新人教版九年級上冊數(shù)學(xué) 21.2.2 用配方法解一元二次方程 教學(xué)課件_第1頁
新人教版九年級上冊數(shù)學(xué) 21.2.2 用配方法解一元二次方程 教學(xué)課件_第2頁
新人教版九年級上冊數(shù)學(xué) 21.2.2 用配方法解一元二次方程 教學(xué)課件_第3頁
新人教版九年級上冊數(shù)學(xué) 21.2.2 用配方法解一元二次方程 教學(xué)課件_第4頁
新人教版九年級上冊數(shù)學(xué) 21.2.2 用配方法解一元二次方程 教學(xué)課件_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、21.2 解一元二次方程第二十一章 一元二次方程第2課時 用配方法解一元二次方程逐點導(dǎo)講練課堂小結(jié)作業(yè)提升課時講解1課時流程2一元二次方程配方的方法用配方法解一元二次方程完全平方公式:a22abb2(ab)2a22abb2(ab)2回顧舊知知識點一元二次方程配方的方法知1講1 用利用完全平方式的特征配方,并完成填空 (1)x210 x_(x_)2; (2)x2(_)x 36x(_)2; (3)x24x5(x_)2_25512629導(dǎo)引:配方就是要配成完全平方,根據(jù)完全平方式的結(jié)構(gòu)特征,當二次項系數(shù)為1時, 常數(shù)項是一次項系數(shù)一半的平方例 1知1講總 結(jié)當二次項系數(shù)為 1 時, 已知一次項的系數(shù)

2、, 則常數(shù)項為一次項系數(shù)一半的平方;已知常 數(shù)項,則一次項系數(shù)為常數(shù)項的平方根的兩 倍注意有兩個當二次項系數(shù)不為1時,則先化二次項系數(shù) 為1,然后再配方知1練1填空:(1)x210 x_(x_)2;(2)x212x_(x_)2;(3)x25x_(x_)2;(4)x2 x_(x_)2.將代數(shù)式a24a5變形,結(jié)果正確的是()A(a2)21 B(a2)25C(a2)24 D(a2)292255366D知1練將代數(shù)式 x210 x5 配方后,發(fā)現(xiàn)它的最小值為()A 30 B 20 C 5 D0不論x,y為何實數(shù),代數(shù)式 x2y22x4y7的值()A總不小于2 B總不小于7 C可為任何實數(shù) D可能為負

3、數(shù)34BA知識點用配方法解一元二次方程知2講2x26x40(x3)25這種方程怎樣解?變形為的形式(a為非負常數(shù))變形為知2練例2解: 常數(shù)項移到“”右邊 解方程:3x26x40.移項,得 3x26x4二次項系數(shù)化為1,得配方,得x22x .x22x 12 12. (x1)2 .兩邊同時除以3兩邊同時加上二次項系數(shù)一半的平方知2練因為實數(shù)的平方不會是負數(shù),所以 x取任 何實數(shù)時, (x1)2 都是非負數(shù), 上式都不成立, 即原方程無實數(shù)根知2練 解下列方程 (1)x28x10; (2)2x213x; (1) 方程的二次項系數(shù)為1,直接運用配方法 (2) 先把方程化成2x23x10.它的二次項系

4、數(shù) 為2,為了便于配方,需將二次項系數(shù)化為1, 為此方程的兩邊都除以2.例 3知2練解: (1) 移項,得x28x1. 配方,得x28x42142,(x4)215. 由此可得知2練(2) 移項,得 2x23x1. 二次項系數(shù)化為1,得 配方,得 由此可得知2講總 結(jié) 般地,如果一個一元二次方程通過配方轉(zhuǎn)化成 (xn)2p () 的形式,那么就有:(1)當p0時,方程()有兩個不等的實數(shù)根 (2)當p0時,方程()有兩個相等的實數(shù)根x1x2n;x1n ,x2n ;知2講總 結(jié)(3)當p0時,因為對任意實數(shù)x,都有(xn)20, 所以方程()無實數(shù)根知識鏈接配方的依據(jù)是完全平方公式a22ab+b2=(ab)2,其實質(zhì)是將a看成未知數(shù),b看成常數(shù),則b2即是一次項系數(shù)一半的平方.知2練21用配方法解下列方程,其中應(yīng)在方程左右兩邊同時加上4的是()Ax24x5 B2x24x5Cx22x5 Dx22x5用配方法解方程x28x90,變形后的結(jié)果正確的是()A(x4)29 B (x4)27C(x4)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論