




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、2021-2022高二下數(shù)學(xué)模擬試卷注意事項(xiàng):1答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2答題時(shí)請(qǐng)按要求用筆。3請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1若是第四象限角,則( )ABCD2已知向量,若,則實(shí)數(shù) ( )ABCD3在正方體中,點(diǎn),分別是,的中點(diǎn),則下列說
2、法正確的是( )AB與所成角為C平面D與平面所成角的余弦值為4若的展開式中的第五、六項(xiàng)二項(xiàng)式系數(shù)最大,則該展開式中常數(shù)項(xiàng)為( )AB84CD365設(shè)隨機(jī)變量B(2,p),B(4,p),若P(1)=5A1127B3281C656函數(shù)的零點(diǎn)個(gè)數(shù)為( )A0B1C2D37若函數(shù),則( )A0B-1CD18命題“任意”為真命題的一個(gè)充分不必要條件是( )ABCD9一個(gè)正方形花圃,被分為5份A、B、C、D、E,種植紅、黃、藍(lán)、綠4種顏色不同的花,要求相鄰兩部分種植不同顏色的花,則不同的種植方法有( )A24 種B48 種C84 種D96種10已知函數(shù)f(x)=(2x-1)ex+ax2-3a(A-2e,+
3、)B-3211圓與的位置關(guān)系是( )A相交B外切C內(nèi)切D相離12球的體積是,則此球的表面積是( )ABCD二、填空題:本題共4小題,每小題5分,共20分。13為了宣傳校園文化,讓更多的學(xué)生感受到校園之美,某校學(xué)生會(huì)組織了6個(gè)小隊(duì)在校園最具有代表性的3個(gè)地點(diǎn)進(jìn)行視頻拍攝,若每個(gè)地點(diǎn)至少有1支小隊(duì)拍攝,則不同的分配方法有_種(用數(shù)字作答)14若不同的兩點(diǎn)和在參數(shù)方程(為參數(shù))表示的曲線上,則與的距離的最大值是_15如圖所示,正方形的邊長(zhǎng)為,已知, 將直角沿邊折起,折起后點(diǎn)在平面上的射影為點(diǎn),則翻折后的幾何體中與所成角的正切值為_16如圖,是正方體的棱上的一點(diǎn),且平面,則異面直線與所成角的余弦值為_
4、三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17(12分)約定乒乓球比賽無平局且實(shí)行局勝制,甲、乙二人進(jìn)行乒乓球比賽,甲每局取勝的概率為(1)試求甲贏得比賽的概率;(2)當(dāng)時(shí),勝者獲得獎(jiǎng)金元,在第一局比賽甲獲勝后,因特殊原因要終止比賽試問應(yīng)當(dāng)如何分配獎(jiǎng)金最恰當(dāng)?18(12分)計(jì)劃在某水庫建一座至多安裝3臺(tái)發(fā)電機(jī)的水電站,過去50年的水文資料顯示,水庫年入流量X(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和單位:億立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年,如將年人流量在以上三段的頻率作為相應(yīng)段的概率,假設(shè)各年的
5、年入流量相互獨(dú)立(1)求未來4年中,至多有1年的年入流量超過120的概率;(,)(2)水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行最多,但每年發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)受年入流量X限制,并有如下關(guān)系:年流入量發(fā)電機(jī)最多可運(yùn)行臺(tái)數(shù)123若某臺(tái)發(fā)電機(jī)運(yùn)行,則該臺(tái)年利潤(rùn)為4000萬元,若某臺(tái)發(fā)電機(jī)未運(yùn)行,則該臺(tái)年虧損600萬元,欲使水電站年總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)多少臺(tái)?19(12分)已知函數(shù).(1)若函數(shù)在上單調(diào)遞增的,求實(shí)數(shù)的取值范圍;(2)當(dāng)時(shí),求函數(shù)在上的最大值和最小值.20(12分)已知四棱錐PABCD的底面為等腰梯形, ABCD,ACBD,垂足為H, PH是四棱錐的高,E為AD中點(diǎn),設(shè)1)證明:
