




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
第五講TransportationandNetworkModels第五講1IntroductionSeveralspecificmodels(whichcanbeusedastemplatesforreal-lifeproblems)willbeintroduced.TRANSPORTATIONMODEL
ASSIGNMENTMODEL
NETWORKMODELS
IntroductionSeveralspecificm2IntroductionTRANSPORTATIONMODEL
ASSIGNMENTMODEL
Determinehowtosendproductsfromvarioussourcestovariousdestinationsinordertosatisfyrequirementsatthelowestpossiblecost.Allocatingfixed-sizedresourcestodeterminetheoptimalassignmentofsalespeopletodistricts,jobstomachines,taskstocomputers…NETWORKMODELS
Involvethemovementorassignmentofphysicalentities(e.g.,money).
IntroductionTRANSPORTATIONMOD3TransportationModelAnexample,theAutoPowerCompanymakesavarietyofbatteryandmotorizeduninterruptibleelectricpowersupplies(UPS’s).AutoPowerhas4finalassemblyplantsinEuropeandthedieselmotorsusedbytheUPS’sareproducedintheUS,shippedto3harborsandthensenttotheassemblyplants.Productionplansforthethirdquarter(July–Sept.)havebeenset.Therequirements(demandatthedestination)andtheavailablenumberofmotorsatharbors(supplyatorigins)areshownonthenextslide:TransportationModelAnexample4DemandSupplyAssemblyPlant
No.ofMotorsRequiredLeipzig 400(2)Nancy
900(3)Liege 200(4)Tilburg 500 2000
Harbor
No.ofMotorsAvailable(A)Amsterdam 500(B)Antwerp
700(C)LeHavre 800 2000BalancedDemandSupplyAssemblyPlant N5GraphicalpresentationofLeHavre(C)800Antwerp(B)700Amsterdam(A)500SupplyLiege(3)200Tilburg(4)500Leipzig(1)400Nancy(2)900andDemand:GraphicalpresentationofLeHa6TransportationModelAutoPowermustdecidehowmanymotorstosendfromeachharbor(supply)toeachplant(demand).Thecost($,onapermotorbasis)ofshippingisgivenbelow.
TODESTINATION
LeipzigNancyLiegeTilburgFROMORIGIN
(1)(2)(3)(4)
(A)Amsterdam 1201304159.50(B)Antwerp
6140100110(C)LeHavre102.509012242TransportationModelAutoPower7Thegoalistominimizetotaltransportationcost.Sincethecostsintheprevioustableareonaperunitbasis,wecancalculatetotalcostbasedonthefollowingmatrix(wherexijrepresentsthenumberofunitsthatwillbetransportedfromOriginitoDestinationj):TransportationModelThegoalistominimizetotal8
TODESTINATIONFROMORIGIN
1234
A 120xA1130xA241xA359.50xA4
B 61xB140xB2100xB3110xB4C102.50xC190xC2122xC342xC4TotalTransportationCost=
120xA1+130xA2+41xA3+…+122xC3+42xC4TransportationModel TODESTINATIONTota9Twogeneraltypesofconstraints.1.
Thenumberofitemsshippedfromaharbor
cannotexceedthenumberofitemsavailable.ForAmsterdam:xA1+xA2+xA3+xA4
<500ForAntwerp:
xB1+xB2+xB3+xB4
<700ForLeHavre:xC1+xC2+xC3+xC4
<800Note:Wecouldhaveusedan“=“insteadof“<“sincesupplyanddemandarebalancedforthismodel.TransportationModelTwogeneraltypesofconstrain102.
