版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.下列事件是必然事件的是()A.打開電視播放建國70周年國慶閱兵式B.任意翻開初中數(shù)學書一頁,內(nèi)容是實數(shù)練習C.去領獎的三位同學中,其中有兩位性別相同D.食用保健品后長生不老2.如果可以通過配方寫成的形式,那么可以配方成()A. B. C. D.3.△ABC中,∠C=Rt∠,AC=3,BC=4,以點C為圓心,CA為半徑的圓與AB、BC分別交于點E、D,則AE的長為()A. B. C. D.4.如圖,已知點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段,在連接兩點所得的所有線段中任取一條線段,取到長度為2的線段的概率為()A. B. C. D.5.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是()A. B.C. D.6.如圖,AD是半圓O的直徑,AD=12,B,C是半圓O上兩點.若,則圖中陰影部分的面積是()A.6π B.12π C.18π D.24π7.下列命題中,①直徑是圓中最長的弦;②長度相等的兩條弧是等?。虎郯霃较嗟鹊膬蓚€圓是等圓;④半徑不是弧,半圓包括它所對的直徑,其中正確的個數(shù)是()A. B. C. D.8.同學們參加綜合實踐活動時,看到木工師傅用“三弧法”在板材邊角處作直角,其作法是:如圖:(1)作線段AB,分別以點A,B為圓心,AB長為半徑作弧,兩弧交于點C;(2)以點C為圓心,仍以AB長為半徑作弧交AC的延長線于點D;(3)連接BD,BC.根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯誤的是()A.∠ABD=90° B.CA=CB=CD C.sinA= D.cosD=9.使用家用燃氣灶燒開同一壺水所需的燃氣量(單位:)與旋鈕的旋轉(zhuǎn)角度(單位:度)()近似滿足函數(shù)關系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃氣灶燒開同一壺水的旋鈕角度與燃氣量的三組數(shù)據(jù),根據(jù)上述函數(shù)模型和數(shù)據(jù),可推斷出此燃氣灶燒開一壺水最節(jié)省燃氣的旋鈕角度約為()A. B. C. D.10.如圖,圓桌面正上方的燈泡發(fā)出的光線照射桌面后,在地面上形成陰影(圓形).已知燈泡距離地面2.4m,桌面距離地面0.8m(桌面厚度忽略不計),若桌面的面積是1.2m2,則地面上的陰影面積是()A.0.9m2 B.1.8m2 C.2.7m2 D.3.6m211.二次函數(shù)的圖象如圖所示,下列結(jié)論:;;;;,其中正確結(jié)論的是A. B. C. D.12.如圖,在等邊三角形ABC中,點P是BC邊上一動點(不與點B、C重合),連接AP,作射線PD,使∠APD=60°,PD交AC于點D,已知AB=a,設CD=y,BP=x,則y與x函數(shù)關系的大致圖象是()A. B. C. D.二、填空題(每題4分,共24分)13.已知,則_______.14.若扇形的圓心角為,半徑為,則該扇形的弧長為__________.15.如圖,在平面直角坐標系中,四邊形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,點A1,A2,A3,…都在x軸上,點C1,C2,C3,…都在直線y=x+上,且∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,OA1=1,則點C6的坐標是__.16.如圖,將⊙O沿弦AB折疊,圓弧恰好經(jīng)過圓心O,點P是優(yōu)弧上一點,則∠APB的度數(shù)為_____.17.若一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是.18.如圖,在平面直角坐標系中,將繞點順時針旋轉(zhuǎn)到的位置,點,分別落在點,處,點在軸上,再將繞點順時針旋轉(zhuǎn)到的位置,點在軸上,再將繞點順時針旋轉(zhuǎn)到的位置,點在軸上,依次進行下去,……,若點,,則點B2016的坐標為______.三、解答題(共78分)19.(8分)已知:△ABC中∠ACB=90°,E在AB上,以AE為直徑的⊙O與BC相切于D,與AC相交于F,連接AD.(1)求證:AD平分∠BAC;(2)若DF∥AB,則BD與CD有怎樣的數(shù)量關系?