![期貨理論與實(shí)務(wù)英文版課件:Chapter 3 Risky Assets_第1頁](http://file4.renrendoc.com/view/cd97c054bfee193a12b484ec3daa6751/cd97c054bfee193a12b484ec3daa67511.gif)
![期貨理論與實(shí)務(wù)英文版課件:Chapter 3 Risky Assets_第2頁](http://file4.renrendoc.com/view/cd97c054bfee193a12b484ec3daa6751/cd97c054bfee193a12b484ec3daa67512.gif)
![期貨理論與實(shí)務(wù)英文版課件:Chapter 3 Risky Assets_第3頁](http://file4.renrendoc.com/view/cd97c054bfee193a12b484ec3daa6751/cd97c054bfee193a12b484ec3daa67513.gif)
![期貨理論與實(shí)務(wù)英文版課件:Chapter 3 Risky Assets_第4頁](http://file4.renrendoc.com/view/cd97c054bfee193a12b484ec3daa6751/cd97c054bfee193a12b484ec3daa67514.gif)
![期貨理論與實(shí)務(wù)英文版課件:Chapter 3 Risky Assets_第5頁](http://file4.renrendoc.com/view/cd97c054bfee193a12b484ec3daa6751/cd97c054bfee193a12b484ec3daa67515.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、Chapter 3 Risky Assetsmain content3.1 Dynamics of Stock Prices3.1.1 Return3.1.2 Expected Return3.2 Binomial Tree Model3.2.1 Risk-Neutral Probability3.2.2 Martingale Property3.3 Other Models3.3.1Trinomial Tree Model3.3.2 Continuous-Time Limit3.1 Dynamics of Stock PricesThe price of stock at time t wi
2、ll be denoted by S(t).S(t) can be represented as a positive random variable on a probability space , that is,S(t) : (0,).The probability space consists of all feasible price movement scenarios . We shall write S(t, ) to denote the price at time t if the market follows scenario .Example:Suppose that
3、there are three possible market scenarios, = 1, 2, 3, the stock prices taking the following values over two time steps:Scenario S(0) S(1) S(2) 1 55 58 60 2 55 58 52 3 55 52 53These price movements can be represented as a tree, see Figure 3.1.1 ReturnIf the stock pays no dividends:The rate of return,
4、 or briefly the return K(n,m) over a time interval n,m (infact m, n ), is defined to be the random variableIf the stock pays a dividend of div(m) at time m:Exercise: 除權(quán)、復(fù)息公式3.1.1 Returnsome conclusions1 + K(n,m) = (1+K(n + 1)(1 + K(n + 2) (1 + K(m)S(m) = S(n)(1 + K(n + 1)(1 + K(n + 2) (1 + K(m).loga
5、rithmic returnThe logarithmic return over a time interval n,m (more precisely, n, m) is a random variable k(n,m) defined byk(n,m) = k(n + 1) + k(n + 2) + + k(m), if there are no dividends.The relationship between the K(m,n) and k(m,n)3.1.2 Expected ReturnDefinition:Suppose that the probability distr
6、ibution of the return K over a certain time period is known. Then we can compute the mathematical expectation E(K),called the expected return. It is important to note, however, that the expected return is usually based on historical data and is not guaranteed.ExerciseSuppose that the stock prices in
7、 the following three scenarios are Scenario S(0) S(1) S(2) 1 100 110 120 2 100 105 100 3 100 90 100with probabilities 1/4, 1/4, 1/2, respectively. Find the expected returns E(K(1), E(K(2) and E(K(0, 2). Compare 1 + E(K(0, 2) with (1 +E(K(1)(1 + E(K(2).some conclusionsIf the one-step returns K(n + 1)
8、, . . . , K(m) are independent, then:1 + E(K(n,m) = (1 + E(K(n + 1)(1 + E(K(n + 2) (1 + E(K(m)In the case of logarithmic returns additively extends to expected returns, even if the one-step returns are not independent. NamelyE(k(n,m) = E(k(n + 1)+E(k(n + 2)+ + E(k(m)3.2 Binomial Tree ModelThe model
9、is defined by the following conditions:The one-step returns K(n) on stock are identically distributed independent random variables such thatat each time step n, where 1 d u and 0 p 1.In an n-step tree of stock prices each scenario (or path through the tree) with exactly i upward and ni downward pric
10、e movements produces the same stock priceAs a result,with probabilityexample:The stock price S(n) at time n is a discrete random variable with n+1 different values. The distribution of S(n) is shown in Figure 3.2 for n = 10, p = 0.5, S(0) = 1, u = 0.1 and d = -0.1.An example of a two-step binomial t
11、ree of stock prices is shown in Figure 3.3 and a three-step tree in Figure 3.4.In both figures S(0) = 1 for simplicity.ExerciseSuppose that stock prices follow a binomial tree, the possible values of S(2) being $121, $110 and $100. Find u and d when S(0) = 100 dollars.Do the same when S(0) = 104 dol
12、lars.3.2.1 Risk-Neutral ProbabilityWhile the future value of stock can never be known with certainty, it is possible to work out expected stock prices within the binomial tree model. It is then natural to compare these expected prices and risk-free investments.To begin with, we shall work out the dy
13、namics of expected stock prices E(S(n). For n = 1E(S(1) = pS(0)(1 + u) + (1 p)S(0)(1 + d) = S(0)(1 + E(K(1),whereE(K(1) = pu + (1 p)dis the expected one-step return. This extends to any n as follows.The expected stock prices for n = 0, 1, 2, . . . are given by E(S(n) = S(0)(1 + E(K(1)of:Since t