Demandateachplantmustbesatisfied.ForLeipzig:xA1+xB1+xC1
>400ForNancy:
xA2+xB2+xC2
>900ForLiege:xA3+xB3+xC3>200Note:Wecouldhaveusedan“=“insteadof“>“sincesupplyanddemandarebalancedforthismodel.ForTilburg:xA4+xB4+xC4>500TransportationModelTwogeneraltypesofconstraints.2.Demandateachplantmust11VariationsontheTransportationModelSupposewenowwanttomaximizethevalueoftheobjectivefunctioninsteadofminimizingit.Inthiscase,wewouldusethesamemodel,butnowtheobjectivefunctioncoefficientsdefinethecontributionmargins(i.e.,unitreturns)insteadofunitcosts.SolvingMaxTransportationModelsVariationsontheTransportati12Whensupplyanddemandarenotequal,thentheproblemisunbalanced.Therearetwosituations:Whensupplyisgreaterthandemand:WhenSupplyandDemandDifferInthiscase,whenalldemandissatisfied,theremainingsupplythatwasnotallocatedateachoriginwouldappearasslackinthesupplyconstraintforthatorigin.Usinginequalitiesintheconstraints(asinthepreviousexample)wouldnotcauseanyproblems.VariationsontheTransportationModelWhensupplyanddemandarenot13Inthiscase,theLPmodelhasnofeasiblesolution.However,therearetwoapproachestosolvingthisproblem:1.
Rewritethesupplyconstraintstobe
equalitiesandrewritethedemand
constraintstobe<.Unfulfilleddemandwillappearasslackoneachofthedemandconstraintswhenoneoptimizesthemodel.Whendemandisgreaterthansupply:VariationsontheTransportationModelInthiscase,theLPmodelhas142.
Revisethemodeltoappendaplaceholder
origin,calledadummyorigin,withsupply
equaltothedifferencebetweentotal
demandandtotalsupply.Thepurposeofthedummyoriginistomaketheproblembalanced(totalsupply=totaldemand)sothatonecansolveit.Thecostofsupplyinganydestinationfromthisoriginiszero.Oncesolved,anysupplyallocatedfromthisorigintoadestinationisinterpretedasunfilleddemand.VariationsontheTransportationModel2.Revisethemodeltoappend15Certainroutesinatransportationmodelmaybeunacceptableduetoregionalrestrictions,deliverytime,etc.Inthiscase,youcanassignanarbitrarilylargeunitcostnumber(identifiedasM)tothatroute.Thiswillforceonetoeliminatetheuseofthatroutesincethecostofusingitwouldbemuchlargerthanthatofanyotherfeasiblealternative.EliminatingUnacceptableRoutesChooseMsuchthatitwillbelargerthananyotherunitcostnumberinthemodel.VariationsontheTransportationModelCertainroutesinatransporta16Generally,LPmodelsdonotproduceintegersolutions.TheexceptiontothisistheTransportationmodel.Ingeneral:IntegerValuedSolutionsIfallofthesuppliesanddemandsinatransportationmodelhaveintegervalues,theoptimalvaluesofthedecisionvariableswillalsohaveintegervalues.VariationsontheTransportationModelGenerally,LPmodelsdonotpr17AssignmentModelIngeneral,theAssignmentmodelistheproblemofdeterminingtheoptimalassignmentofn“indivisible”agentsorobjectstontasks.Forexample,youmightwanttoassignSalespeopletosalesterritoriesComputerstonetworksConsultantstoclientsServicerepresentativestoservicecallsCommercialartiststoadvertisingcopyTheimportantconstraintisthateachpersonormachinebeassignedtooneandonlyonetask.AssignmentModelIngeneral,th18WewillusetheAutoPowerexampletoillustrateAssignmentproblems.AutoPowerEurope’sAuditingProblemAutoPower’sEuropeanheadquartersisinBrussels.Thisyear,eachofthefourcorporatevice-presidentswillvisitandauditoneoftheassemblyplantsinJune.Theplantsarelocatedin:Leipzig,GermanyLiege,BelgiumNancy,FranceTilburg,theNetherlandsAssignmentModelWewillusetheAutoPowerexam19Theissuestoconsiderinassigningthedifferentvice-presidentstotheplantsare:1.
Matchingthevice-presidents’areasof
expertisewiththeimportanceofspecific
problemareasinaplant.2.
Thetimethemanagementauditwillrequire
andtheotherdemandsoneachvice-
presidentduringthetwo-weekinterval.3.