6、PEBC;2)若APBADB60,求直線PA與平面PEH所成角的正弦值21(12分)已知函數(shù),(1)當(dāng)時(shí),求函數(shù)的最小值(2)當(dāng)時(shí),對(duì)于兩個(gè)不相等的實(shí)數(shù),有,求證:22(10分)已知圓C經(jīng)過P(4,2),Q(1,3)兩點(diǎn),且圓心C在直線xy10上(1)求圓C的方程;(2)若直線lPQ,且l與圓C交于點(diǎn)A,B且以線段AB為直徑的圓經(jīng)過坐標(biāo)原點(diǎn),求直線l的方程參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】確定角所處的象限,并求出的值,利用誘導(dǎo)公式求出的值【詳解】是第四象限角,則,且,所以,是第四象限角,則,因此,故選C【
7、點(diǎn)睛】本題考查三角求值,考查同角三角函數(shù)基本關(guān)系、誘導(dǎo)公式的應(yīng)用,再利用同角三角函數(shù)基本關(guān)系求值時(shí),要確定對(duì)象角的象限,于此確定所求角的三角函數(shù)值符號(hào),結(jié)合相關(guān)公式求解,考查計(jì)算能力,屬于中等題2、B【解析】由題得,解方程即得解.【詳解】因?yàn)?,所?故選B【點(diǎn)睛】本題主要考查向量垂直的坐標(biāo)表示,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.3、C【解析】以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出結(jié)果【詳解】解:設(shè)正方體ABCDA1B1C1D1中棱長(zhǎng)為2,以D為原點(diǎn),DA為x軸,DC為y軸,DD1為z軸,建立空間直角坐標(biāo)系,A1(2,0,2),E(
8、2,1,0),B(2,2,0),F(xiàn)(0,2,1),(0,1,2),(2,0,1),20,A1E與BF不垂直,故A錯(cuò)誤;(2,2,1),(2,2,0),cos,0,A1F與BD所成角為90,故B錯(cuò)誤;(2,0,0),(0,2,1),(0,1,2),0,0,A1EDA,A1EDF,A1E平面ADF,故C正確;(2,2,1),平面ABCD的法向量(0,0,1),設(shè)A1F與平面ABCD所成角為,則sin,cosA1F與平面ABCD所成角的余弦值為,故D錯(cuò)誤故選:C【點(diǎn)睛】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查函數(shù)與方程思想,是中檔題4、B【解析
9、】先由的展開式中的第五、六項(xiàng)二項(xiàng)式系數(shù)最大,求解n,寫出通項(xiàng)公式,令,求出r代入,即得解.【詳解】由于的展開式中的第五、六項(xiàng)二項(xiàng)式系數(shù)最大,故,二項(xiàng)式的通項(xiàng)公式為:令可得:故選:B【點(diǎn)睛】本題考查了二項(xiàng)式定理的應(yīng)用,考查了學(xué)生概念理解,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于中檔題.5、A【解析】利用二項(xiàng)分布概率計(jì)算公式結(jié)合條件P1=59計(jì)算出【詳解】由于B2,p,則P1=1-P所以,B4,1 =1127【點(diǎn)睛】本題考查二項(xiàng)分布概率的計(jì)算,解題的關(guān)鍵在于找出基本事件以及靈活利用二項(xiàng)分布概率公式,考查計(jì)算能力,屬于中等題。6、C【解析】,如圖,由圖可知,兩個(gè)圖象有2個(gè)交點(diǎn),所以原函數(shù)的零點(diǎn)個(gè)數(shù)為2個(gè),故選
