界面與膠體化學基礎(國家級課程)課件_第1頁
界面與膠體化學基礎(國家級課程)課件_第2頁
界面與膠體化學基礎(國家級課程)課件_第3頁
界面與膠體化學基礎(國家級課程)課件_第4頁
界面與膠體化學基礎(國家級課程)課件_第5頁
已閱讀5頁,還剩492頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

1、 界面與膠體化學基礎2022/9/25 界面與膠體化學基礎2022/9/24前言界面現(xiàn)象是自然界普遍存在的現(xiàn)象。膠體指的是具有很大比表面的分散體系。對膠體和界面現(xiàn)象的研究是物理化學基本原理的拓展和應用。從歷史角度看,界面化學是膠體化學的一個最重要的分支,兩者間關(guān)系密切。而隨著科學的發(fā)展,現(xiàn)今界面化學已獨立成一門科學,有關(guān)“界面現(xiàn)象”或“膠體與界面現(xiàn)象”的專著在國內(nèi)外已有多種版本。本課程主要介紹與界面現(xiàn)象有關(guān)的物理化學原理及應用。它包括各種相界面和表面活性劑的相關(guān)特性,界面上的各種物理化學作用,實驗的和理論的研究方法及其重要應用。對于準備考研的同學,還應將其作為物理化學課程的一部分。2022/9

2、/25前言界面現(xiàn)象是自然界普遍存在的現(xiàn)象。膠體指的是具有很大比20前言界面化學是一門既古老又年輕的科學,它是研究界面的物理化學規(guī)律及體相與表相的相互影響關(guān)系的一門學科。歷史上對界面現(xiàn)象的研究是從力學開始的,早在十九世紀初就形成了界面張力的概念。而最早提出界面張力概念的是T.Young,他在1805年指出,體系中兩個相接觸的均勻流體,從力學的觀點看就象是被一張無限薄的彈性膜所分開,界面張力則存在于這一彈性膜中。楊還將界面張力概念推廣應用于有固體的體系,導出了聯(lián)系氣液、固液、固氣界面張力與接觸角關(guān)系的楊氏方程。2022/9/25前言界面化學是一門既古老又年輕的科學,它是研究界面的物理20前言 18

3、06年,拉普拉斯(P.S.Laplace)導出了彎曲液面兩邊附加壓力與界面張力和曲率半徑的關(guān)系.可用該公式解釋毛細管現(xiàn)象。1869年普里(A.Dapre)研究了潤濕和黏附 現(xiàn)象,將黏附功與界面張力聯(lián)系起來。界面熱力學的奠基人吉布斯(Gibbs)在1878年提出了界面相厚度為零的吉布斯界面模型,他還導出了聯(lián)系吸附量和界面張力隨體相濃度變化的普遍關(guān)系式即著名的吉布斯吸附等溫式。1859年,開爾文(Kelvin)將界面擴展時伴隨的熱效應與界面張力隨溫度的變化聯(lián)系起來。后來,他又導出蒸汽壓隨界面曲率的變化的方程即著名的開爾文方程。2022/9/25前言 1806年,拉普拉斯(P.S.Laplace)導

4、出了前言在19131942年期間,美國科學家Langmuir在界面科學領域做出了杰出的貢獻,特別是對吸附、單分子膜的研究尤為突出。他于1932年獲諾貝爾獎,被譽為界面化學的開拓者。 界面化學的統(tǒng)計力學研究是從范德華開始的。1893年,范德華認識到在界面層中密度實際上是連續(xù)變化的。他應用了局部自由能密度的概念,結(jié)合范德華方程,并引入半經(jīng)驗修正,從理論上研究了決定于分子間力的狀態(tài)方程參數(shù)與界面張力間的關(guān)系。50年代以后,界面現(xiàn)象的統(tǒng)計力學研究經(jīng)過勃夫(F.Buff)、寇克伍德(Kirkwood)、哈拉西瑪(Harasima)等的研究工作,取得了實質(zhì)性的進展。2022/9/25前言在19131942

5、年期間,美國科學家Langmuir在前言同界面化學一樣,膠體化學也是一門古老而又年輕的科學。有史以前,我們的祖先就會制造陶器;漢朝已能利用纖維造紙;后漢時又發(fā)明了墨;其他像做豆腐、面食以及藥物的制劑等等在我國都有悠久的歷史,這些成品及其制作過程都與膠體化學密切相關(guān)。1809年,俄國化學家Scheele發(fā)現(xiàn)了土粒的電泳現(xiàn)象;1829年英國植物學家Brown觀察到花粉的布朗運動。次后,許多人相繼制備了各種溶膠,并研究了它們的性質(zhì)。 膠體化學作為一門學科來說,它的歷史比較一致的看法是從1861年開始的,創(chuàng)始人是英國科學家Thomas Graham,他系統(tǒng)研究過許多物質(zhì)的擴散速度,并首先提出晶體和膠體

6、(colloid)的概念,制定了許多名詞用來形容他所發(fā)現(xiàn)的2022/9/25前言同界面化學一樣,膠體化學也是一門古老而又年輕的科學。20前言事實。現(xiàn)今我們所用的一些名詞,如溶膠(sol)、凝膠(gel)、膠溶(peptization)、滲析(dialysis)、離漿(syneresis)都是Graham提出的。盡管在這一時期積累了大量的經(jīng)驗和知識,但膠體化學真正為人們所重視并獲得較大的發(fā)展是從1903年開始的。這時 Zsigmondy(德)發(fā)明了超顯微鏡,肯定了溶膠的一個根本問題體系的多相性,從而明確了膠體化學是界面化學。1907年,德國化學家Ostwald創(chuàng)辦了第一個膠體化學的專門刊物膠體化

7、學和工業(yè)雜志,因而許多人把這一年視為膠體化學正式成為一門獨立學科的一年。接著Freundlich和Zsigmondy先后出版了他們的名著毛細管化學(1909)和膠體化學(1902)。近幾十年來,2022/9/25前言事實?,F(xiàn)今我們所用的一些名詞,如溶膠(sol)、凝膠(g前言由于實驗技術(shù)的不斷發(fā)展(像超離心機、光散色、X射線、多種電子顯微鏡、紅外線以及各種能譜等的應用),又使膠體和表面化學在微觀研究中躍進了一大步。2022/9/25前言由于實驗技術(shù)的不斷發(fā)展(像超離心機、光散色、X射線、多種前言界面現(xiàn)象有著廣泛的應用。主要有:1、吸附 如用活性炭脫除有機物;用硅膠或活性氧化鋁脫除水蒸汽;用分子