Matchingthelanguageabilityofavice-
presidentwiththeplant’sdominantlanguage.Keepingtheseissuesinmind,firstestimatethe(opportunity)costtoAutoPowerofsendingeachvice-presidenttoeachplant.AssignmentModelTheissuestoconsiderinassi20Thefollowingtableliststheassignmentcostsin$000sforeveryvice-president/plantcombination.
PLANT
LeipzigNancyLiegeTilburgV.P.(1)(2)(3)(4)
Finance(F) 24102111Marketing(M)
14221015Operations(O)15172019Personnel(P)11191413AssignmentModelThefollowingtableliststhe21
PLANT
LeipzigNancyLiegeTilburgV.P.(1)(2)(3)(4)
Finance(F) 24102111Marketing(M)
14221015Operations(O)15172019Personnel(P)11191413Considerthefollowingassignment:Totalcost=24+22+20+13=79Thequestionis,isthistheleastcostassignment?AssignmentModel PLANTConsi22Completeenumerationisthecalculationofthetotalcostofeachfeasibleassignmentpatterninordertopicktheassignmentwiththelowesttotalcost.SolvingbyCompleteEnumerationThisisnotaproblemwhenthereareonlyafewrowsandcolumns(e.g.,vice-presidentsandplants).However,completeenumerationcanquicklybecomeburdensomeasthemodelgrowslarge.AssignmentModelCompleteenumerationistheca231.
Fcanbeassignedtoanyofthe4plants.2.
OnceFisassigned,Mcanbeassignedtoany
oftheremaining3plants.3.
NowOcanbeassignedtoanyofthe
remaining2plants.4.
Pmustbeassignedtotheonlyremaining
plant.Thereare4x3x2x1=24possiblesolutions.Ingeneral,iftherearenrowsandncolumns,thentherewouldben(n-1)(n-2)(n-3)…(2)(1)=n!
(nfactorial)solutions.Asnincreases,n!increasesrapidly.Therefore,thismaynotbethebestmethod.AssignmentModel1.Fcanbeassignedtoanyo24Forthismodel,let
xij=numberofV.P’softypeiassignedtoplantjwherei=F,M,O,P
j=1,2,3,4TheLPFormulationandSolutionNoticethatthismodelisbalancedsincethetotalnumberofV.P.’sisequaltothetotalnumberofplants.Remember,onlyoneV.P.(supply)isneededateachplant(demand).AssignmentModelForthismodel,let
xij=num25Asaresult,theoptimalassignmentis:
PLANT
LeipzigNancyLiegeTilburgV.P.(1)(2)(3)(4)
Finance(F) 24102111Marketing(M)
14221015Operations(O)15172019Personnel(P)11191413TotalCost($000’s)=10+10+15+13=48AssignmentModelAsaresult,theoptimalassig26TheAssignmentmodelissimilartotheTransportationmodelwiththeexceptionthatsupplycannotbedistributedtomorethanonedestination.RelationtotheTransportationModelIntheAssignmentmodel,allsuppliesanddemandsareone,andhenceintegers.Asaresult,eachdecisionvariablecellwilleithercontaina0(noassignment)ora1(assignmentmade).Ingeneral,theassignmentmodelcanbeformulatedasatransportationmodelinwhichthesupplyateachoriginandthedemandateachdestination=1.AssignmentModelTheAssignmentmodelissimila27Case1:SupplyExceedsDemandUnequalSupplyandDemand:Intheexample,supposethecompanyPresidentdecidesnottoaudittheplantinTilburg.Nowthereare4V.P.’stoassignto3plants.Hereisthecost(in$000s)matrixforthisscenario:
PLANT NUMBEROFV.P.sV.P. 1 2 3 AVAILABLE
F 24 10 21 1
M 14 22 10 1
O 15 17 20 1
P 11 19 14 1No.ofV.P.s 4Required 1 1 1 3
AssignmentModelCase1:SupplyExceedsDemand28Toformulatethismodel,simplydroptheconstraintthatrequiredaV.P.atplant4andsolveit.AssignmentModelUnequalSupplyandDemand:Toformulatethismodel,simpl29Case2:DemandExceedsSupplyUnequalSupplyandDemand:Inthisexample,assumethattheV.P.ofPersonnelisunabletoparticipateintheEuropeanaudit.Nowthecostmatrixisasfollows:
PLANT NUMBEROFV.P.sV.P. 1 2 3 4 AVAILABLE
F 24 10 21 11 1
M 14 22 10 15 1
O 15 17 20 19 1No.ofV.P.s 3Required 1 1 1 1 4
AssignmentModelCase2:DemandExceedsSupply30
1.Modifytheinequalitiesintheconstraints
(similartotheTransportationexample)
2.AddadummyV.P.asaplaceholdertothe
costmatrix(shownbelow).