10、C7、B【解析】根據(jù)分段函數(shù)的解析式代入自變量即可求出函數(shù)值.【詳解】因?yàn)?所以,因?yàn)?,所以,故,故選B.【點(diǎn)睛】本題主要考查了分段函數(shù),屬于中檔題.8、C【解析】試題分析:對(duì)此任意性問題轉(zhuǎn)化為恒成立,當(dāng),即,若是原命題為真命題的一個(gè)充分不必要條件,那應(yīng)是的真子集,故選C.考點(diǎn):1.集合;2.充分必要條件.9、D【解析】區(qū)域A、C、D兩兩相鄰,共有種不同的種植方法,討論區(qū)域E與區(qū)域A種植的花的顏色相同與不同,即可得到結(jié)果.【詳解】區(qū)域A、C、D兩兩相鄰,共有種不同的種植方法,當(dāng)區(qū)域E與區(qū)域A種植相同顏色的花時(shí),種植B、E有種不同的種植方法,當(dāng)區(qū)域E與區(qū)域A種植不同顏色的花時(shí),種植B、E有種不同
11、的種植方法,不同的種植方法有種,故選D【點(diǎn)睛】本題考查排列、組合及簡(jiǎn)單計(jì)數(shù)問題,考查分類討論思想與分析、運(yùn)算及求解能力,屬于中檔題10、A【解析】把函數(shù)f(x)為增函數(shù),轉(zhuǎn)化為f(x)0在(0,+)上恒成立,得到a-(2x+1)ex2x【詳解】由題意,函數(shù)f(x)=(2x-1)e則f(x)=2ex+(2x-1)設(shè)g(x)=則g令g(x)0,得到0 x12 ,則函數(shù)g(x) 在0,1即a的取值范圍是-2e故選A.【點(diǎn)睛】本題主要考查了利用函數(shù)的單調(diào)性與極值(最值)求解參數(shù)問題,其中解答中根據(jù)函數(shù)的單調(diào)性,得到a-(2x+1)e11、A【解析】試題分析:由題是給兩圓標(biāo)準(zhǔn)方程為:,因?yàn)?,所以兩圓相離
12、,故選D.考點(diǎn):圓與圓的位置關(guān)系12、B【解析】先計(jì)算出球的半徑,再計(jì)算表面積得到答案.【詳解】設(shè)球的半徑為R,則由已知得,解得,故球的表面積.故選:【點(diǎn)睛】本題考查了圓的體積和表面積的計(jì)算,意在考查學(xué)生的計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13、540【解析】首先將6個(gè)小隊(duì)分成三組,有三種組合,然后再分配,即可求出結(jié)果【詳解】(1)若按照進(jìn)行分配有種方案;(2)若按照進(jìn)行分配有種方案;(3)若按照進(jìn)行分配有種方案;由分類加法原理,所以共有種分配方案【點(diǎn)睛】本題主要考查分類加法計(jì)數(shù)原理,以及排列組合的相關(guān)知識(shí)應(yīng)用易錯(cuò)點(diǎn)是平均分配有重復(fù),注意消除重復(fù)14、【解析】將曲線的參
13、數(shù)方程化為直角坐標(biāo)方程可知,曲線為半徑為2的圓,所以當(dāng)為圓的直徑時(shí),與的距離的最大值是2.【詳解】由參數(shù)方程(為參數(shù)),可得,所以點(diǎn)和在半徑為1的圓上,所以當(dāng)為圓的直徑時(shí),與的距離的最大值是2.故答案為 :2【點(diǎn)睛】本題考查了參數(shù)方程化普通方程,圓的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.15、【解析】連接,根據(jù)平行關(guān)系可知即為與所成角;根據(jù)線面垂直的性質(zhì)和判定定理可證得,從而可求得,利用同角三角函數(shù)可求得結(jié)果.【詳解】連接,如下圖所示:四邊形為正方形 ,與所成角即為與所成角,即點(diǎn)在平面上的射影為點(diǎn) 平面又平面 平面, 平面平面 即與所成角的正切值為本題正確結(jié)果;【點(diǎn)睛】本題考查異面直線所成角的求解問題,涉及到
14、立體幾何中的翻折變換問題,關(guān)鍵是能夠通過平行關(guān)系將異面直線成角轉(zhuǎn)變?yōu)橄嘟恢本€所成角,從而根據(jù)垂直關(guān)系在直角三角形中來進(jìn)行求解.16、【解析】不妨設(shè)正方體的棱長(zhǎng)為,如圖,當(dāng)為中點(diǎn)時(shí),平面,則為直線與所成的角,在中,故答案為.【方法點(diǎn)晴】本題主要考查異面直線所成的角,屬于難題.求異面直線所成的角主要方法有兩種:一是向量法,根據(jù)幾何體的特殊性質(zhì)建立空間直角坐標(biāo)系后,分別求出兩直線的方向向量,再利用空間向量夾角的余弦公式求解;二是傳統(tǒng)法,利用平行四邊形、三角形中位線等方法找出兩直線成的角,再利用平面幾何性質(zhì)求解.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)甲獲得元