8、篩分離氮氣和氧氣;泡沫浮選等。2、催化作用 在多相催化中使用固體催化劑以加速反應。如石油工業(yè)的催化裂化和催化加氫、膠束催化等。3、表面膜 如微電子集成電路塊中有重要應用的LB膜;在生物學和醫(yī)學研究中有重要意義的BL膜和人工膜;能延緩湖泊水庫水分蒸發(fā)的天然糖蛋白膜等。4、新相生成 晶核生成或晶體生長是典型的新相生成,過冷、過熱、過飽和等亞穩(wěn)現(xiàn)象產(chǎn)生的主要原因也是由于新相生成。2022/9/25前言界面現(xiàn)象有著廣泛的應用。主要有:2022/9/24前言5、泡沫乳狀液 如油品乳化、破乳;泡沫滅火等。6、潤濕作用 如噴灑農(nóng)藥、感光乳液配制、電鍍工件的潤濕及利用潤濕作用 進行浮選等。此外,在超細粉末和納

9、米材料的制備和粉末團聚的研究方面,界面現(xiàn)象都有重要的應用。 由上可見,界面化學所研究的是包括從宏觀到微觀的相界面。無論是在科學研究中或是在工業(yè)應用上,界面現(xiàn)象均有著極其廣泛的應用。2022/9/25前言5、泡沫乳狀液 如油品乳化、破乳;泡沫滅火等。202第一章 表面吉布斯自由能和表面張力表面和界面界面現(xiàn)象的本質(zhì)比表面分散度與比表面表面功表面自由能表面張力界面張力與溫度的關(guān)系影響表面張力的因素2022/9/25第一章 表面吉布斯自由能和表面張力表面和界面界面現(xiàn)象的本質(zhì)比1.1表面和界面(surface and interface) 在一個非均勻的體系中,至少存在著兩個性質(zhì)不同的相。兩相共存必然有

10、界面??梢?,界面是體系不均勻性的結(jié)果。一般指兩相接觸的約幾個分子厚度的過渡區(qū),若其中一相為氣體,這種界面通常稱為表面。 常見的界面有:氣-液界面,氣-固界面,液-液界面,液-固界面,固-固界面。 嚴格講表面應是液體和固體與其飽和蒸氣之間的界面,但習慣上把液體或固體與空氣的界面稱為液體或固體的表面。2022/9/251.1表面和界面(surface and interface1.1表面和界面(surface and interface)幾點說明:1、嚴格講,界面是“界”而不是“面”。因客觀存在的界面是物理面而非幾何面,是一個準三維的區(qū)域。2、目前,常用于處理界面的模型有兩種:一為古根海姆(Gug

11、genheim)模型。其處理界面的出發(fā)點是:界面是一個有一定厚度的過渡區(qū),它在體系中自成一相界面相。界面相是一個既占有體積又有物質(zhì)的不均勻區(qū)域。該模型能較客觀地反映實際情況但數(shù)學處理較復雜。另一個模型是吉布斯(Gibbs)的相界面模型。該模型認為界面是幾何面而非物理面,它沒有厚度,不占有體積,對純組分也沒有物質(zhì)存在。該模型可使界面熱力學的處理簡單化。2022/9/251.1表面和界面(surface and interface表面和界面(surface and interface)常見的界面有:1.氣-液界面2022/9/25表面和界面(surface and interface)常見表面和界

12、面(surface and interface)2.氣-固界面2022/9/25表面和界面(surface and interface)2.表面和界面(surface and interface)3.液-液界面2022/9/25表面和界面(surface and interface)3.表面和界面(surface and interface)4.液-固界面2022/9/25表面和界面(surface and interface)4.表面和界面(surface and interface)5.固-固界面2022/9/25表面和界面(surface and interface)5.1.2比表面(s

13、pecific surface area) 比表面通常用來表示物質(zhì)分散的程度,有兩種常用的表示方法:一種是單位質(zhì)量的固體所具有的表面積;另一種是單位體積固體所具有的表面積。即:式中,m和V分別為固體的質(zhì)量和體積,A為其表面積。目前常用的測定表面積的方法有BET法和色譜法。2022/9/251.2比表面(specific surface area) 分散度與比表面 把物質(zhì)分散成細小微粒的程度稱為分散度。把一定大小的物質(zhì)分割得越小,則分散度越高,比表面也越大。 例如,把邊長為1cm的立方體1cm3逐漸分割成小立方體時,比表面增長情況列于下表:邊長l/m 立方體數(shù) 比表面Av/(m2/m3)110-

14、2 1 6 102 110-3 103 6 103 110-5 109 6 105 110-7 1015 6 107 110-9 1021 6 109 2022/9/25分散度與比表面 把物質(zhì)分散成細小微粒的程度稱為分分散度與比表面 從表上可以看出,當將邊長為10-2m的立方體分割成10-9m的小立方體時,比表面增長了一千萬倍。 可見達到nm級的超細微粒具有巨大的比表面積,因而具有許多獨特的表面效應,成為新材料和多相催化方面的研究熱點。如鉑黑電極及多孔電極由于其表面積較大,電流密度小,因而極化??;再如,由超細微粒制備的催化劑由于具有很高的比表面因而催化活性較普通催化劑高;此外,將藥物磨成細粉以

15、提高藥效、將金屬做成超細微粒以降低熔點都說明了超細微粒具有獨特的表面效應。 2022/9/25分散度與比表面 從表上可以看出,當將邊長為10-2例題例1、將1g水分散成半徑為 m的小水滴(視為球形),其表面積增加了多少倍?解:對大水滴 對小水滴 2022/9/25例題例1、將1g水分散成半徑為 m的小水滴(視為1.3表面張力與表面自由能 對于單組分體系,這種特性主要來自于同一物質(zhì)在不同相中的密度不同;對于多組分體系,則特性來自于界面層的組成與任一相的組成均不相同。 表面層分子與內(nèi)部分子相比,它們所處的環(huán)境不同。 體相內(nèi)部分子所受四周鄰近相同分子的作用力是對稱的,各個方向的力彼此抵銷(各向同性)

