這個數(shù)的相反數(shù)。3、乘法:(1)兩數(shù)相乘,同號取正,異號取負,并把絕對值相乘。(2)n個實數(shù)相乘,有一個因數(shù)為0,積就為0;若n個非0的實數(shù)相乘,積的符號由負因數(shù)的個數(shù)決定,當負因數(shù)有偶數(shù)個時,積為正;當負因數(shù)為奇數(shù)個時,積為負。(3)乘法可使用乘法交換律、乘法結合律、乘法分配律。4、除火(1)兩數(shù)相除,同號得正,異號得負,并把絕對值相除。(2)除以一個數(shù)等于乘以這
4、個數(shù)的倒數(shù)。(3)0除以任何數(shù)都等于0,0不能做被除數(shù)。5、乘方與開方:乘方與開方互為逆運算。6、實數(shù)的運算順序:乘方、開方為三級運算,乘、除為二級運算,力口、減是一級運算,如果沒有括號,在同一級運算中要從左到右依次運算,不同級的運算,先算高級的運算再算低級的運算,有括號的先算括號里的運算。無論何種運算,都要注意先定符號后運算。六、有效數(shù)字和科學記數(shù)法1、科學記數(shù)法:設N>0,則N=ax10n(其中1Wav10,n為整數(shù))。2、有效數(shù)字:一個近似數(shù),從左邊第一個不是0的數(shù),到精確到的數(shù)位為止,所有的數(shù)字,叫做這個數(shù)的有效數(shù)字。精確度的形式有兩種:(1)精確到那一位;(2)保留幾個有效數(shù)字
5、。代數(shù)式基礎知識點、代數(shù)式1、代數(shù)式:用運算符號把數(shù)或表示數(shù)的字母連結而成的式子,叫代數(shù)式。單獨一個數(shù)或者一個字母也是代數(shù)2、代數(shù)式的值:用數(shù)值代替代數(shù)里的字母,計算后得到的結果叫做代數(shù)式的值。3、代數(shù)式的分類:有理式1式分式單項式鄉(xiāng)項式二、整式的有關概念及運算1、概念(1)單項式:數(shù)與字母的積叫做單項式。單獨一個數(shù)或字母也是單項式。次數(shù):一個單項式中,所有字母的指數(shù)叫做這個單項式的次數(shù)。系數(shù):單項式中的數(shù)字因數(shù)叫單項式的系數(shù)。(2)多項式:幾個單項式的和叫做多項式。項:多項式中每一個單項式都叫多項式的項。一個多項式含有幾項,就叫幾項式。次數(shù):次數(shù)最高的項的次數(shù),就是這個多項式的次數(shù)。不含字母
6、的項叫常數(shù)項。升(降)哥排列:把一個多項式按某一個字母的指數(shù)從小(大)到大(小)的順序排列起來,叫做把多項式按這個字母升(降)嘉排列。(3)同類項:所含字母相同,并且相同字母的指數(shù)也分別相同的項叫做同類項。2、運算(1)整式的加減:合并同類項:把同類項的系數(shù)相加,所得結果作為系數(shù),字母及字母的指數(shù)不變。去括號法則:括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不變;括號前面是“-號,把括號和它前面的“-號去掉,括號里的各項都變號。添括號法則:括號前面是“+”號,括到括號里的各項都不變;括號前面是“號,括到括號里的各項都變號。整式的加減實際上就是合并同類項,在運算時,如果遇到括號
7、,先去括號,再合并同類項。(2)整式的乘除:哥的運算法則:其中m、n都是正整數(shù)同底數(shù)哥相乘:aman=am七;同底數(shù)哥相除:am+an=am";哥的乘方:(am)n=amn積的乘方:(ab)n=anbn。單項式乘以單項式:用它們系數(shù)的積作為積的系數(shù),對于相同的字母,用它們的指數(shù)的和作為這個字母的指數(shù);對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式。單項式乘以多項式:就是用單項式去乘多項式的每一項,再把所得的積相加。多項式乘以多項式:先用一個多項式的每一項乘以另一個多項式的每一項,再把所得的積相加。單項除單項式:把系數(shù),同底數(shù)哥分別相除,作為商的因式,對于只在被除式里含