并證明你的結(jié)論.20.(8分)如圖1,在中,是的直徑,交于點,過點的直線交于點,交的延長線于點.(1)求證:是的切線;(2)若,試求的長;(3)如圖2,點是弧的中點,連結(jié),交于點,若,求的值.21.(8分)如圖,在下列(邊長為1)的網(wǎng)格中,已知的三個頂點,,在格點上,請分別按不同要求在網(wǎng)格中描出一個點,并寫出點的坐標.(1)經(jīng)過,,三點有一條拋物線,請在圖1中描出點,使點落在格點上,同時也落在這條拋物線上;則點的坐標為______;(2)經(jīng)過,,三點有一個圓,請用無刻度的直尺在圖2中畫出圓心;則點的坐標為______.22.(10分)某商店代銷一批季節(jié)性服裝,每套代銷成本40元,第一個月每套銷售定價為52元時,可售出180套;應市場變化調(diào)整第一個月的銷售價,預計銷售定價每增加1元,銷售量將減少10套.(1)若設第二個月的銷售定價每套增加x元,填寫下表.時間第一個月第二個月每套銷售定價(元)銷售量(套)(2)若商店預計要在這兩個月的代銷中獲利4160元,則第二個月銷售定價每套多少;(3)求當4≤x≤6時第二個月銷售利潤的最大值.23.(10分)如圖,已知拋物線y=x2+bx+c與x軸相交于A(﹣1,0),B(m,0)兩點,與y軸相交于點C(0,﹣3),拋物線的頂點為D.(1)求B、D兩點的坐標;(2)若P是直線BC下方拋物線上任意一點,過點P作PH⊥x軸于點H,與BC交于點M,設F為y軸一動點,當線段PM長度最大時,求PH+HF+CF的最小值;(3)在第(2)問中,當PH+HF+CF取得最小值時,將△OHF繞點O順時針旋轉(zhuǎn)60°后得到△OH′F′,過點F′作OF′的垂線與x軸交于點Q,點R為拋物線對稱軸上的一點,在平面直角坐標系中是否存在點S,使得點D、Q、R、S為頂點的四邊形為菱形,若存在,請直接寫出點S的坐標,若不存在,請說明理由.24.(10分)如圖,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于點D,DE⊥AD交AB于E,EF∥BC交AC于F.(1)求證:△ACD∽△ADE;(2)求證:AD2=AB?AF;(3)作DG⊥BC交AB于G,連接FG,若FG=5,BE=8,直接寫出AD的長.25.(12分)如圖,在矩形ABCD中,AB=6,BC=8,點E,F(xiàn)分別在邊BC,AB上,AF=BE=2,連結(jié)DE,DF,動點M在EF上從點E向終點F勻速運動,同時,動點N在射線CD上從點C沿CD方向勻速運動,當點M運動到EF的中點時,點N恰好與點D重合,點M到達終點時,M,N同時停止運動.(1)求EF的長.(2)設CN=x,EM=y(tǒng),求y關于x的函數(shù)表達式,并寫出自變量x的取值范圍.(3)連結(jié)MN,當MN與△DEF的一邊平行時,求CN的長.26.如圖,是⊙的直徑,、是圓周上的點,,弦交于點.(1)求證:;(2)若,求的度數(shù).
參考答案一、選擇題(每題4分,共48分)1、C【分析】根據(jù)必然事件指在一定條件下,一定發(fā)生的事件;不可能事件是指在一定條件下,一定不發(fā)生的事件;不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件,對每一項進行分析即可.【詳解】A.打開電視播放建國70周年國慶閱兵式是隨機事件,故不符合題意;B.任意翻開初中數(shù)學書一頁,內(nèi)容是實數(shù)練習是隨機事件,故不符合題意;C.去領獎的三位同學中,其中有兩位性別相同是必然事件,符合題意;D.食用保健品后長生不老是不可能事件,故不符合題意;故選C.【點睛】本題考查的是事件的分類,事件分為確定事件和不確定事件(隨機事件),確定事件又分為必然事件和不可能事件.2、B【分析】根據(jù)配方法即可求出答案.【詳解】∵x2?8x+m=0可以通過配方寫成(x?n)2=6的形式,∴x2?8x+16=16?m,x2?2nx+n2=6,∴n=4,m=10,∴x2+8x+m=x2+8x+10=0,∴(x+4)2=6,即故選:B.【點睛】本題考查一元二次方程,解題的關鍵是熟練運用配方法,本題屬于基礎題型.3、C【分析】在Rt△ABC中,由勾股定理可直接求得AB的長;過C作CM⊥AB,交AB于點M,由垂徑定理可得M為AE的中點,在Rt△ACM中,根據(jù)勾股定理得AM的長,從而得到AE的長.【詳解】解:在Rt△ABC中,
∵AC=3,BC=4,
∴AB==1.