16、; 但是處在界面層的分子,一方面受到體相內(nèi)相同物質(zhì)分子的作用,另一方面受到性質(zhì)不同的另一相中物質(zhì)分子的作用,其作用力不能相互抵銷,因此,界面層分子由于其處在一不均勻?qū)ΨQ的力場會顯示出一些獨特的性質(zhì)。2022/9/251.3表面張力與表面自由能 對于單組分體系,這種特性主界面現(xiàn)象的本質(zhì) 最簡單的例子是液體及其蒸氣組成的表面。 液體內(nèi)部分子所受的力可以彼此抵銷,但表面分子受到體相分子的拉力大,受到氣相分子的拉力?。ㄒ驗闅庀嗝芏鹊停员砻娣肿邮艿奖焕塍w相的作用力。 這種作用力使表面有自動收縮到最小的趨勢,并使表面層顯示出一些獨特性質(zhì),如表面張力、表面吸附、毛細現(xiàn)象、過飽和狀態(tài)等。2022/9/

17、25界面現(xiàn)象的本質(zhì) 最簡單的例子是液體及其蒸氣組成的界面現(xiàn)象的本質(zhì)2022/9/25界面現(xiàn)象的本質(zhì)2022/9/24表面功(surface work)式中 為比例系數(shù),它在數(shù)值上等于當T,P及組成恒定的條件下,增加單位表面積時所必須對體系做的可逆非膨脹功。 由于表面層分子的受力情況與本體中不同,因此如果要把分子從內(nèi)部移到界面,或可逆的增加表面積,就必須克服體系內(nèi)部分子之間的作用力,對體系做功。 溫度、壓力和組成恒定時,可逆使表面積增加dA所需要對體系作的功,稱為表面功。用公式表示為:2022/9/25表面功(surface work)式中 為比例系數(shù),它在表面自由能(surface free

18、energy)由此可得: 考慮了表面功,熱力學基本公式中應相應增加 dA一項,即:2022/9/25表面自由能(surface free energy)由此可得表面自由能(surface free energy) 廣義的表面自由能定義: 狹義的表面自由能定義: 保持溫度、壓力和組成不變,每增加單位表面積時,Gibbs自由能的增加值稱為表面Gibbs自由能,或簡稱表面自由能或表面能,用符號 或 表示,單位為Jm-2。 保持相應的特征變量不變,每增加單位表面積時,相應熱力學函數(shù)的增值。2022/9/25表面自由能(surface free energy) 表面自由能由于U、H、A、G、S、V均為廣

19、度量,因此從上述諸式可得2022/9/25表面自由能由于U、H、A、G、S、V均為廣度量,因此2022表面自由能模型可見,是表征表面性質(zhì)的物理量。表面自由能模型1、若在等溫、等壓、恒組成條件下對 的微分式進行積分,可得可見,上面兩式實際上是等效的。另一方面,當不考慮界面貢獻時比較兩式可得2022/9/25表面自由能模型可見,是表征表面性質(zhì)的物理量。2022/9/表面自由能模型可見,表面自由能是單位表面上的自由能相對于本體相自由能的過剩量。這也是為什么稱為比表面過剩自由能的原因。2、若采用吉布斯界面模型,且體系為純液體。則有可見,對純液體, 是單位面積等效表面所具有的自由能。2022/9/25表

20、面自由能模型可見,表面自由能是單位表面上的自由能相對于本體表面張力(surface tension) 在兩相(特別是氣-液)界面上,處處存在著一種張力,它垂直于表面的邊界,指向液體方向并與表面相切。 將一含有一個活動邊框的金屬線框架放在肥皂液中,然后取出懸掛,活動邊在下面。由于金屬框上的肥皂膜的表面張力作用,可滑動的邊會被向上拉,直至頂部。 把作用于單位邊界線上的這種力稱為表面張力,用g 表示,單位是Nm-1。2022/9/25表面張力(surface tension) 在兩表面張力(surface tension) 如果在活動邊框上掛一重物,使重物質(zhì)量W2與邊框質(zhì)量W1所產(chǎn)生的重力F(F=(

21、W1+W2)g)與總的表面張力大小相等方向相反,則金屬絲不再滑動。 這時 l是滑動邊的長度,因膜有兩個面,所以邊界總長度為2l, 就是作用于單位邊界上的表面張力。2022/9/25表面張力(surface tension) 如果表面張力(surface tension)2022/9/25表面張力(surface tension)2022/9/24表面張力(surface tension) 如果在金屬線框中間系一線圈,一起浸入肥皂液中,然后取出,上面形成一液膜。(a)(b) 由于以線圈為邊界的兩邊表面張力大小相等方向相反,所以線圈成任意形狀可在液膜上移動,見(a)圖。 如果刺破線圈中央的液膜,線

22、圈內(nèi)側(cè)張力消失,外側(cè)表面張力立即將線圈繃成一個圓形,見(b)圖,清楚的顯示出表面張力的存在。2022/9/25表面張力(surface tension) 如果表面張力(surface tension)(a)(b)2022/9/25表面張力(surface tension)(a)(b)202界面張力與溫度的關(guān)系 溫度升高,界面張力下降,當達到臨界溫度Tc時,界面張力趨向于零。這可用熱力學公式說明:因為運用全微分的性質(zhì),可得:等式左方為正值,因為表面積增加,熵總是增加的。所以 隨T的增加而下降。2022/9/25界面張力與溫度的關(guān)系 溫度升高,界面張力下降,當表面熵和表面總能表面熵 是指在等溫等壓

23、下,一定量的液體增加單位表面積時熵的增量。上式表明,可利用實驗可測的量來得到難以從實驗上測定的表面熵值。已知一般液體的表面張力溫度系數(shù)為負值,因此表面熵在一般情況下應為正值。這可看成將分子從液體內(nèi)部遷移到表面,由于分子間力減少,分子排列從有序到無序必引起熵增。換言之,表面熵為正值可理解為是表面層疏松化的結(jié)果。2022/9/25表面熵和表面總能表面熵 是指在等溫等壓下,一定量的液體增表面熵和表面總能表面總能 是指在恒溫恒壓下,增加單位面積時體系內(nèi)能的增量。即根據(jù)式(1-13)對吉布斯界面,有 因此2022/9/25表面熵和表面總能表面總能 是指在恒溫恒壓下,增加單位面積時體表面熵和表面總能顯然,

24、上式右方第一和第二項分別代表擴展單位表面積的可逆功和可逆熱( )。擴展表面時,為使體系溫度不變,必須吸熱。若為絕熱過程,則擴展表面必須使T下降。由于右方兩項均為正值,因此即表面總能大于它的表面自由能,若與熱力學第一定律比較,表面總能為表面功和表面熱的加和。2022/9/25表面熵和表面總能顯然,上式右方第一和第二項分別代表擴展單位表界面張力與溫度的關(guān)系 Ramsay和Shields提出的 與T的經(jīng)驗式較常用:Vm2/3 =k(Tc-T-6.0) 式中Vm為摩爾體積,k為普適常數(shù),對非極性液體,k =2.210-7 JK-1 。2022/9/25界面張力與溫度的關(guān)系 Ramsay和Shields