PLANT NUMBEROFV.P.sV.P. 1 2 3 4 AVAILABLE
F 24 10 21 11 1
M 14 22 10 15 1
O 15 17 20 19 1Dummy 0 0 0 0 1No.ofV.P.s 4Required 1 1 1 1 4
ZerocosttoassignthedummyDummysupply;nowsupply=demandAssignmentModel 1.Modifytheinequalitiesi31Inthesolution,thedummyV.P.wouldbeassignedtoaplant.Inreality,thisplantwouldnotbeaudited.AssignmentModelUnequalSupplyandDemand:Inthesolution,thedummyV.P32InthisAssignmentmodel,theresponsefromeachassignmentisaprofitratherthanacost.MaximizationModelsForexample,AutoPowermustnowassignfournewsalespeopletothreeterritoriesinordertomaximizeprofit.Theeffectofassigninganysalespersontoaterritoryismeasuredbytheanticipatedmarginalincreaseinprofitcontributionduetotheassignment.AssignmentModelInthisAssignmentmodel,the33Hereistheprofitmatrixforthismodel.
NUMBEROF TERRITORY SALESPEOPLE SALESPERSON 1 2 3AVAILABLE
A 40 30 20 1
B 18 28 22 1
C 12 16 20 1
D 25 24 27 1No.of 4
Salespeople 1 1 1 3
Required
ThisvaluerepresentstheprofitcontributionifAisassignedtoTerritory3.AssignmentModelHereistheprofitmatrixfor34TheAssignmentModelCertainassignmentsinthemodelmaybeunacceptableforvariousreasons.SituationswithUnacceptableAssignmentsInthiscase,youcanassignanarbitrarilylargeunitcost(orsmallunitprofit)numbertothatassignment.ThiswillforceSolvertoeliminatetheuseofthatassignmentsince,forexample,thecostofmakingthatassignmentwouldbemuchlargerthanthatofanyotherfeasiblealternative.AssignmentModelTheAssignmentModelCertainas35NetworkModelsTransportationandassignmentmodelsaremembersofamoregeneralclassofmodelscallednetworkmodels.Networkmodelsinvolvefrom-tosourcesanddestinations.Appliedtomanagementlogisticsanddistribution,networkmodelsareimportantbecause:Theycanbeappliedtoawidevarietyofrealworldmodels.Flowsmayrepresentphysicalquantities,Internetdatapackets,cash,airplanes,cars,ships,products,…NetworkModelsTransportationa36ZigwellInc.isAutoPower’slargestUSdistributorofUPSgeneratorsinfiveMidwesternstates.NetworkModelsACapacitatedTransshipmentModelZigwellhas10BigGen’satsite1Thesegeneratorsmustbedeliveredtoconstructionsitesintwocitiesdenotedand343BigGen’sarerequiredatsiteand7arerequiredatsite34NetworkModelsZigwellInc.isAutoPower’sla371+102543-3-7Thisisanetworkdiagramornetworkflowdiagram.Eacharrowiscalledanarcorbranch.
