外磁場中三維混合自旋Ising系統(tǒng)的磁學(xué)性質(zhì)-_第1頁
外磁場中三維混合自旋Ising系統(tǒng)的磁學(xué)性質(zhì)-_第2頁
外磁場中三維混合自旋Ising系統(tǒng)的磁學(xué)性質(zhì)-_第3頁
外磁場中三維混合自旋Ising系統(tǒng)的磁學(xué)性質(zhì)-_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、外磁場中三維混合自旋Ising系統(tǒng)的磁學(xué)性質(zhì)*論文導(dǎo)讀::用Monte Carlo方法研究了外磁場中自旋-1與自旋-3/2混合三維Ising系統(tǒng)的磁性質(zhì)。結(jié)果說明,系統(tǒng)磁矩隨晶場的增強階梯式減小,由于能量簡并的解除,外磁場存在時磁矩隨晶場變化的臺階數(shù)目增多。當單離子晶場與在同一臺階區(qū)域取值時,系統(tǒng)磁矩隨外磁場的增強平緩地趨于飽和值,而當二者在不同臺階區(qū)域取值時,系統(tǒng)磁矩隨外磁場的變化那么表現(xiàn)出了較明顯的臺階結(jié)構(gòu)。單離子晶場與對于系統(tǒng)無序相的影響是不同的。論文關(guān)鍵詞:混合自旋,MonteCarlo,磁性質(zhì)1. 引言近年來,人們對混合自旋系統(tǒng)產(chǎn)生了濃厚的興趣并進行了初步研究。Y. Nakamura

2、 等人【1】研究了自旋-1和自旋-3/2混合Ising鐵磁系統(tǒng)的磁性質(zhì);A. Bobk等人研究了各向異性晶場對二維正方晶格和二維蜂窩晶格混合自旋系統(tǒng)相變的影響;魏國柱等人【4】研究了簡單立方晶格混合系統(tǒng)的相變問題。研究所采用的方法也各不相同,其中有有效場方法、平均場方法、集團變分法【7】等。然而隨著自旋的增大和自旋的混合,會帶來近似方法技術(shù)處理上的困難,而Monte Carlo模擬可以控制統(tǒng)計誤差,準確處理自旋之間的相互作用,且不帶有任何其他近似,因而是研究這類系統(tǒng)的有效方法。上面的研究僅僅考慮了交換相互作用和單離子晶場物理論文,而沒有考慮對磁性系統(tǒng)有重要影響的外磁場的作用。本文用Monte

3、Carlo方法研究考慮晶場與外磁場作用的自旋-1與自旋-3/2混合的簡單立方晶格系統(tǒng)。結(jié)果說明,磁矩隨晶場的增強而階梯式減小,由于能量簡并的解除,外磁場存在時臺階數(shù)目增多。當兩單離子晶場在同一臺階區(qū)域取值時,系統(tǒng)磁矩隨外磁場的增強平緩地趨于飽和值,而當二者在不同臺階區(qū)域取值時,系統(tǒng)磁矩隨外磁場的變化那么表現(xiàn)出了較明顯的臺階結(jié)構(gòu)。兩單離子晶場對系統(tǒng)無序相的影響不同論文開題報告。2. 模型與計算模型哈密頓量.(1)其中,自旋,;第一項對最近鄰求和,為最近鄰格點間交換耦合常數(shù),、分別表示離子A、離子B處的晶場,為外磁場。計算中,采用翻轉(zhuǎn)單個自旋的Metropolis算法,取的簡單立方晶格系統(tǒng),采用周

4、期性邊界條件。起初的10000MCS作為系統(tǒng)趨于平衡所需要的步數(shù),不進行統(tǒng)計平均物理論文,而對以后的50000MCS所測量的物理量進行統(tǒng)計平均。系統(tǒng)的磁化強度,(2)磁化率,(3)每個格點的內(nèi)能,(4)比熱,(5)其中為約化溫度,是絕對溫度,為玻爾茲曼常數(shù)。3. 結(jié)果與討論圖1 給出了磁矩隨晶場的變化關(guān)系。為確定起見,取定溫度,外磁場分別取和為配位數(shù)。圖1 磁矩隨晶場的變化可以看出,不管外磁場存在與否,磁矩隨晶場 的增大階梯式降低,這與Y. Nakamura等人【1】的結(jié)果一致。當晶場取不同范圍內(nèi)的值時,系統(tǒng)處于不同的臺階。無外磁場時,三個臺階分別位于、和區(qū),相應(yīng)的磁矩分別為1.0,0.3和0