過C作CM⊥AB,交AB于點M,如圖所示,
由垂徑定理可得M為AE的中點,
∵S△ABC=AC?BC=AB?CM,且AC=3,BC=4,AB=1,
∴CM=,
在Rt△ACM中,根據(jù)勾股定理得:AC2=AM2+CM2,即9=AM2+()2,
解得:AM=,
∴AE=2AM=.
故選:C.【點睛】本題考查的是垂徑定理,根據(jù)題意作出輔助線,構(gòu)造出直角三角形是解答此題的關鍵.4、D【分析】先求出連接兩點所得的所有線段總數(shù),再用列舉法求出取到長度為2的線段條數(shù),由此能求出在連接兩點所得的所有線段中任取一條線段,取到長度為2的線段的概率.【詳解】∵點A,B,C,D,E,F(xiàn)是邊長為1的正六邊形的頂點,連接任意兩點均可得到一條線段,∴連接兩點所得的所有線段總數(shù)n==15條,∵取到長度為2的線段有:FC、AD、EB共3條∴在連接兩點所得的所有線段中任取一條線段,取到長度為2的線段的概率為:p=.故選:D【點睛】此題主要考查了正多邊形和圓以及幾何概率,正確利用正六邊形的性質(zhì)得出AD的長是解題關鍵.5、A【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念進行判斷即可.【詳解】解:A、是軸對稱圖形,也是中心對稱圖形,故此選項符合題意;B、是軸對稱圖形,不是中心對稱圖形,故此選項不合題意;C、不是軸對稱圖形,是中心對稱圖形,故此選項不合題意;D、是軸對稱圖形,不是中心對稱圖形,故此選項不合題意.故選:A.【點睛】本題考查的是中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后兩部分重合.6、A【分析】根據(jù)圓心角與弧的關系得到∠AOB=∠BOC=∠COD=60°,根據(jù)扇形面積公式計算即可.【詳解】∵,∴∠AOB=∠BOC=∠COD=60°.∴陰影部分面積=.故答案為A.【點睛】本題考查的知識點是扇形面積的計算,解題關鍵是利用圓心角與弧的關系得到∠AOB=∠BOC=∠COD=60°.7、C【分析】根據(jù)弦、弧、等弧的定義即可求解.【詳解】解:①直徑是圓中最長的弦,真命題;
②在等圓或同圓中,長度相等的兩條弧是等弧,假命題;
③半徑相等的兩個圓是等圓,真命題;④半徑是圓心與圓上一點之間的線段,不是弧,半圓包括它所對的直徑,真命題.
故選:C.【點睛】本題考查了圓的認識:掌握與圓有關的概念(弦、直徑、半徑、弧、半圓、優(yōu)弧、劣弧、等圓、等弧等).8、D【分析】由作法得CA=CB=CD=AB,根據(jù)圓周角定理得到∠ABD=90°,點C是△ABD的外心,根據(jù)三角函數(shù)的定義計算出∠D=30°,則∠A=60°,利用特殊角的三角函數(shù)值即可得到結(jié)論.【詳解】由作法得CA=CB=CD=AB,故B正確;∴點B在以AD為直徑的圓上,∴∠ABD=90°,故A正確;∴點C是△ABD的外心,在Rt△ABC中,sin∠D==,∴∠D=30°,∠A=60°,∴sinA=,故C正確;cosD=,故D錯誤,故選:D.【點睛】本題考查了解直角三角形,三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理和解直角三角形.9、C【解析】根據(jù)已知三點和近似滿足函數(shù)關系y=ax2+bx+c(a≠0)可以大致畫出函數(shù)圖像,并判斷對稱軸位置在36和54之間即可選擇答案.【詳解】解:由圖表數(shù)據(jù)描點連線,補全圖像可得如圖,拋物線對稱軸在36和54之間,約為41℃∴旋鈕的旋轉(zhuǎn)角度在36°和54°之間,約為41℃時,燃氣灶燒開一壺水最節(jié)省燃氣.故選:C,【點睛】本題考查了二次函數(shù)的應用,二次函數(shù)的圖像性質(zhì),熟練掌握二次函數(shù)圖像對稱性質(zhì),判斷對稱軸位置是解題關鍵.