Eachsiteistermedanode.SupplyDemandNetworkModels1+102543-3-7Thisisanetwork38cij thecosts(perunit)oftraversingthe
routesuij thecapacitiesalongtheroutesCostsareprimarilyduetofuel,tolls,andthecostofthedriverfortheaveragetimeittakestotraversethearc.Becauseofpre-establishedagreementswiththeteamsters,Zigwellmustchangedriversateachsiteitencountersonaroute.Becauseoflimitationsonthecurrentavailabilityofdrivers,thereisanupperbound,uij,onthenumberofgeneratorsthatmaytraverseanarc.NetworkModelscij thecosts(perunit)oftr391+102543-3-7c12c23c24c25c34c43c53u12u23u24u25u34u43u53NetworkModels1+102543-3-7c12c23c24c25c34c4340LPFormulationoftheModelNetworkModelsACapacitatedTransshipmentModelThegoalistofindashipmentplanthatsatisfiesthedemandsatminimumcost,subjecttothecapacityconstraints.Thecapacitatedtransshipmentmodelisbasicallyidenticaltothetransportationmodelexceptthat:1.
Anyplantorwarehousecanshiptoanyother
plantorwarehouse2.
Therecanbeupperand/orlowerbounds
(capacities)oneachshipment(branch)NetworkModelsLPFormulationoftheModelNet41Thedecisionvariablesare:xij=totalnumberofBigGen’ssentonarc(i,j)=flowfromnodeitonodejThemodelbecomes:Minc12x12+c23x23+c24x24+c25x25+c34x34+
c43x43+c53x53+c54x54s.t.+x12=10-x12+x23+x24+x25=0-x23–x43–x53+x34=-3-x24+x43–x34–x54=-7-x25+x53+x54=00<
xij<uijallarcs(i,j)inthenetworkThedecisionvariablesare:xij42PropertiesoftheModel1.
xijisassociatedwitheachofthe8arcsinthe
network.Therefore,thereare8corresponding
variables:x12,x23,x24,x25,x34,x43,x53,andx54Theobjectiveistominimizetotalcost.2.
Thereisonematerialflowbalanceequation
associatedwitheachnodeinthenetwork.For
example:Totalflowoutofnodeis10units1Totalflowoutofnodeminusthetotalflowintonodeiszero(i.e.,totalflowoutmustequaltotalflowintonode).222Totalflowoutofnodemustbe3unitslessthanthetotalflowintonode.33PropertiesoftheModel1.xij43Intermediatenodesthatareneithersupplypointsnordemandpointsareoftentermedtransshipmentnodes.3.
Thepositiveright-handsidescorrespondto
nodesthatarenetsuppliers(origins).Thesumofallright-hand-sidetermsiszero(i.e.,totalsupplyinthenetworkequalstotaldemand).Thezeroright-handsidescorrespondtonodesthathaveneithersupplynordemand.Thenegativeright-handsidescorrespondtonodesthatarenetdestinations.Intermediatenodesthatarene44Ingeneral,flowbalanceforagivennode,j,is:Totalflowoutofnodej–totalflowintonodej=supplyatnodejNegativesupplyisarequirement.Nodeswithnegativesupplyarecalleddestinations,
sinks,
or
demandpoints.Nodeswithpositivesupplyarecalledorigins,sources,orsupplypoints.Nodeswithzerosupplyarecalledtransshipmentpoints.4.
