




版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-1Chapter 5Some Important Discrete Probability DistributionsBusiness Statistics:A First Course5th EditionBusiness Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-2Learning ObjectivesIn this chapter, you learn: The pr
2、operties of a probability distributionTo calculate the expected value and variance of a probability distributionTo calculate probabilities from binomial and Poisson distributionsHow to use the binomial and Poisson distributions to solve business problemsBusiness Statistics: A First Course, 5e 2009 P
3、rentice-Hall, Inc.Chap 5-3DefinitionsRandom VariablesA random variable represents a possible numerical value from an uncertain event.Discrete random variables produce outcomes that come from a counting process (e.g. number of courses you are taking this semester).Continuous random variables produce
4、outcomes that come from a measurement (e.g. your annual salary, or your weight). Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-4DefinitionsRandom VariablesRandom VariablesDiscrete Random VariableContinuousRandom VariableCh. 5Ch. 6DefinitionsRandom VariablesRandom VariablesDi
5、screte Random VariableContinuousRandom VariableCh. 5Ch. 6DefinitionsRandom VariablesRandom VariablesDiscrete Random VariableContinuousRandom VariableCh. 5Ch. 6Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-5Discrete Random VariablesCan only assume a countable number of values
6、Examples: Roll a die twiceLet X be the number of times 4 occurs (then X could be 0, 1, or 2 times)Toss a coin 5 times. Let X be the number of heads (then X = 0, 1, 2, 3, 4, or 5)Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-6Probability Distribution For A Discrete Random Var
7、iableA probability distribution for a discrete random variable is a mutually exclusive listing of all possible numerical outcomes for that variable and a probability of occurrence associated with each outcome.Number of Classes TakenProbability20.230.440.2450.16Business Statistics: A First Course, 5e
8、 2009 Prentice-Hall, Inc.Chap 5-7Experiment: Toss 2 Coins. Let X = # heads.TTExample of a Discrete Random Variable Probability Distribution4 possible outcomesTTHHHHProbability Distribution 0 1 2 X X Value Probability Probability Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-
9、8Discrete Random VariablesExpected Value (Measuring Center) Expected Value (or mean) of a discrete random variable (Weighted Average)Example: Toss 2 coins, X = # of heads, compute expected value of X: E(X) = (0)(0.25) + (1)(0.50) + (2)(0.25) X P(X)Business Statistics: A First Course, 5e 2009 Prentic
10、e-Hall, Inc.Chap 5-9Variance of a discrete random variableStandard Deviation of a discrete random variablewhere:E(X) = Expected value of the discrete random variable X Xi = the ith outcome of XP(Xi) = Probability of the ith occurrence of XDiscrete Random Variables Measuring DispersionBusiness Statis
11、tics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-10Example: Toss 2 coins, X = # heads, compute standard deviation (recall E(X) = 1)Discrete Random Variables Measuring Dispersion(continued)Possible number of heads = 0, 1, or 2Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap
12、 5-11Probability DistributionsContinuous Probability DistributionsBinomialPoissonProbability DistributionsDiscrete Probability DistributionsNormalCh. 5Ch. 6Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-12Binomial Probability DistributionA fixed number of observations, ne.g.,
13、 15 tosses of a coin; ten light bulbs taken from a warehouseEach observation is categorized as to whether or not the “event of interest” occurrede.g., head or tail in each toss of a coin; defective or not defective light bulbSince these two categories are mutually exclusive and collectively exhausti
14、veWhen the probability of the event of interest is represented as , then the probability of the event of interest not occurring is 1 - Constant probability for the event of interest occurring () for each observationProbability of getting a tail is the same each time we toss the coinBusiness Statisti
15、cs: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-13Binomial Probability Distribution(continued)Observations are independentThe outcome of one observation does not affect the outcome of the otherTwo sampling methods deliver independenceInfinite population without replacementFinite population wit
16、h replacementBusiness Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-14Possible Applications for the Binomial DistributionA manufacturing plant labels items as either defective or acceptableA firm bidding for contracts will either get a contract or notA marketing research firm receive
17、s survey responses of “yes I will buy” or “no I will not”New job applicants either accept the offer or reject itBusiness Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-15The Binomial DistributionCounting TechniquesSuppose the event of interest is obtaining heads on the toss of a fair
18、coin. You are to toss the coin three times. In how many ways can you get two heads?Possible ways: HHT, HTH, THH, so there are three ways you can getting two heads.This situation is fairly simple. We need to be able to count the number of ways for more complicated situations.Business Statistics: A Fi