綜合性較強,需要有較高的思維能力,用圖象法解題是本題考查的重點.10、C【分析】根據(jù)桌面與地面陰影是相似圖形,再根據(jù)相似圖形的性質(zhì)即可得到結(jié)論.【詳解】解:如圖設C,D分別是桌面和其地面影子的圓心,CB∥AD,∴∴而OD=2.4,CD=0.8,∴OC=OD-CD=1.6,∴這樣地面上陰影部分的面積為故選C.【點睛】本題考查了相似三角形的應用,根據(jù)相似圖形的面積比等于相似比的平方,同時考查相似圖形的對應高之比等于相似比,掌握以上知識是解題的關鍵.11、C【分析】利用圖象信息以及二次函數(shù)的性質(zhì)一一判斷即可;【詳解】解:∵拋物線開口向下,∴a<0,∵對稱軸x=﹣1=,∴b<0,∵拋物線交y軸于正半軸,∴c>0,∴abc>0,故①正確,∵拋物線與x軸有兩個交點,∴b2﹣4ac>0,故②錯誤,∵x=﹣2時,y>0,∴4a﹣2b+c>0,∴4a+c>2b,故③正確,∵x=﹣1時,y>0,x=1時,y<0,∴a﹣b+c>0,a+b+c<0,∴(a﹣b+c)(a+b+c)<0∴,∴,故④錯誤,∵x=﹣1時,y取得最大值a﹣b+c,∴ax2+bx+c≤a﹣b+c,∴x(ax+b)≤a﹣b,故⑤正確.故選C.【點睛】本題考查二次函數(shù)的圖象與系數(shù)的關系等知識,解題的關鍵是讀懂圖象信息,靈活運用所學知識解決問題,屬于中考常考題型.12、C【分析】根據(jù)等邊三角形的性質(zhì)可得出∠B=∠C=60°,由等角的補角相等可得出∠BAP=∠CPD,進而即可證出△ABP∽△PCD,根據(jù)相似三角形的性質(zhì)即可得出y=-x2+x,對照四個選項即可得出.【詳解】∵△ABC為等邊三角形,
∴∠B=∠C=60°,BC=AB=a,PC=a-x.
∵∠APD=60°,∠B=60°,
∴∠BAP+∠APB=120°,∠APB+∠CPD=120°,
∴∠BAP=∠CPD,
∴△ABP∽△PCD,∴,即,∴y=-x2+x.故選C.【點睛】考查了動點問題的函數(shù)圖象、相似三角形的判定與性質(zhì),利用相似三角形的性質(zhì)找出y=-x2+x是解題的關鍵.二、填空題(每題4分,共24分)13、-5【分析】設,可用參數(shù)表示、,再根據(jù)分式的性質(zhì),可得答案.【詳解】解:設,得,,,故答案為:.【點睛】本題考查了比例的性質(zhì),利用參數(shù)表示、可以簡化計算過程.14、【分析】根據(jù)弧長公式求解即可.【詳解】扇形的圓心角為,半徑為,則弧長故答案為:.【點睛】本題考查了弧長計算,熟記弧長公式是解題的關鍵.15、(47,)【分析】根據(jù)菱形的邊長求得A1、A2、A3…的坐標然后分別表示出C1、C2、C3…的坐標找出規(guī)律進而求得C6的坐標.【詳解】解:∵OA1=1,∴OC1=1,∴∠C1OA1=∠C2A1A2=∠C3A2A3=…=60°,∴C1的縱坐標為:sim60°.OC1=,橫坐標為cos60°.OC1=,∴C1,∵四邊形OA1B1C1,A1A2B2C2,A2A3B3C3,…都是菱形,∴A1C2=2,A2C3=4,A3C4=8,…∴C2的縱坐標為:sin60°A1C2=,代入y求得橫坐標為2,∴C2(2,),∴C3的縱坐標為:sin60°A2C3=,代入y求得橫坐標為5,∴C3(5,),∴C4(11,),C5(23,),∴C6(47,);故答案為(47,).【點睛】本題是對點的坐標變化規(guī)律的考查,主要利用了菱形的性質(zhì),解直角三角形,根據(jù)已知點的變化規(guī)律求出菱形的邊長,得出系列C點的坐標,找出規(guī)律是解題的關鍵.16、60°【解析】分析:作半徑OC⊥AB于D,連結(jié)OA、OB,如圖,根據(jù)折疊的性質(zhì)得OD=CD,則OD=OA,根據(jù)含30度的直角三角形三邊的關系得到∠OAD=30°,接著根據(jù)三角形內(nèi)角和定理可計算出∠AOB=120°,然后根據(jù)圓周角定理計算∠APB的度數(shù).