25、影響表面張力的因素(1)分子間相互作用力的影響(2)溫度的影響 溫度升高,表面張力下降。(3)壓力的影響 表面張力一般隨壓力的增加而下降。因為壓力增加,氣相密度增加,表面分子受力不均勻性略有好轉(zhuǎn)。另外,若是氣相中有別的物質(zhì),則壓力增加,促使表面吸附增加,氣體溶解度增加,也使表面張力下降。 對純液體或純固體,表面張力決定于分子間形成的化學鍵能的大小,一般化學鍵越強,表面張力越大。(金屬鍵) (離子鍵) (極性共價鍵) (非極性共價鍵)兩種液體間的界面張力,界于兩種液體表面張力之間。2022/9/25影響表面張力的因素(1)分子間相互作用力的影響(2)溫度的影壓力的影響壓力與表面張力關(guān)系的實驗研究

26、不易進行,一般說來,壓力對表面張力的影響可以從下面三個方面考慮 p增加,兩相間密度差減少,減小p增加,氣體在液體表面上的吸附使表面能降低(吸附放熱),因此減小p增加,氣體在液體中的溶解度增大,表面能降低以上三種情況均表明, p增加,減小2022/9/25壓力的影響壓力與表面張力關(guān)系的實驗研究不易進行,一般說來,壓壓力的影響但從有關(guān)公式可知上式表明,p增加,增加實驗結(jié)果是,在某些情況下p增加,減小。這可用氣體吸附或溶解來解釋,但在另一些情況下,p增加,增加。顯然,這與上述解釋相反??梢?,壓力對表面張力的影響相當復雜,這是因為增加壓力必須引入第二組分(如惰性氣體),而第二組分又往往會通過吸附或溶解

27、來影響表面張力。當?shù)诙壏值奈交蛉芙鈱Ρ砻鎻埩Φ挠绊戇h遠超過壓力本身的作用則往往表現(xiàn)為第一種情況,而當吸附或溶解的影響很小時,則又表面為第二種情況。2022/9/25壓力的影響但從有關(guān)公式可知上式表明,p增加,增加實驗結(jié)果是1.4 表面自由能和表面張力的微觀解釋 由于表面相分子處于一合力指向液體內(nèi)部的不對稱力場之中,因此,表面層分子有離開表面層進入體相的趨勢。這一點可從液體表面的自動收縮得以證明。這也說明了處于表面層的分子具有比體相內(nèi)部的分子更高的能量。 換言之,增加液體的表面積就必須把一定數(shù)量的內(nèi)部分子遷移到表面上,要完成這個過程必須借助于外力做功。因此,體系獲得的能量便是表面過剩自由能。

28、可見,構(gòu)成界面的兩相性質(zhì)不同及分子內(nèi)存在著相互作用力是產(chǎn)生表面自由能的原因。2022/9/251.4 表面自由能和表面張力的微觀解釋 由于表面相分子處于表面自由能和表面張力的微觀解釋 液體表面為什么會存在張力是一個長期困擾表面化學家的問題,實際上,表面張力同樣是分子間存在相互作用力的結(jié)果。 從液體表面的特性來看,表面上的分子比體相內(nèi)部的分子能量更高,而按照分子分布的規(guī)律,表面上的分子的密度將小于內(nèi)部分子。于是表面分子間的距離較大,因此,表面上的分子沿表面方向存在著側(cè)向引力,距離較大時,吸引力占優(yōu)勢。2022/9/25表面自由能和表面張力的微觀解釋 液體表面為什么會存在張力是表面張力的分子理論對

29、勢加合法方法要點1.液體可看成是由一層層分子排列而成。2.形成新表面可看作把液體內(nèi)部的兩層分子從平衡距離r0移開至相距無窮遠處的過程。3.體系增加的能量可視為未分開時兩部分所有分子間相互吸引能量的總和,可通過加合所有分子對勢能而得到2022/9/25表面張力的分子理論對勢加合法方法要點1.液體可看成是由一層表面張力的分子理論對勢加合法公式表達設單位體積中有N個小單元,兩小單元間的吸引力符合Vander Waals力的關(guān)系,若兩個小單元間的距離為(r+x),則相互作用能為對于只有范德華力的純液體:采用分層的球面積分的方法可算出全部加和的結(jié)果2022/9/25表面張力的分子理論對勢加合法公式表達設

30、單位體積中有N個小單表面張力的分子理論對勢加合法設處于與上部液體中的小單元距離為(r+x)和(r+x)+dx之間的下部小單元構(gòu)成一個殼層,此殼層對上部小單元的吸引能可由下式得到:整個下部液體對上部小單元的吸引能可以從下式積分得到2022/9/25表面張力的分子理論對勢加合法設處于與上部液體中的小單元距離表面張力的分子理論對勢加合法最后,加合N個液體截面積為a的小單元與下層液體間的吸引能即兩層液體間相互作用能由于此過程新生表面面積為2a,形成單位表面積體系能量(外力做功)增值為2022/9/25表面張力的分子理論對勢加合法最后,加合N個液體截面積為a的表面張力的分子理論對勢加合法由上式算出的應屬

31、液體對真空的表面能,實際上與平衡液相接觸的是其蒸氣,因此,上式應改為:若代入NL、NV、A 、r數(shù)值,則可求得表面張力的值當 NL=NV 時,s=0 ,=0 2022/9/25表面張力的分子理論對勢加合法由上式算出的應屬液體對真空的表1.5 彎曲表面下的附加壓力與蒸氣壓 彎曲表面下的附加壓力1.在平面上2.在凸面上3.在凹面上 Young-Laplace公式 Kelvin公式2022/9/251.5 彎曲表面下的附加壓力與蒸氣壓 彎曲表面下的附加壓 彎曲表面下的附加壓力1.在平面上剖面圖液面正面圖 研究以AB為直徑的一個環(huán)作為邊界,由于環(huán)上每點的兩邊都存在表面張力,大小相等,方向相反,所以沒有