19、rst Course, 5e 2009 Prentice-Hall, Inc.Chap 5-16Counting TechniquesRule of CombinationsThe number of combinations of selecting X objects out of n objects is where:n! =(n)(n - 1)(n - 2) . . . (2)(1)X! = (X)(X - 1)(X - 2) . . . (2)(1) 0! = 1 (by definition)Business Statistics: A First Course, 5e 2009
20、Prentice-Hall, Inc.Chap 5-17Counting TechniquesRule of CombinationsHow many possible 3 scoop combinations could you create at an ice cream parlor if you have 31 flavors to select from?The total choices is n = 31, and we select X = 3.Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Cha
21、p 5-18P(X) = probability of X events of interest in n trials, with the probability of an “event of interest” being for each trial X = number of “events of interest” in sample, (X = 0, 1, 2, ., n) n = sample size (number of trials or observations) = probability of “event of interest” P(X)nX !nX(1-)Xn
22、X!()!=-Example: Flip a coin four times, let x = # heads:n = 41 - X = 0, 1, 2, 3, 4Binomial Distribution FormulaBusiness Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-19Example: Calculating a Binomial ProbabilityWhat is the probability of one success in five observations if the probab
23、ility of an event of interest is .1? X = 1, n = 5, and Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-20The Binomial DistributionExampleSuppose the probability of purchasing a defective computer is 0.02. What is the probability of purchasing 2 defective computers in a group o
24、f 10? X = 2, n = 10, and = .02Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-21The Binomial DistributionShapen = 5 0.2.4.6012345XP(X)n = 5 .2.4.6012345XP(X)0The shape of the binomial distribution depends on the values of and nHere, n = 5 and = .1Here, n = 5 and = .5Business S
25、tatistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-22The Binomial DistributionUsing Binomial Tablesn = 10 x=.20=.25=.30=.35=.40=.45=.500123456789100.10740.26840.30200.20130.08810.02640.00550.00080.00010.00000.00000.05630.18770.28160.25030.14600.05840.01620.00310.00040.00000.00000.02820.121
26、10.23350.26680.20010.10290.03680.00900.00140.00010.00000.01350.07250.17570.25220.23770.15360.06890.02120.00430.00050.00000.00600.04030.12090.21500.25080.20070.11150.04250.01060.00160.00010.00250.02070.07630.16650.23840.23400.15960.07460.02290.00420.00030.00100.00980.04390.11720.20510.24610.20510.117
27、20.04390.00980.0010109876543210=.80=.75=.70=.65=.60=.55=.50 xExamples: n = 10, = .35, x = 3: P(x = 3|n =10, = .35) = .2522n = 10, = .75, x = 2: P(x = 2|n =10, = .75) = .0004Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-23Binomial Distribution CharacteristicsMeanVariance and
28、Standard DeviationWheren = sample size = probability of the event of interest for any trial(1 ) = probability of no event of interest for any trialBusiness Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-24The Binomial DistributionCharacteristicsn = 5 0.2.4.6012345XP(X)n = 5 .2.4.60123
29、45XP(X)0ExamplesBusiness Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-25Using Excel For TheBinomial DistributionBusiness Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-26The Poisson DistributionDefinitionsYou use the Poisson distribution when you are interested in the
30、 number of times an event occurs in a given area of opportunity.An area of opportunity is a continuous unit or interval of time, volume, or such area in which more than one occurrence of an event can occur. The number of scratches in a cars paintThe number of mosquito bites on a personThe number of
31、computer crashes in a day Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-27The Poisson DistributionApply the Poisson Distribution when:You wish to count the number of times an event occurs in a given area of opportunityThe probability that an event occurs in one area of oppor
32、tunity is the same for all areas of opportunity The number of events that occur in one area of opportunity is independent of the number of events that occur in the other areas of opportunityThe probability that two or more events occur in an area of opportunity approaches zero as the area of opportu
33、nity becomes smallerThe average number of events per unit is (lambda)Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-28Poisson Distribution Formulawhere:X = number of events in an area of opportunity = expected number of eventse = base of the natural logarithm system (2.71828.
34、)Business Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-29Poisson Distribution CharacteristicsMeanVariance and Standard Deviationwhere = expected number of eventsBusiness Statistics: A First Course, 5e 2009 Prentice-Hall, Inc.Chap 5-30Using Poisson TablesX0.100.200.300.400.500.600.700.800.90012345670.90480.0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 強化練習網(wǎng)絡規(guī)劃設計師考試試題及答案
- 2025-2030中國沙拉機行業(yè)經(jīng)營風險與未來投資動向研究研究報告
- 2025-2030中國沐浴珠行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- Unit 2 sectionB1a-2d教學設計 2023-2024學年魯教版英語七年級上冊
- 2025年健康管理師常見題型分析試題及答案
- 天津市河東區(qū)2025年高三沖刺模擬物理試卷含解析
- 母豬護理工作中的常見問題試題及答案
- 探討2025年公共營養(yǎng)師考試選材策略試題及答案
- 母豬飼料配方選擇試題及答案
- 公共營養(yǎng)師考試技巧提升法探討試題及答案
- 有線電視播放行業(yè)市場現(xiàn)狀分析及未來三至五年行業(yè)預測報告
- 《臺港澳暨海外華文文學研究》課程教學大綱
- 電動車充電站火災預防及應急預案
- 第47屆世界技能大賽江蘇省選拔賽競賽技術文件-混凝土建筑項目
- 白蟻防治施工方案
- 任務2 混合動力汽車制動系統(tǒng)典型構(gòu)造與檢修
- 會計師事務所審計操作手冊
- 國開2024年《數(shù)據(jù)庫運維》形考1-3
- 初中語文名著“整本書閱讀”教學策略實踐與研究
- 勞動合同(模版)4篇
- 第19課+資本主義國家的新變化+教案 高一下學期統(tǒng)編版(2019)必修中外歷史綱要下
評論
0/150
提交評論