詳解:如圖作半徑OC⊥AB于D,連結(jié)OA、OB.∵將⊙O沿弦AB折疊,圓弧恰好經(jīng)過圓心O,∴OD=CD,∴OD=OC=OA,∴∠OAD=30°.∵OA=OB,∴∠ABO=30°,∴∠AOB=120°,∴∠APB=∠AOB=60°.故答案為60°.點睛:本題考查了圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.也考查了含30度的直角三角形三邊的關系和折疊的性質(zhì),求得∠OAD=30°是解題的關鍵.17、:k<1.【詳解】∵一元二次方程有兩個不相等的實數(shù)根,∴△==4﹣4k>0,解得:k<1,則k的取值范圍是:k<1.故答案為k<1.18、(6048,2)【分析】由題意可得,在直角三角形中,,,根據(jù)勾股定理可得,即可求得的周長為10,由此可得的橫坐標為10,的橫坐標為20,···由此即可求得點的坐標.【詳解】在直角三角形中,,,由勾股定理可得:,的周長為:,∴的橫坐標為:OA+AB1+B1C1=10,的橫坐標為20,···∴.故答案為.【點睛】本題考查了點的坐標的變化規(guī)律,根據(jù)題意正確得出點的變化規(guī)律是解決問題的關鍵.三、解答題(共78分)19、(1)見解析;(2)BD=2CD證明見解析【分析】(1)連接OD.根據(jù)圓的半徑都相等的性質(zhì)及等邊對等角的性質(zhì)知:∠OAD=∠ODA;再由切線的性質(zhì)及平行線的判定與性質(zhì)證明∠OAD=∠CAD;(2)連接OF,根據(jù)等腰三角形的性質(zhì)以及圓周角定理證得∠BAC=60°,根據(jù)平行線的性質(zhì)得出BD:CD=AF:CF,∠DFC=∠BAC=60°,根據(jù)解直角三角形即可求得結(jié)論.【詳解】(1)證明:連接OD,∴OD=OA,∴∠OAD=∠ODA,∵BC為⊙O的切線,∴∠ODB=90°,∵∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠CAD=∠ODA,∴∠OAD=∠CAD,∴AD平分∠BAC;(2)連接OF,∵DF∥AB,∴∠OAD=∠ADF,∵AD平分∠BAC,∴∠ADF=∠OAF,∵∠ADF=∠AOF,∴∠AOF=∠OAF,∵OA=OF,∴∠OAF=∠OFA,∴△AOF是等邊三角形,∴∠BAC=60°,∵∠ADF=∠DAF,∴DF=AF,∵DF∥AB,∴BD:CD=AF:CF,∠DFC=∠BAC=60°,∴=2,∴BD=2CD.【點睛】本題考查了切線的性質(zhì),涉及知識點有:平行線的判定與性質(zhì)、等邊三角形的性質(zhì)、等腰三角形的性質(zhì)以及圓周角定理,數(shù)形結(jié)合做出輔助線是解本題的關鍵20、(1)證明見解析(2)(3)【分析】(1)連接半徑,根據(jù)已知條件結(jié)合圓的基本性質(zhì)可推出,即,即可得證結(jié)論;(2)設,根據(jù)已知條件列出關于的方程、解方程即可得到圓心角,再求得半徑,然后利用弧長公式即可得解;(3)由,設,然后根據(jù)已知條件利用圓的一些性質(zhì)、勾股定理以及三角形的不同求法分別表示出、,再利用平行線的判定以及相似三角形的判定和性質(zhì)即可求得結(jié)論.【詳解】解:(1)連結(jié),如圖:∵是的直徑∴∴∵∴∵∴∴∵在圓上∴是的切線.(2)設∵∴∴∵在中,∴∴∴∵∴∴連結(jié),過作于點,如圖:∵點是的中點∴∴設∴∴∴∵在中,∴∵,∴∴∴.