32、附加壓力。 設向下的大氣壓力為Po,向上的反作用力也為Po ,附加壓力Ps等于零。Ps = Po - Po =02022/9/25 彎曲表面下的附加壓力1.在平面上剖面圖液面正面圖 彎曲表面下的附加壓力(2)在凸面上:剖面圖附加壓力示意圖 研究以AB為弦長的一個球面上的環(huán)作為邊界。由于環(huán)上每點兩邊的表面張力都與液面相切,大小相等,但不在同一平面上,所以會產(chǎn)生一個向下的合力。 所有的點產(chǎn)生的總壓力為Ps ,稱為附加壓力。凸面上受的總壓力為: Po+ PsPo為大氣壓力, Ps為附加壓力。 2022/9/25彎曲表面下的附加壓力(2)在凸面上:剖面圖附加壓力示意圖 彎曲表面下的附加壓力(3)在凹面

33、上:剖面圖附加壓力示意圖 研究以AB為弦長的一個球形凹面上的環(huán)作為邊界。由于環(huán)上每點兩邊的表面張力都與凹形的液面相切,大小相等,但不在同一平面上,所以會產(chǎn)生一個向上的合力。 所有的點產(chǎn)生的總壓力為Ps ,稱為附加壓力。凹面上向下的總壓力為:Po-Ps ,所以凹面上所受的壓力比平面上小。2022/9/25彎曲表面下的附加壓力(3)在凹面上:剖面圖附加壓力示意圖 楊-拉普拉斯公式 1805年Young-Laplace導出了附加壓力與曲率半徑之間的關(guān)系式:特殊式(對球面): 根據(jù)數(shù)學上規(guī)定,凸面的曲率半徑取正值,凹面的曲率半徑取負值。所以,凸面的附加壓力指向液體,凹面的附加壓力指向氣體,即附加壓力總

34、是指向球面的球心。一般式:2022/9/25楊-拉普拉斯公式 1805年Young-LaplYoung-Laplace 一般式的推導1. 在任意彎曲液面上取小矩形曲面ABCD(紅色面),其面積為xy。曲面邊緣AB和BC弧的曲率半徑分別為和 。2. 作曲面的兩個相互垂直的正截面,交線Oz為O點的法線。3. 令曲面沿法線方向移動dz ,使曲面擴大到ABCD(藍色面),則x與y各增加dx和dy 。2022/9/25Young-Laplace 一般式的推導1. 在任意彎曲Young-Laplace 一般式的推導2022/9/25Young-Laplace 一般式的推導2022/9/24Young-La

35、place 一般式的推導5. 增加dA面積所作的功與克服附加壓力Ps增加dV所作的功應該相等,即:4. 移動后曲面面積增加dA和dV為:2022/9/25Young-Laplace 一般式的推導5. 增加dA面積Young-Laplace 一般式的推導6. 根據(jù)相似三角形原理可得:7. 將dx,dy代入(A)式,得:8. 如果是球面,2022/9/25Young-Laplace 一般式的推導6. 根據(jù)相似三角Young-Laplace特殊式的推導(1)在毛細管內(nèi)充滿液體,管端有半徑為R 的球狀液滴與之平衡。 外壓為 p0 ,附加壓力為 ps ,液滴所受總壓為: p0 + ps 2022/9/2

36、5Young-Laplace特殊式的推導(1)在毛細管內(nèi)充滿液Young-Laplace特殊式的推導2.對活塞稍加壓力,將毛細管內(nèi)液體壓出少許,使液滴體積增加dV,相應地其表面積增加dA。克服附加壓力ps環(huán)境所作的功與可逆增加表面積的吉布斯自由能增加應該相等。代入得:2022/9/25Young-Laplace特殊式的推導2.對活塞稍加壓力,將附加壓力與毛細管中液面高度的關(guān)系1.曲率半徑R與毛細管半徑R的關(guān)系: R=R/cosq2.ps=2g/R=(rl-rg)gh如果曲面為球面,則R=R。因rlrg所以:ps=2g/R=rlgh一般式:2g cosq/R=Drgh2022/9/25附加壓力與

37、毛細管中液面高度的關(guān)系1.曲率半徑R與毛細管半徑附加壓力與毛細管中液面高度的關(guān)系2022/9/25附加壓力與毛細管中液面高度的關(guān)系2022/9/24幾種毛細現(xiàn)象3、1)液體在地層和紡織品中的流動原油和水在地層中的流動屬液體在不均勻孔徑的毛細管中的流動,當忽略重力作用時,由于不同管徑的曲率半徑不同,造成兩部分液面的附加壓力不同(毛細壓差)。因此,液體將往附加壓力大的方向流動。若要改變其流動方向,必須施加一克服此壓力差的力,若采用表面化學方法改變體系表面張力和液面曲率,可以改變體系毛細壓差以利于實現(xiàn)所要求的流動。這是三次采油的關(guān)鍵問題之一。2022/9/25幾種毛細現(xiàn)象3、1)液體在地層和紡織品中

38、的流動2022/9/幾種毛細現(xiàn)象2)關(guān)于泡沫和乳狀液的穩(wěn)定性泡沫和乳狀液是由兩種不相混溶的流體相形成的的分散體系。泡沫是大量氣體分散在少量液體中構(gòu)成的,而乳狀液是一種液體以微小液滴狀態(tài)分散在另一液相中。泡沫的片膜與片膜之間構(gòu)成具有不同曲率的連續(xù)液體,由于附加壓力不同,液體從曲率小、壓力大的片膜流向曲率大、壓力小的片膜邊界,最后導致泡沫排液、泡膜變薄而破裂。這是影響泡膜穩(wěn)定的重要原因。2022/9/25幾種毛細現(xiàn)象2)關(guān)于泡沫和乳狀液的穩(wěn)定性2022/9/24幾種毛細現(xiàn)象3)壓汞法測孔徑 水銀在一般固體的孔中形成凸液面,欲使水銀進入固體孔中須克服毛細壓差。即當、已知,通過測定毛細壓差可計算固體的

39、孔徑。如催化劑的孔徑測定。2022/9/25幾種毛細現(xiàn)象3)壓汞法測孔徑2022/9/24彎曲表面上的蒸汽壓開爾文公式 對小液滴與蒸汽的平衡,應有相同形式,設氣體為理想氣體。液體(T,pl) 飽和蒸汽(T,pg)2022/9/25彎曲表面上的蒸汽壓開爾文公式 對小液滴與蒸汽的平衡彎曲表面上的蒸汽壓開爾文公式這就是Kelvin公式,式中r為密度,M 為摩爾質(zhì)量。2022/9/25彎曲表面上的蒸汽壓開爾文公式這就是Kelvin公式,式中彎曲表面上的蒸汽壓開爾文公式 Kelvin公式也可以表示為兩種不同曲率半徑的液滴或蒸汽泡的蒸汽壓之比,或兩種不同大小顆粒的飽和溶液濃度之比。對凸面,R取正值,R越小