15、,乙獲得元.【解析】(1)甲贏得比賽包括三種情況:前局甲全勝;前三局甲勝局輸局,第局勝;前局甲勝局輸局,第局勝.這三個(gè)事件互斥,然后利用獨(dú)立重復(fù)試驗(yàn)的概率和互斥事件的概率加法公式可得出計(jì)算所求事件的概率;(2)設(shè)甲獲得獎(jiǎng)金為隨機(jī)變量,可得出隨機(jī)變量的可能取值為、,在第一局比賽甲獲勝后,計(jì)算出甲獲勝的概率,并列出隨機(jī)變量的分布列,并計(jì)算出隨機(jī)變量的數(shù)學(xué)期望的值,即可得出甲分得獎(jiǎng)金數(shù)為元,乙分得獎(jiǎng)金元.【詳解】(1)甲贏得比賽包括三種情況:前局甲全勝;前三局甲勝局輸局,第局勝;前局甲勝局輸局,第局勝.記甲贏得比賽為事件,則;(2)如果比賽正常進(jìn)行,則甲贏得比賽有三種情況:第、局全勝;第、局勝局輸局
16、,第局勝;第、局勝場(chǎng)輸局,第局勝,此時(shí)甲贏得比賽的概率為.則甲獲得獎(jiǎng)金的分布列為0則甲獲得獎(jiǎng)金的期望為元,最恰當(dāng)?shù)莫?jiǎng)金分配為:甲獲得元,乙獲得元.【點(diǎn)睛】本題考查利用獨(dú)立重復(fù)試驗(yàn)和互斥事件的概率公式計(jì)算出事件的概率,同時(shí)也考查了隨機(jī)變量分布列及其數(shù)學(xué)期望,考查運(yùn)算求解能力,屬于中等題.18、(1);(2)2臺(tái).【解析】(1)求出,由二項(xiàng)分布,未來4年中,至多有1年的年入流量超過120的概率(2)記水電站的總利潤(rùn)為(單位,萬元),求出安裝1臺(tái)發(fā)電機(jī)、安裝2臺(tái)發(fā)電機(jī)、安裝3臺(tái)發(fā)電機(jī)時(shí)的分布列和數(shù)學(xué)期望,由此能求出欲使水電站年總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝發(fā)電機(jī)的臺(tái)數(shù)【詳解】解:(1)依題意,由二項(xiàng)分
17、布,未來4年中,至多有1年的年入流量超過120的概率為: (2)記水電站的總利潤(rùn)為Y(單位,萬元)安裝1臺(tái)發(fā)電機(jī)的情形:由于水庫年入流總量大于40,故一臺(tái)發(fā)電機(jī)運(yùn)行的概率為1,對(duì)應(yīng)的年利潤(rùn), 安裝2臺(tái)發(fā)電機(jī)的情形:依題意,當(dāng)時(shí),一臺(tái)發(fā)電機(jī)運(yùn)行,此時(shí),因此,當(dāng)時(shí),兩臺(tái)發(fā)電機(jī)運(yùn)行,此時(shí),因此,由此得Y的分布列如下Y34008000P0.20.8所以安裝3臺(tái)發(fā)電機(jī)的情形:依題意,當(dāng)時(shí),一臺(tái)發(fā)電機(jī)運(yùn)行,此時(shí),因此,當(dāng)時(shí),兩臺(tái)發(fā)電機(jī)運(yùn)行,此時(shí),因此,當(dāng)時(shí),三臺(tái)發(fā)電機(jī)運(yùn)行,此時(shí),因此,由此得Y的分布列如下Y2800740012000P0.20.70.1所以綜上,欲使水電站年總利潤(rùn)的均值達(dá)到最大,應(yīng)安裝發(fā)電
18、機(jī)2臺(tái)【點(diǎn)睛】本題考查概率的求法,考查離散型隨機(jī)變量的分布列、數(shù)學(xué)期望的求法及應(yīng)用,考查運(yùn)算求解能力,是中檔題19、 (1) (2) 【解析】試題分析:(1)若函數(shù)f(x)在(,+)上是增函數(shù),f(x)1在(,+)上恒成立利用二次函數(shù)的單調(diào)性即可得出;(2)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值即可得出試題解析:(1)若函數(shù)在上是增函數(shù),則在上恒成立,而,即在上恒成立,即.(2)當(dāng)時(shí),.令,得.當(dāng)時(shí),當(dāng)時(shí),故是函數(shù)在上唯一的極小值點(diǎn),故.又,故.點(diǎn)睛:點(diǎn)睛:函數(shù)單調(diào)性與導(dǎo)函數(shù)的符號(hào)之間的關(guān)系要注意以下結(jié)論(1)若在內(nèi),則在上單調(diào)遞增(減)(2)在上單調(diào)遞增(減) ()在上恒成立,且在的任意子區(qū)間內(nèi)