AsmallmodelcanbeoptimizedwithSolver.Ingeneral,flowbalancefora45IntegerOptimalSolutionsNetworkModelsACapacitatedTransshipmentModelTheintegerpropertyofthenetworkmodelcanbestatedthus:IfalltheRHStermsandarccapacities,uij,areintegersinthecapacitatedtransshipmentmodel,therewillalwaysbeaninteger-valuedoptimalsolutiontothismodel.NetworkModelsIntegerOptimalSolutionsNetwo46ThestructureofthismodelmakesitpossibletoapplyspecialsolutionmethodsandsoftwarethatoptimizethemodelmuchmorequicklythanthemoregeneralsimplexmethodusedbySolver.EfficientSolutionProceduresNetworkModelsACapacitatedTransshipmentModelThismakesitpossibletooptimizeverylargescalenetworkmodelsquicklyandcheaply.NetworkModelsThestructureofthismodelma47Theshortest-routemodelreferstoanetworkforwhicheacharc(i,j)hasanassociatednumber,cij,whichisinterpretedasthedistance(orcost,ortime)fromnodeitonodej.NetworkModelsAShortest-RouteModelArouteorpathbetweentwonodesisanysequenceofarcsconnectingthetwonodes.Theobjectiveistofindtheshortest(orleast-costorleast-time)routesfromaspecificnodetoeachoftheothernodesinthenetwork.NetworkModelsTheshortest-routemodelrefer48Inthisexample,AaronDrunnermakesfrequentwinedeliveriesto7differentsites:874H12347651611213323Notethatthearcsareundirected(flowispermittedineitherdirection).Distancebetweennodes.HomeBaseInthisexample,AaronDrunner49Thegoalistominimizeoverallcostsbymakingsurethatanyfuturedeliverytoanygivensiteismadealongtheshortestroutetothatsite.ThegoalistominimizeoverallcostsbyfindingtheshortestroutefromnodeHtoanyoftheother7nodes.Notethatinthismodel,thetaskistofindanoptimalroute,notoptimalxij’s.NetworkModelsThegoalistominimizeoveral50Inthisexample,MichaelCarrisresponsibleforobtainingahighspeedprintingpressforhisnewspapercompany.NetworkModelsAnEquipmentReplacementModelInagivenyearhemustchoosebetweenpurchasing:NewPrintingPressOldPrintingPresshighannual
acquisitioncostlowinitial
maintenancecostnoannual
acquisitioncosthighinitial
maintenancecostNetworkModelsInthisexample,MichaelCarr51Assumea4-yeartimehorizon.Let:cijdenotethecostofbuyingnewequipment
atthebeginningofyeari,i=1,2,3,4
andmaintainingittothebeginningofyear
j,j=2,3,4,5Threealternativefeasiblepoliciesare:1.
Buyingnewequipmentatthebeginningof
eachyear.Total(acquisition+maintenance)cost=
c12+c23+c34+c452.
Buynewequipmentonlyatthebeginningof
year1andmaintainitthroughallsuccessive
years.Total(buying+maintenance)cost=c15Assumea4-yeartimehorizon.523.
Buynewequipmentatthebeginningofyears
1and4.Totalcost=c14+c45Thesolutiontothismodelisobtainedbyfindingtheshortest(i.e.,minimumcost)routefromnode1tonode5ofthenetwork.Eachnodeontheshortestroutedenotesareplacement,thatis,ayearatwhichnewequipmentshouldbebought.3.Buynewequipmentattheb53Hereisthenetworkmodelforthisproblem.Assumethefollowingcosts:$1,600,000purchasecost$500,000maintenancecostinpurchaseyear$1,000,000,$1,500,000,and$2,200,000foreachadditionalyeartheequipmentiskept12345c12c23c34c45c13c14c15c24c25c35Hereisthenetworkmodelfor54Inthemaximal-flowmodel,thereisasinglesourcenode(theinputnode)andasinglesinknode(theoutputnode).NetworkModelsAMaximalFlowModelThegoalistofindthemaximumamountoftotalflowthatcanberoutedthroughaphysicalnetwork(fromsourcetosink)inaunitoftime.Theamountofflowperunittimeoneacharcislimitedbycapacityrestrictions.Theonlyrequirementisthatforeachnode(otherthanthesourceorthesink):flowoutofthenode=flowintothenodeNetworkModelsInthemaximal-flowmodel,the55TheUDPC(UrbanDevelopmentPlanningCommission)isanadhocspecialintereststudygroup.AnApplicationofMaximal-Flow:
TheUrbanDevelopmentPlanningCommissionNetworkModelsAMaximalFlowModelThegroup’scurrentresponsibilityistocoordinatetheconstructionofthenewsubwaysystemwiththestate’shighwaymaintenancedepartment.Becausethenewsubwaysystemisbeingbuiltnearthecity’sbeltway,theeastboundtrafficonthebeltwaymustbedetoured.NetworkModelsTheUDPC(UrbanDevelopmentPl56Theproposednetworkofalternativeroutesandthedifferentspeedlimitsandtrafficpatterns(producingdifferentflowcapacities)aregivenbelow:154326406003402060016002DetourBeginsDetourEndsIndicatesacapacityof6000vehiclesperhourinthedirectionofthearrow.Indicates0capacityinthedirectionofthearrow.Theproposednetworkofaltern57TranslatingtheExcelsolutiontotheoriginalnetworkdiagramgivesthefollowingtrafficpattern:154326442266288TranslatingtheExcelsolution58第五講TransportationandNetworkModels第五講59IntroductionSeveralspecificmodels(whichcanbeusedastemplatesforreal-lifeproblems)willbeintroduced.TRANSPORTATIONMODEL
ASSIGNMENTMODEL
NETWORKMODELS
IntroductionSeveralspecificm60IntroductionTRANSPORTATIONMODEL
ASSIGNMENTMODEL
Determinehowtosendproductsfromvarioussourcestovariousdestinationsinordertosatisfyrequirementsatthelowestpossiblecost.Allocatingfixed-sizedresourcestodeterminetheoptimalassignmentofsalespeopletodistricts,jobstomachines,taskstocomputers…NETWORKMODELS
Involvethemovementorassignmentofphysicalentities(e.g.,money).