40、,液滴的蒸汽壓越高, 或小顆粒的溶解度越大。對凹面,R取負值,R越小,小蒸汽泡中的蒸汽 壓越低。2022/9/25彎曲表面上的蒸汽壓開爾文公式 Kelvin公式也可開爾文公式的應用1)過飽和蒸汽恒溫下,將未飽和的蒸汽加壓,若壓力超過該溫度下液體的飽和蒸汽壓仍無液滴出現(xiàn),則稱該蒸汽為過飽和蒸汽。原因:液滴小,飽和蒸汽壓大,新相難成而導致過冷。解決辦法:引入凝結(jié)核心如人工降雨用的AgI或干冰。2022/9/25開爾文公式的應用1)過飽和蒸汽2022/9/24開爾文公式的應用2)過熱液體 沸騰是液體從內(nèi)部形成氣泡、在液體表面上劇烈汽化的現(xiàn)象。但如果在液體中沒有提供氣泡的物質(zhì)存在時,液體在沸點時將無法

41、沸騰。我們將這種按相平衡條件,應當沸騰而不沸騰的液體,稱為過熱液體。液體過熱現(xiàn)象的產(chǎn)生是由于液體在沸點時無法形成氣泡所造成的。根據(jù)開爾文公式,小氣泡形成時期氣泡內(nèi)飽和蒸氣壓遠小于外壓,但由于凹液面附加壓力的存在,小氣泡要穩(wěn)定存在需克服的壓力又必2022/9/25開爾文公式的應用2)過熱液體2022/9/24開爾文公式的應用須大于外壓。因此,相平衡條件無法滿足,小氣泡不能存在,這樣便造成了液體在沸點時無法沸騰而液體的溫度繼續(xù)升高的過熱現(xiàn)象。過熱較多時,極易暴沸。為防止暴沸,可事先加入一些沸石、素燒瓷片等物質(zhì)。因為這些多孔性物質(zhì)的孔中存在著曲率半徑較大的氣泡,加熱時這些氣體成為新相種子(氣化核心)

42、,因而繞過了產(chǎn)生極微小氣泡的困難階段,使液體的過熱程度大大降低。2022/9/25開爾文公式的應用須大于外壓。因此,相平衡條件無法滿足,小氣2開爾文公式的應用例1將正丁醇(摩爾質(zhì)量 M0.074kgmol-1)蒸氣聚冷至 273K,發(fā)現(xiàn)其過飽和度約達到4時方能自行凝結(jié)為液滴,若 273K時正丁醇的表面張力 0.0261Nm-1,密度 1103kgm-3 ,試計算(a)在此過飽和度下所凝結(jié)成液滴的半徑 r ;(b)每一液滴中所含正丁醇的分子數(shù)。解: (a)過飽和度即為 ,根據(jù)開爾文公式 2022/9/25開爾文公式的應用例1將正丁醇(摩爾質(zhì)量 M0.074kg開爾文公式的應用2022/9/25開

43、爾文公式的應用2022/9/24開爾文公式的應用例2 當水滴半徑為10-8m 時,其 25飽和蒸氣壓的增加相當于升高多少溫度所產(chǎn)生的效果。已知水的密度為 0.998103kgm-3,摩爾蒸發(fā)焓為 44.01kJmol-1。解:按開爾文公式,又根據(jù)克拉貝龍-克勞修斯方程2022/9/25開爾文公式的應用例2 當水滴半徑為10-8m 時,其 25開爾文公式的應用2022/9/25開爾文公式的應用2022/9/24開爾文公式的應用(3)毛細凝結(jié)與等溫蒸餾考慮液體及其飽和蒸氣與孔性固體構(gòu)成的體系。孔中液面與孔外液面的曲率不同,導致蒸氣壓力不同。在形成凹形液面的情況下,孔中液體的平衡蒸氣壓低于液體的正常

44、蒸氣壓。故在體系蒸氣壓低于正常飽和蒸氣壓時即可在毛細管中發(fā)生凝結(jié)。此即所謂毛細凝結(jié)現(xiàn)象。硅膠能作為干燥劑就是因為硅膠能自動地吸附空氣中的水蒸氣,使得水氣在毛細管內(nèi)發(fā)生凝結(jié)。 毛細凝結(jié)的另一應用是等溫蒸餾。其過程是,如果在一封閉容器中有曲率大小不同的液面與它們的蒸氣相共存,由于在相同溫度下不同液面的平衡蒸氣壓力不同,體系中自發(fā)進行液體分子從大塊液相通過氣相轉(zhuǎn)移到曲率大的凹液面處。2022/9/25開爾文公式的應用(3)毛細凝結(jié)與等溫蒸餾考慮液體及其飽和開爾文公式的應用2022/9/25開爾文公式的應用2022/9/241.6表面張力的測定方法1、毛細管上升法如圖,將一潔凈的半徑為 r 的均勻毛細

45、管插入能潤濕該毛細管的液體中,則由于表面張力所引起的附加壓力, 將使液柱上升,達平衡時,附加壓力與液柱所形成的壓力大小相等,方向相反: 2022/9/251.6表面張力的測定方法1、毛細管上升法 表面張力的測定方法式中 h 為達平衡時液柱高度,g 為重力加速度,液氣( 為密度)。由圖中可以看出,曲率半徑 r 與毛細管半徑 R 以及接觸角 之間存在著如下關(guān)系, 2022/9/25表面張力的測定方法式中 h 為達平衡時液柱高度,g 為重力加表面張力的測定方法 若接觸角 0,Cos1, 液 則 從上式可見,若 R 已知,由平衡液柱上升高度可測出液體表面張力。若接觸角不為零,則應用與接觸角有關(guān)的公式。

46、但由于目前接觸角的測量準確度還難以滿足準確測定表面張力的要求,因此,該法一般不用于測定接觸角不為零的液體表面張力。 2022/9/25表面張力的測定方法 若接觸角 0,Cos1, 表面張力的測定方法若考慮到對彎液面的修正,常用公式為: 毛細管上升法理論完整,方法簡單,有足夠的測量精度。應用此法時除了要有足夠的恒溫精度和有足夠精度的測高儀外,還須注意選擇內(nèi)徑均勻的毛細管。2022/9/25表面張力的測定方法若考慮到對彎液面的修正,常用公式為: 表面張力的測定方法2 、脫環(huán)法 2022/9/25表面張力的測定方法2 、脫環(huán)法 表面張力的測定方法 在圖中,水平接觸面的圓環(huán)(通常用鉑環(huán))被提拉時將帶起