14、he one-step returns K(1),K(2), . . . are independent, so are the random variables 1 + K(1),1 + K(2), . . . . It follows that E(S(n) = E(S(0)(1 + K(1)(1 + K(2) (1 + K(n) = S(0)E(1 + K(1)E(1 + K(2) E(1 + K(n) = S(0)(1 + E(K(1)(1 + E(K(2) (1 + E(K(n).Because the K(n) are identically distributed, they a
15、ll have the same expectation, E(K(1) = E(K(2) = = E(K(n),which proves the formula for E(S(n).It proves convenient to introduce a special symbol p* for the probability as well as E* for the corresponding expectation satisfying the condition E*(K(1) = p*u + (1 p*)d = rfor risk-neutrality, which implie
16、s thatWe shall call p* the risk-neutral probability and E* the risk-neutral expectation. It is important to understand that p* is an abstract mathematical object, which may or may not be equal to the actual market probability p. Only in a risk-neutral market do we have p = p*.Ask no Risk Compensatio
17、n3.2.2 Martingale Propertythe expectation of S(n) with respect to the risk-neutral probability p* issince r = E*(K(1).Example:Consider a two-step binomial tree model such that S(0) = 100 dollars, u = 0.2, d = 0.1 and r = 0.1. Then p* = 2/3 is the risk-neutral probability, and the expected stock pric
18、e after two steps isAfter one time step, once it becomes known whether the stock price has gone up or down, we shall need to recompute the expectation of S(2).Suppose that the stock price has gone up to $120 after the first step.Given that S(1) = 120 dollars, the risk-neutral expectation of S(2) wil
19、l therefore be 2/3144+ 1/3108 = 132 dollars, which is equal to 120(1+r).E*(S(2)|S(1) = 120) = 120(1 + r).Similarly, if the stock price drops to $90 after one time step, the set of possible scenarios will reduce to those for which S(1) = 90 dollars,the risk-neutral expectation of S(2) will be 2/3108+
20、 1/381 = 99 dollars, which is equal to 90(1 + r). This can be written as E*(S(2)|S(1) = 90) = 90(1 + r).The last two formulae involving conditional expectation can be written as a single equality, properly understood: E*(S(2)|S(1) = S(1)(1 + r).3.3 Other Models:Trinomial Tree ModelThe one-step retur
21、ns K(n) are independent random variables of the formwhere d n u and 0 p, q, p +q 1.The one-step return r on a risk-free investment is the same at each time step and d r u.Since S(1)/S(0) = 1 + K(1),ExerciseLet u = 0.2, n = 0, d = 0.1, and r = 0. Find all risk-neutral probabilities.3.3.2 Continuous-T
22、ime LimitWe shall consider a sequence of binomial tree models with time step = 1/N ,letting N . For all binomial tree models in the approximating sequence it will be assumed that the probability of upward and downward price movements is 1/2 in each step.We denote by m the expectation and by the stan
23、dard deviation of the logarithmic return k(1)+k(2)+ +k(N) over the unit time interval from 0 to 1, consisting of Nsteps of .It follows that m = E (k(1) + k(2) + + k(N) = E(k(1) + E(k(2) + + E(k(N) = NE(k(n), 2 = Var(k(1) + k(2) + + k(N) = Var(k(1) + Var (k(2) + +Var (k(N) = NVar (k(n)This means that
24、 each k(n) has expectation m/N = mand standard deviation so the two possible values of each k(n) must beIntroducing a sequence of independent random variables (n), each with two valuesNext, we introduce an important sequence of random variables w(n), called a symmetric random walk, such thatw(n) = (1) + (2) + + (n), and w(0) = 0. Clearly, (n) = w(n) w(n 1).proofThe stock price at time t = n is given by S(t) = S(0) exp(mt + w(t).Stochastic Differential Equation of Stock PriceW(t) is a Wiener process or Brownian motion 1.W
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度書畫藝術(shù)品市場(chǎng)代理銷售合同
- 2025年度建筑安全風(fēng)險(xiǎn)評(píng)估與監(jiān)測(cè)委托合同
- 2025年度國際知識(shí)產(chǎn)權(quán)轉(zhuǎn)讓合同樣本
- 2024-2025學(xué)年福建省福州第十中學(xué)高一上學(xué)期期中考試歷史試卷
- 2025年公共租賃場(chǎng)地安全協(xié)議
- 2025年合作協(xié)議訂立與實(shí)施年
- 2025年醫(yī)院護(hù)師職責(zé)合同
- 2025年農(nóng)場(chǎng)土地租賃合同年協(xié)議書
- 2025年TBBS項(xiàng)目申請(qǐng)報(bào)告模稿
- 2025年焦化二甲苯項(xiàng)目規(guī)劃申請(qǐng)報(bào)告模范
- 酒店長包房租賃協(xié)議書范本
- 2 找春天 公開課一等獎(jiǎng)創(chuàng)新教學(xué)設(shè)計(jì)
- 2025年江蘇護(hù)理職業(yè)學(xué)院高職單招語文2018-2024歷年參考題庫頻考點(diǎn)含答案解析
- 2025年江蘇南京水務(wù)集團(tuán)有限公司招聘筆試參考題庫含答案解析
- 【道法】開學(xué)第一課 課件-2024-2025學(xué)年統(tǒng)編版道德與法治七年級(jí)下冊(cè)
- 口腔門診分診流程
- 建筑工程施工安全管理課件
- 2025年春新外研版(三起)英語三年級(jí)下冊(cè)課件 Unit2第1課時(shí)Startup
- 2025年上半年畢節(jié)市威寧自治縣事業(yè)單位招考考試(443名)易考易錯(cuò)模擬試題(共500題)試卷后附參考答案
- 處方點(diǎn)評(píng)知識(shí)培訓(xùn)
- 2025年新合同管理工作計(jì)劃
評(píng)論
0/150
提交評(píng)論