8、有字母,則連同它的指數(shù)作為商的一個因式。多項式除以單項式:把這個多項式的每一項除以這個單項,再把所得的商相加。乘法公式:2.2平萬差公式:(a+b)(a-b)=a-b;完全平方公式:a2二2abb2=(a二b)2三、因式分解1、因式分解概念:把一個多項式化成幾個整式的積的形式,叫因式分解。2、常用的因式分解方法:(1)提取公因式法:mambmc=m(abc)(2)運用公式法:(3)十字相乘法:x2(ab)xab=(xa)(xb)(4)分組分解法:將多項式的項適當分組后能提公因式或運用公式分解。(5)運用求根公式法:若ax2+bx+c=0(a=0)的兩個根是x1、x2,則有:2axbxc=a(x
9、x1)(x-x2)3、因式分解的一般步驟:(1)如果多項式的各項有公因式,那么先提公因式;(2)提出公因式或無公因式可提,再考慮可否運用公式或十字相乘法;(3)對二次三項式,應先嘗試用十字相乘法分解,不行的再用求根公式法。(4)最后考慮用分組分解法。四、分式A1、分式定義:形如一的式子叫分式,其中A、B是整式,且B中含有子母。B(1)分式無意義:B=0時,分式無意義;BW0時,分式有意義。(2)分式的值為0:A=0,BW0時,分式的值等于0。(3)分式的約分一把一個分式的分子與分母的公因式約去方法一把分子、分母因式分解,再約去公因式。(4)最簡分式-一個分式的分子與分母沒有公因式,一定要化為最
10、簡分式。(5)通分一把幾個異分母的分式分別化成與原來分式相等的同分母分式的過程(6)最簡公分母:各分式的分母所有因式的最高次哥的積。(7)有理式:整式和分式統(tǒng)稱有理式。2、分式的基本性質(zhì):(1)A=A_2M(M是#0的整式);(2)A=A-M(M是#0的整式)BBMBB-M(3)分式的變號法則:分式的分子,分母與分式本身的符號,改變其中任何兩個,分式的值不變。3、分式的運算:(1)力口、減:同分母的分式相加減,分母不變,分子相加減;異分母的分式相加減,先把它們通分成同分母的分式再相加減。(2)乘:先對各分式的分子、分母因式分解,約分后再分子乘以分子,分母乘以分母。(3)除:除以一個分式等于乘上
11、它的倒數(shù)式。(4)乘方:分式的乘方就是把分子、分母分別乘方。五、二次根式1、二次根式的概念:式子Va(a之0)叫做二次根式。(1)最簡二次根式:被開方數(shù)的因數(shù)是整數(shù),因式是整式,被開方數(shù)中不含能開得盡方的因式的二次根式叫最簡二次根式。(2)同類二次根式:化為最簡二次根式之后,被開方數(shù)相同的二次根式,叫做同類二次根式。(3)分母有理化:把分母中的根號化去叫做分母有理化。(4)有理化因式:把兩個含有二次根式的代數(shù)式相乘,如果它們的積不含有二次根式,我們就說這兩個代數(shù)式互為有理化因式(常用的有理化因式有:與Ja;a'b+cJd與aJb-cJd)a(a-0)-a(a:二0)2、二次根式的性質(zhì):,22.2=a(a20);(2)aa=aaa,(3) wab=、'a7b(a>0,b>0);(4)-=-=(a>0,b>0).b.b3、運算:(1)二次根式的加減:將各二次根式化為最簡二次根式后,合并同類二次根式。(2)二次根式的乘法:,&,而="而(a>0,b>0)o(3)二次根式的除法:a=*a(a-0,b-0).b'b二次根式運算的最終結果如
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五版節(jié)能環(huán)保設施運營管理合同范本3篇
- 二零二五年汽車租賃公司兼職司機合同3篇
- 二零二五版家居用品寄售代理合同范本3篇
- 二零二五版草原生態(tài)補償機制承包合同3篇
- 二零二五版插畫師合作合同范本-漫畫創(chuàng)作合作與版權歸屬協(xié)議3篇
- 二零二五版建筑工程施工企業(yè)施工許可證注銷合同3篇
- 二零二五版安徽農(nóng)民工就業(yè)跟蹤服務合同范本3篇
- 2025版塊石石材礦山投資合作合同3篇
- 基于2025年度行業(yè)標準的招投標實習合同3篇
- 二零二五年金融創(chuàng)新抵押借款合同范本分享3篇
- 蔣詩萌小品《誰殺死了周日》臺詞完整版
- TB 10010-2008 鐵路給水排水設計規(guī)范
- 黑色素的合成與美白產(chǎn)品的研究進展
- 建筑史智慧樹知到期末考試答案2024年
- 金蓉顆粒-臨床用藥解讀
- 社區(qū)健康服務與管理教案
- 2023-2024年家政服務員職業(yè)技能培訓考試題庫(含答案)
- 2023年(中級)電工職業(yè)技能鑒定考試題庫(必刷500題)
- 藏歷新年文化活動的工作方案
- 果酒釀造完整
- 第4章-理想氣體的熱力過程
評論
0/150
提交評論