故答案是:(1)證明見解析(2)(3)【點睛】本題考查了圓的相關性質(zhì)、切線的判定、等腰三角形的判定和性質(zhì)、平行線的判定和性質(zhì)、相似三角形的判定和性質(zhì)、直角三角形的相關性質(zhì)、銳角三角函數(shù)、三角形的外角性質(zhì)以及弧長的計算公式等,綜合性較強,但難度不大屬中檔題型.21、(1);(2)答案見解析,.【分析】(1)拋物線的對稱軸在BC的中垂線上,則點D、A關于函數(shù)對稱軸對稱,即可求解;(2)AC中垂線的表達式為:y=x,BC的中垂線為:x=,則圓心E為:(,).【詳解】解:(1)拋物線的對稱軸在BC的中垂線上,則點D、A關于函數(shù)對稱軸對稱,
故點D(3,2),
故答案為:(3,2);(2)AB中垂線的表達式為:y=x,BC的中垂線為:x=,則圓心E為:(,).作圖如下:【點睛】本題考查的是二次函數(shù)綜合運用,圓的基本性質(zhì),創(chuàng)新作圖,求出圓心的坐標是解題的關鍵.22、(1)52;52+x;180;180-10x;(2)1元;(3)2240元【分析】(1)本題先設第二個月的銷售定價每套增加x元,再分別求出銷售量即可;
(2)本題先設第二個月的銷售定價每套增加x元,根據(jù)題意找出等量關系列出方程,再把解得的x代入即可.(3)根據(jù)利潤的表達式化為二次函數(shù)的頂點式,即可解答本題.【詳解】解:(1)若設第二個月的銷售定價每套增加x元,填寫下表:時間第一個月第二個月銷售定價(元)5252+x銷售量(套)180180-10x故答案為:52;52+x;180;180-10x(2)若設第二個月的銷售定價每套增加x元,根據(jù)題意得:
(52-40)×180+(52+x-40)(180-10x)=411,
解得:x1=-2(舍去),x2=8,
當x=-2時,52+x=50(舍去),
當x=8時,52+x=1.
答:第二個月銷售定價每套應為1元.(3)設第二個月利潤為y元.
由題意得到:y=(52+x-40)(180-10x)
=-10x2+1x+211
=-10(x-3)2+2250∵-10<0
∴當4≤x≤6時,y隨x的增大而減小,∴當x=4時,y取最大值,此時y=2240,
∴52+x=52+4=56,
即要使第二個月利潤達到最大,應定價為56元,此時第二個月的最大利潤是2240元.【點睛】本題考查了二次函數(shù)的應用,解題的關鍵是明確題意,列出相應的關系式,找出所求問題需要的條件.23、(1)B(3,0),D(1,﹣4);(2);(3)存在,S的坐標為(3,0)或(﹣1,﹣2)或(﹣1,2)或(﹣1,﹣)【分析】(1)將A(﹣1,0)、C(0,﹣3)代入y=x2+bx+c,待定系數(shù)法即可求得拋物線的解析式,再配方即可得到頂點D的坐標,根據(jù)y=0,可得點B的坐標;(2)根據(jù)BC的解析式和拋物線的解析式,設P(x,x2﹣2x﹣3),則M(x,x﹣3),表示PM的長,根據(jù)二次函數(shù)的最值可得:當x=時,PM的最大值,此時P(,﹣),進而確定F的位置:在x軸的負半軸了取一點K,使∠OCK=30°,過F作FN⊥CK于N,當N、F、H三點共線時,如圖2,F(xiàn)H+FN最小,即PH+HF+CF的值最小,根據(jù)含30°角的直角三角形的性質(zhì),即可得結(jié)論;(3)先根據(jù)旋轉(zhuǎn)確定Q的位置,與點A重合,根據(jù)菱形的判定畫圖,分4種情況討論:分別以DQ為邊和對角線進行討論,根據(jù)菱形的邊長相等和平移的性質(zhì),可得點S的坐標.