19、都不恒等于1(不要掉了等號(hào))(3)若函數(shù)在區(qū)間內(nèi)存在單調(diào)遞增(減)區(qū)間,則在上有解(不要加上等號(hào))20、 (1)見解析;(2).【解析】分析:(1)以H為原點(diǎn),HA,HB,HP所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系,利用向量法能證明PEBC;(2)求出平面PEH的法向量和(1,0,1),利用向量法能求出直線PA與平面PEH所成角的正弦值詳解:以H為原點(diǎn),HA,HB,HP所在直線分別為x,y,z軸,建立空間直角坐標(biāo)系如圖,則A(1,0,0),B(0,1,0),(1)證明:設(shè)C(m,0,0),P(0,0,n)(m0),則D(0,m,0),E(,0)可得(,n),(m,1,0) 因?yàn)?0,所
20、以PEBC. (2)由已知條件可得m,n1, 故C(,0,0),D(0,0),E(,0),P(0,0,1)設(shè)n(x,y,z)為平面PEH的法向量,則即因此可以取n(1,0)由(1,0,1),可得|cos,n|,所以直線PA與平面PEH所成角的正弦值為.點(diǎn)睛:本題考查異面直線垂直的證明,考查直線與平面所成角的正弦值的求法,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.21、(1);(2)見解析【解析】(1)先由得,對(duì)函數(shù)求導(dǎo),用導(dǎo)數(shù)的方法研究其單調(diào)性,即可求出最值;(2)先由,得到,對(duì)函數(shù)求導(dǎo),得到其單調(diào)區(qū)間,再設(shè),令,用導(dǎo)數(shù)的方法研究函數(shù)的單調(diào)性,進(jìn)而可證明結(jié)論成立.【詳解】(1)當(dāng)時(shí),由得;由得;在上單調(diào)遞減,在上單調(diào)遞增,.(2)當(dāng)時(shí),對(duì)于兩個(gè)不相等的實(shí)數(shù),有,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年西北地區(qū)房地產(chǎn)市場(chǎng)區(qū)域分化特點(diǎn)與投資機(jī)會(huì)研究報(bào)告
- 新建光伏發(fā)電項(xiàng)目光伏電池的技術(shù)發(fā)展趨勢(shì)
- 市政管網(wǎng)建設(shè)項(xiàng)目選址分析與可行性評(píng)估
- 加氫站的安全保障體系與應(yīng)急管理措施
- 茶葉店品牌故事塑造考核試卷
- 紡織機(jī)械的聲學(xué)監(jiān)測(cè)技術(shù)考核試卷
- 質(zhì)檢技術(shù)的前景與發(fā)展趨勢(shì)考核試卷
- 日化行業(yè)高級(jí)課程與專題研討考核試卷
- 貨幣經(jīng)紀(jì)公司業(yè)務(wù)流程優(yōu)化考核試卷
- 鹽的溶解度與溶解速度研究考核試卷
- DL∕ T 802.3-2007 電力電纜用導(dǎo)管技術(shù)條件 第3部分:氯化聚氯乙烯及硬聚氯乙烯塑料電纜導(dǎo)管
- 穿越時(shí)空的音樂鑒賞之旅智慧樹知到期末考試答案章節(jié)答案2024年浙江中醫(yī)藥大學(xué)
- CJT 511-2017 鑄鐵檢查井蓋
- 活動(dòng)執(zhí)行實(shí)施合同范本
- 24春國開電大《機(jī)電一體化系統(tǒng)綜合實(shí)訓(xùn)》實(shí)訓(xùn)報(bào)告
- DZ∕T 0207-2020 礦產(chǎn)地質(zhì)勘查規(guī)范 硅質(zhì)原料類(正式版)
- 醫(yī)院培訓(xùn)課件:《分級(jí)護(hù)理制度》
- 外國建筑賞析智慧樹知到期末考試答案章節(jié)答案2024年清華大學(xué)
- 《殺雞儆猴》兒童繪本演講故事課件(圖文)
- 拓?fù)淇臻g的維數(shù)理論
- 北京奧林匹克森林公園植物景觀與生態(tài)效益初探
評(píng)論
0/150
提交評(píng)論