5、。當存在外磁場時,磁矩隨晶場變化的臺階數(shù)目由3個變?yōu)?個,即系統(tǒng)的有序相增多,這與外磁場中系統(tǒng)能量簡并的解除有關(guān)。圖2磁矩隨溫度的變化3.71;當時,相變溫度約為1.76;當, 時,相變溫度約為1.41;當, 時,相變溫度約為0.81,即晶場的增強可以使系統(tǒng)更快地從有序相轉(zhuǎn)變到無序相。低溫下, 與取在同一臺階區(qū)域曲線1 、曲線2 、曲線3 ,時,對應(yīng)的有序相是相同的;與取在不同臺階區(qū)域曲線4 ,時,對應(yīng)的那么是另一有序相。與無外磁場時的對應(yīng)情況相比,當有外磁場存在時,系統(tǒng)的磁矩在不同的溫度區(qū)域有不同程度的增大,磁矩隨溫度升高而降低的速度趨緩,系統(tǒng)從有序相到無序相的轉(zhuǎn)變溫度更高。圖3給出了磁矩隨

6、外磁場的變化關(guān)系。為確定起見,取定溫度。與圖2所示的情況類似物理論文,晶場增強使系統(tǒng)的磁矩變小。圖3 磁矩隨外磁場的變化與取值在同一臺階區(qū)域曲線1 、曲線2 ,時,系統(tǒng)磁矩隨外磁場的增強平緩地趨于飽和值;與取值在不同的臺階區(qū)域曲線3 ,時,系統(tǒng)磁矩隨外磁場的增強而增大,但表現(xiàn)出了較明顯的臺階特征,這說明系統(tǒng)在到達最終的有序相的過程中,歷經(jīng)了其它有序相,即發(fā)生了鐵磁-鐵磁相變論文開題報告。圖4 給出了無外磁場時,系統(tǒng)磁矩隨單離子晶場的變化關(guān)系。為確定起見,取定溫度。圖中曲線1為時,系統(tǒng)磁矩隨的變化關(guān)系,圖中曲線2為時,系統(tǒng)磁矩隨的變化關(guān)系。容易看出,磁矩隨著的增大呈現(xiàn)四個逐次降低的臺階,即系統(tǒng)有

7、三個有序相和一個無序相;而隨著的增大磁矩那么呈現(xiàn)出逐次降低的三圖4磁矩隨單離子晶場的變化個臺階物理論文,值得注意的是,即使的值取得很大,磁矩也不為零,即系統(tǒng)不能到達無序相。這說明與對于系統(tǒng)無序相的影響是不同的。4. 結(jié)論用Monte Carlo方法研究了外磁場中自旋-1與自旋-3/2混合三維Ising系統(tǒng)。系統(tǒng)磁矩隨晶場的增強階梯式減小,由于能量簡并的解除,外磁場存在時臺階數(shù)目增多。低溫下,與取在同一臺階區(qū)域時與二者取在不同臺階區(qū)域時對應(yīng)的有序相是不同的。在外磁場中,當與在同一臺階區(qū)域取值時,系統(tǒng)磁矩隨外磁場的增強平緩地趨于飽和值,而當二者在不同臺階區(qū)域取值時,系統(tǒng)磁矩隨外磁場的變化那么表現(xiàn)出

8、了較明顯的臺階結(jié)構(gòu),即有鐵磁-鐵磁相變發(fā)生。單離子晶場與對于系統(tǒng)無序相的影響不同。參考文獻【1】Y. Nakamura, J. W. Tucker,IEEE Trans. Magnetics, 38(2002), 2406.【2】A. Bobk, Physica A, 258(1998), 140.【3】A. Bobk, Physica A, 286(2000), 531.【4】Wei G. Z.,Zhang Q., Gu Y. W., J. Magn. Magn. Mater, 301(2006), 245.【5】O. F. Abubrig, D. Horvk, M. Ja?ur, Physica A, 296(2001), 437.【6】Wei G. Z., Gu Y. W., Liu J., Phys.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論