IntroductionTRANSPORTATIONMOD61TransportationModelAnexample,theAutoPowerCompanymakesavarietyofbatteryandmotorizeduninterruptibleelectricpowersupplies(UPS’s).AutoPowerhas4finalassemblyplantsinEuropeandthedieselmotorsusedbytheUPS’sareproducedintheUS,shippedto3harborsandthensenttotheassemblyplants.Productionplansforthethirdquarter(July–Sept.)havebeenset.Therequirements(demandatthedestination)andtheavailablenumberofmotorsatharbors(supplyatorigins)areshownonthenextslide:TransportationModelAnexample62DemandSupplyAssemblyPlant
No.ofMotorsRequiredLeipzig 400(2)Nancy
900(3)Liege 200(4)Tilburg 500 2000
Harbor
No.ofMotorsAvailable(A)Amsterdam 500(B)Antwerp
700(C)LeHavre 800 2000BalancedDemandSupplyAssemblyPlant N63GraphicalpresentationofLeHavre(C)800Antwerp(B)700Amsterdam(A)500SupplyLiege(3)200Tilburg(4)500Leipzig(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年搏擊運(yùn)動項目合作計劃書
- 2025年水泥混凝土制品項目合作計劃書
- 2024北京市昌平區(qū)中考真題生物+答案
- 腦心健康管理師的學(xué)習(xí)匯報
- 2025年皮手套及皮革制衣著附件項目合作計劃書
- 2025年輕油蒸汽轉(zhuǎn)化催化劑項目建議書
- 腈滌混紡紗企業(yè)數(shù)字化轉(zhuǎn)型與智慧升級戰(zhàn)略研究報告
- 模塊化建筑運(yùn)輸與安裝企業(yè)制定與實施新質(zhì)生產(chǎn)力戰(zhàn)略研究報告
- 子午線輪胎企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 有機(jī)食物企業(yè)縣域市場拓展與下沉戰(zhàn)略研究報告
- 音頻功率放大器的設(shè)計與實現(xiàn)
- 2024年高等教育文學(xué)類自考-01210對外漢語教學(xué)法考試近5年真題集錦(頻考類試題)帶答案
- 《長江流域》習(xí)題課件
- 2024年教師編制考試教育理論綜合基礎(chǔ)知識復(fù)習(xí)題庫及答案(共300題)
- 部編版三年級《習(xí)作我做了一項小實驗》教案
- 智能制造市場現(xiàn)狀及發(fā)展前景分析報告
- (高清版)WST 406-2024 臨床血液檢驗常用項目分析質(zhì)量標(biāo)準(zhǔn)
- 消防安全技術(shù)綜合能力要點(diǎn)概述
- DL-T 5148-2021水工建筑物水泥灌漿施工技術(shù)條件-PDF解密
- 第8版精神病學(xué)
- 道路施工安全隱患及防范措施
評論
0/150
提交評論