【詳解】(1)把A(﹣1,0),點C(0,﹣3)代入拋物線y=x2+bx+c,得:,解得:,∴拋物線的解析式為:y=x2﹣2x﹣3=(x﹣1)2﹣4,∴頂點D(1,﹣4),當y=0時,x2﹣2x﹣3=0,解得:x=3或﹣1,∴B(3,0);(2)∵B(3,0),C(0,﹣3),設直線BC的解析式為:y=kx+b,則,解得:,∴直線BC的解析式為:y=x﹣3,設P(x,x2﹣2x﹣3),則M(x,x﹣3),∴PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣x2+3x=﹣(x﹣)2+,當x=時,PM有最大值,此時P(,﹣),在x軸的負半軸了取一點K,使∠OCK=30°,過F作FN⊥CK于N,∴FN=CF,當N、F、H三點共線時,如圖1,F(xiàn)H+FN最小,即PH+HF+CF的值最小,∵Rt△OCK中,∠OCK=30°,OC=3,∴OK=,∵OH=,∴KH=+,∵Rt△KNH中,∠KHN=30°,∴KN=KH=,∴NH=KN=,∴PH+HF+CF的最小值=PH+NH==;(3)Rt△OFH中,∠OHF=30°,OH=,∴OF=OF'=,由旋轉(zhuǎn)得:∠FOF'=60°∴∠QOF'=30°,∴在Rt△QF'O中,QF'=OF'÷=÷=,OQ=2QF'=2×=1,∴Q與A重合,即Q(﹣1,0)分4種情況:①如圖2,以QD為邊時,由菱形和拋物線的對稱性可得S(3,0);②如圖3,以QD為邊時,由勾股定理得:AD=,∵四邊形DQSR是菱形,∴QS=AD=2,QS∥DR,∴S(﹣1,﹣2);③如圖4,同理可得:S(﹣1,2);④如圖5,作AD的中垂線,交對稱軸于R,可得菱形QSDR,∵A(﹣1,0),D(1,﹣4),∴AD的中點N的坐標為(0,﹣2),且AD=2,∴DN=,cos∠ADR=,∴DR=,∴QS=DR=,∴S(﹣1,﹣);綜上,S的坐標為(3,0)或(﹣1,﹣2)或(﹣1,2)或(﹣1,﹣).【點睛】本題主要考查二次函數(shù)和幾何圖形的綜合,添加合適的輔助線構(gòu)造含30°角的直角三角形,利用菱形的判定定理,進行分類討論,是解題的關鍵.24、(1)見解析;(2)見解析;(3)【分析】(1)根據(jù)兩角對應相等兩三角形相似即可證明.(2)證明△BAD∽△DAF可得結(jié)論.(3)求出AB,AF,代入AD2=AB?AF,即可解決問題.【詳解】(1)證明:∵DA平分∠BAC,∴∠CAD=∠DAE,∵DE⊥AD,∴∠ADE=∠C=90°,∴△ACD∽△ADE.(2)證明:連接DF.∵EF∥BC,∴∠AFE=∠C=90°,∠AEF=∠B,∵∠ADE=∠AFE=90°,∴A,E,D,F(xiàn)四點共圓,∴∠ADF=∠AEF,∴∠B=∠ADF,∴∠DAB=∠DAF,∴△BAD∽△D
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 24631.1-2024產(chǎn)品幾何技術規(guī)范(GPS)直線度第1部分:詞匯和參數(shù)
- 2024版勞務外包合同范本
- 特許經(jīng)營權授權合同
- 運動會商業(yè)贊助合約
- 就業(yè)意向協(xié)議書在職場中的應用
- 匿名股東權益協(xié)議參考
- 2024年版全新國際貨物買賣合同
- 2024年專業(yè)委托加工協(xié)議書范本
- 天津市2024年臨時勞動合同樣式
- 成品油物流合作協(xié)議模板
- 考試通用答題卡-A4可直接打印
- 工程項目全過程跟蹤審計實施方案(三篇)
- 淺談核心素養(yǎng)視角下高中語文課堂的構(gòu)建
- 安慶市污泥再生資源化處置暨綜合利用發(fā)電項目環(huán)境影響報告書
- 帕金森病藥物治療 帕金森病藥物治療(老年安全用藥課件)
- 數(shù)學物理方法
- 通訊員培訓課件
- 林則徐課件完整版
- 混凝土的熱工計算
- 船舶貿(mào)易智慧樹知到答案章節(jié)測試2023年上海海事大學
- 物業(yè)費催收計劃
評論
0/150
提交評論