47、一些液體,形成液柱(b)。環(huán)對天平所施之力由兩個部分組成:環(huán)本身的重力 mg 和帶起液體的重力 p。p 隨提起高度增加而增加,但有一極限,超過此值環(huán)與液面脫開,此極限值取決于液體的表面張力和環(huán)的尺寸。這是因為外力提起液柱是通過液體表面張力實現(xiàn)的。因此,最大液柱重力 mg 應與環(huán)受到的液體表面張力垂直分量相等。設拉起的液柱為圓筒形,則2022/9/25表面張力的測定方法 在圖中,水平接觸面的圓環(huán)(通常用鉑環(huán)表面張力的測定方法其中 R 為環(huán)的內(nèi)半徑,r 為環(huán)絲的半徑。但實際上拉起的液柱并不是圓筒形,而常如圖(c)所示的那樣偏離圓筒形。為修正實際所測重力與實際值的偏差,引入校正因子 F。即 2022

48、/9/25表面張力的測定方法其中 R 為環(huán)的內(nèi)半徑,r 為環(huán)絲的半徑。表面張力的測定方法脫環(huán)法操作簡單,但由于應用經(jīng)驗的校正系數(shù)使方法帶有經(jīng)驗性。對于溶液,由于液面形成的時間受到限制,所得結(jié)果不一定是平衡值。3、最大氣泡壓力法例題3. 用最大氣泡法測量液體表面張力的裝置如圖所示:將毛細管垂直地插入液體中,其深度為h 。由上端通入氣體,在毛細管下端呈小氣泡放出,小氣泡內(nèi)的最大壓力可由 U 型管壓力計測出。2022/9/25表面張力的測定方法脫環(huán)法操作簡單,但由于應用經(jīng)驗的校正系數(shù)使表面張力的測定方法已知 300K 時,某液體的密度 1.6103kgm-3,毛細管的半徑 r0.001m ,毛細管插

49、入液體中的深度 h0.01m ,小氣泡的最大表壓 p(最大)207Pa。問該液體在 300k 時的表面張力為若干? 2022/9/25表面張力的測定方法已知 300K 時,某液體的密度 1.表面張力的測定方法解:當毛細管中足夠細時,管下端出現(xiàn)的彎月形液面,可視為球面的一部,隨著小氣泡的變大,氣泡的曲率半徑將變小,當氣泡的半徑等于毛細管的半徑時,液面曲率半徑最小。由拉普拉斯公式可知,小氣泡所承受的附加壓力,在數(shù)值上應為氣泡內(nèi)外的壓力差。 2022/9/25表面張力的測定方法解:當毛細管中足夠細時,管下端出現(xiàn)的彎月形表面張力的測定方法一般測量時,若保證毛細管口剛好與液面相接觸,則可忽略液柱壓差 g

50、h。4、吊片法與脫環(huán)法相比,吊片法的原理基本相同。但此法具有全平衡的特點,不需要密度數(shù)據(jù)且不需作任何校正,也不必將片拉離液面,而是只要將片與液面接觸即可。吊片法的基本原理是:吊片不動,液面上升,待液面剛好與吊片接觸時,拉力f 等于平衡時沿吊片周邊作用的液體表面張力2022/9/25表面張力的測定方法一般測量時,若保證毛細管口剛好與液面相接觸表面張力的測定方法其中,l、d分別為吊片的寬和厚度,2(l+d)表示吊片底周長,可由已知表面張力的液體得到。 若要取得較好的測量結(jié)果,應使吊片潤濕且接觸角為零(可將吊片打毛),測油的表面張力時,可將吊片在煤氣焰上熏上一層燈黑。表面張力的其他測定方法如停滴法和

51、懸滴法請參考教材P3235。2022/9/25表面張力的測定方法2022/9/241.7溶液的表面張力與表面活性 1 表面活性 溶液至少由兩種分子組成。由于溶質(zhì)分子與溶劑分子之間的作用力與純液體不同,因此,溶液的表面張力除與溫度、壓力、溶劑的性質(zhì)有關(guān)外,還與溶質(zhì)的性質(zhì)和濃度有關(guān)。實驗表明,水溶液表面張力隨濃度變化規(guī)律大致有如圖12-9所示的三種類型。圖中 0為純水在測定溫度下的表面張力2022/9/251.7溶液的表面張力與表面活性 1 表面活性 溶液的表面張力與表面活性類型1:溶液表面張力隨溶液濃度增加而線性增大。多數(shù)無機鹽。(如 NaCl,NH4Cl)、酸、堿及蔗糖、甘露醇等多羥基有機物的

52、水溶液屬于這一類型。這類物質(zhì)常稱為“非表面活性物質(zhì)”。其特點是類型2:溶液表面張力隨溶液濃度增加而逐漸降低。這種類型的例子包括大多數(shù)低分子量的極性有機物。如醇、醛、酸、酯、胺及其衍生物。由于水溶性有機化含物一般含有一個極性基(如 OH 基或 COOH 基)和一個非極性碳氫基團。這類分子傾向于聚集在表面層,它們的取向是把極性部分指向體相溶液中的極性水分子,非極性部分朝向氣相。這種類型的數(shù)學特征是2022/9/25溶液的表面張力與表面活性類型1:溶液表面張力隨溶液濃度增加而溶液的表面張力與表面活性類型3:這種類型的特點是;當濃度增加時,迅速下降并很快達最低點,此后溶液表面張力隨濃度變化很小。達到最

53、低點時的濃度一般在1%以下。在水中加入高直碳鏈的有機酸以及烷基磺酸鹽(RCOO-Na+和R-SO3-Na+)等屬這種類型。此類溶液的特點是: 1)與第二類溶液一樣服從特勞貝規(guī)則; 2)曲線可用希斯科夫斯基公式描述。2022/9/25溶液的表面張力與表面活性類型3:這種類型的特點是;當濃度增加溶液的表面張力與表面活性溶質(zhì)使溶劑表面張力降低的性質(zhì)稱為表面活性,具有表面活性的溶質(zhì)稱為表面活性物質(zhì)(如類型2和類型3)。由于類型3表面活性物質(zhì)具有在低濃度范圍內(nèi)顯著降低表面張力的特點,這類物質(zhì)也稱為表面活性劑。例如在25時,在 0.008moldm-3 的十二烷基硫酸鈉水溶液中,水的表面張力從 0.072

54、Nm-1 降到0.039Nm-1。 2022/9/25溶液的表面張力與表面活性溶質(zhì)使溶劑表面張力降低的性質(zhì)稱 表面張力等溫線表面張力等溫線用于描述一定溫度下,溶液表面張力隨濃度的變化情況。對二組分溶液,其表面張力等溫線可用下式表示:對理想溶液上述公式對三類曲線的線性部分皆適用。2022/9/25表面張力等溫線表面張力等溫線用于描述一定溫度下,溶液表面對理溶液的表面張力與表面活性從能量觀點考慮,由于表面活性劑的加入能顯著地降低表面張力,因此,這將有利于表面活性劑聚集于表面層,在極端情況下,可在表面構(gòu)成由表面活性劑組成的“單分子層”。這種情況,不僅在氣-液界面上可發(fā)生,在液-液界面上也可以發(fā)生。如

55、下圖(a)和(b)所示。如在水中加入肥皂(硬脂酸鈉),達一定濃度時,R-COO- 離子富集于氣-液或液-液界面上,極性基 COO- 朝水相,而非極性基 -R 則朝向氣相或油相并在二種界面上形成單分子層。2022/9/25溶液的表面張力與表面活性從能量觀點考慮,由于表面活性劑的加入溶液的表面張力與表面活性 2022/9/25溶液的表面張力與表面活性 溶液的表面張力與表面活性有機物質(zhì)水溶液的表面張力呈現(xiàn)一定的規(guī)律性。屬于同系的有機物 R(CH2)nX例如脂肪醇 R(CH2)nOH,每增加一個-CH2 基使其在稀溶液中降低同樣表面張力所需濃度約減小了 3 倍,即 (d/dc)co 值增加了 3 倍。

56、這一近似規(guī)律常稱為“特勞貝(Traube)規(guī)則”。293K 時一些脂肪醇水溶液的表面張力隨濃度變化關(guān)系如圖所示。2022/9/25溶液的表面張力與表面活性有機物質(zhì)水溶液的表面張力呈現(xiàn)一定的規(guī)溶液的表面張力與表面活性 2022/9/25溶液的表面張力與表面活性 溶液的表面張力與表面活性當濃度不太大時,此類曲線關(guān)系可用希什斯夫斯基經(jīng)驗公式表示: 式中 0、 分別為純水和溶液的表面張力;c 為溶液的濃度,而 a 為與物質(zhì)有關(guān)的常數(shù),在稀溶液中,上式可改寫成: 2022/9/25溶液的表面張力與表面活性當濃度不太大時,此類曲線關(guān)系可用希什溶液的表面張力與表面活性 或 即在稀溶液中溶液的表面張力隨濃度增

57、大而線性下降,其中 K 為直線斜率的絕對值。這一結(jié)論與實驗結(jié)果相符。 2022/9/25溶液的表面張力與表面活性 溶液表面過剩表面過剩物質(zhì)在界面上富集的現(xiàn)象叫做吸附。溶液表面的吸附導致表面濃度與內(nèi)部濃度不同,這種不同稱為表面過剩,可用以下公式表示:但是,希斯科夫斯基公式只適用于2、3兩類曲線的低濃度部分,而不適用于第一類曲線。2022/9/25溶液表面過剩表面過剩但是,希斯科夫斯基公式只適用于2、3兩類溶液表面過剩上式中, 分別為溶劑(1)和溶質(zhì)(2)在、相中的濃度,均為實驗可測量而V,也是已知量,因此可求得 。以上求吸附量的公式可從以下公式導出: 2022/9/25溶液表面過剩上式中, 吉布

58、斯吸附等溫式由于表面吸附,造成在溶液與氣相的交界處存在著一個濃度和性質(zhì)與兩體相不同的表面薄層,它的組成和性質(zhì)是不均勻的。此表面層也可理解為是兩體相的過渡區(qū)域。如下圖(a)所示。吉布斯從另一角度定義了表面相,他將表面相理想化為一無厚度的幾何平面SS,如下圖(b)所示,即將表面層與本體相的差別,都歸結(jié)于發(fā)生在此平面內(nèi)。根據(jù)這個假設,吉布斯應用熱力學方法導出了等溫條件下溶液表面張力隨組成變化關(guān)系,稱為吉布斯吸附等溫式。2022/9/25吉布斯吸附等溫式由于表面吸附,造成在溶液與氣相的交界處存在著吉布斯吸附等溫式。 2022/9/25吉布斯吸附等溫式。2022/9/24Gibbs吸附公式它的物理意義是

59、:在單位面積的表面層中,所含溶質(zhì)的物質(zhì)的量與具有相同數(shù)量溶劑的本體溶液中所含溶質(zhì)的物質(zhì)的量之差值。即: 式中G2為溶劑超量為零時溶質(zhì)2在表面的超額。a2是溶質(zhì)2的活度,dg/da2是在等溫下,表面張力g 隨溶質(zhì)活度的變化率。2022/9/25Gibbs吸附公式它的物理意義是:在單位面積的表面層中,所含吉布斯吸附等溫式根據(jù)公式 由于表面相 SS 無體積但有表面,因此 在恒定所有強度量的條件下積分上式得: 2022/9/25吉布斯吸附等溫式根據(jù)公式 吉布斯吸附等溫式上式微分后并與式(12-45)相減,可得: 在恒溫條件下,上式可寫成: 或2022/9/25吉布斯吸附等溫式上式微分后并與式(12-4

60、5)相減,可得: 吉布斯吸附等溫式若定義表面過剩 i : 其涵義為單位表面上吸附的 i 物質(zhì)的量。以此定義代入式 得(12-51)稱為吉布斯吸附等溫式。當應用于雙組分體系,則可表示為: 2022/9/25吉布斯吸附等溫式若定義表面過剩 i : 吉布斯吸附等溫式 其中 1 和 2 分別為組分 1 和組分 2 的表面過剩。應該注意,理想化表面 SS 的位置并非事先已確定,而是可以任意移上或移下。顯然,1 和 2 的數(shù)值與 SS 所處的位置有關(guān),但如適當選擇,則可使在某位置時 10 ,如圖所示, 其2022/9/25吉布斯吸附等溫式 吉布斯吸附等溫式而式(12-52)可改寫成: 其中 2(1) 的上

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論