運籌學(xué)與供應(yīng)鏈管理-第5講課件_第1頁
運籌學(xué)與供應(yīng)鏈管理-第5講課件_第2頁
運籌學(xué)與供應(yīng)鏈管理-第5講課件_第3頁
運籌學(xué)與供應(yīng)鏈管理-第5講課件_第4頁
運籌學(xué)與供應(yīng)鏈管理-第5講課件_第5頁
已閱讀5頁,還剩111頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

第五講TransportationandNetworkModels第五講1IntroductionSeveralspecificmodels(whichcanbeusedastemplatesforreal-lifeproblems)willbeintroduced.TRANSPORTATIONMODEL

ASSIGNMENTMODEL

NETWORKMODELS

IntroductionSeveralspecificm2IntroductionTRANSPORTATIONMODEL

ASSIGNMENTMODEL

Determinehowtosendproductsfromvarioussourcestovariousdestinationsinordertosatisfyrequirementsatthelowestpossiblecost.Allocatingfixed-sizedresourcestodeterminetheoptimalassignmentofsalespeopletodistricts,jobstomachines,taskstocomputers…NETWORKMODELS

Involvethemovementorassignmentofphysicalentities(e.g.,money).

IntroductionTRANSPORTATIONMOD3TransportationModelAnexample,theAutoPowerCompanymakesavarietyofbatteryandmotorizeduninterruptibleelectricpowersupplies(UPS’s).AutoPowerhas4finalassemblyplantsinEuropeandthedieselmotorsusedbytheUPS’sareproducedintheUS,shippedto3harborsandthensenttotheassemblyplants.Productionplansforthethirdquarter(July–Sept.)havebeenset.Therequirements(demandatthedestination)andtheavailablenumberofmotorsatharbors(supplyatorigins)areshownonthenextslide:TransportationModelAnexample4DemandSupplyAssemblyPlant

No.ofMotorsRequiredLeipzig 400(2)Nancy

900(3)Liege 200(4)Tilburg 500 2000

Harbor

No.ofMotorsAvailable(A)Amsterdam 500(B)Antwerp

700(C)LeHavre 800 2000BalancedDemandSupplyAssemblyPlant N5GraphicalpresentationofLeHavre(C)800Antwerp(B)700Amsterdam(A)500SupplyLiege(3)200Tilburg(4)500Leipzig(1)400Nancy(2)900andDemand:GraphicalpresentationofLeHa6TransportationModelAutoPowermustdecidehowmanymotorstosendfromeachharbor(supply)toeachplant(demand).Thecost($,onapermotorbasis)ofshippingisgivenbelow.

TODESTINATION

LeipzigNancyLiegeTilburgFROMORIGIN

(1)(2)(3)(4)

(A)Amsterdam 1201304159.50(B)Antwerp

6140100110(C)LeHavre102.509012242TransportationModelAutoPower7Thegoalistominimizetotaltransportationcost.Sincethecostsintheprevioustableareonaperunitbasis,wecancalculatetotalcostbasedonthefollowingmatrix(wherexijrepresentsthenumberofunitsthatwillbetransportedfromOriginitoDestinationj):TransportationModelThegoalistominimizetotal8

TODESTINATIONFROMORIGIN

1234

A 120xA1130xA241xA359.50xA4

B 61xB140xB2100xB3110xB4C102.50xC190xC2122xC342xC4TotalTransportationCost=

120xA1+130xA2+41xA3+…+122xC3+42xC4TransportationModel TODESTINATIONTota9Twogeneraltypesofconstraints.1.

Thenumberofitemsshippedfromaharbor

cannotexceedthenumberofitemsavailable.ForAmsterdam:xA1+xA2+xA3+xA4

<500ForAntwerp:

xB1+xB2+xB3+xB4

<700ForLeHavre:xC1+xC2+xC3+xC4

<800Note:Wecouldhaveusedan“=“insteadof“<“sincesupplyanddemandarebalancedforthismodel.TransportationModelTwogeneraltypesofconstrain102.

Demandateachplantmustbesatisfied.ForLeipzig:xA1+xB1+xC1

>400ForNancy:

xA2+xB2+xC2

>900ForLiege:xA3+xB3+xC3>200Note:Wecouldhaveusedan“=“insteadof“>“sincesupplyanddemandarebalancedforthismodel.ForTilburg:xA4+xB4+xC4>500TransportationModelTwogeneraltypesofconstraints.2.Demandateachplantmust11VariationsontheTransportationModelSupposewenowwanttomaximizethevalueoftheobjectivefunctioninsteadofminimizingit.Inthiscase,wewouldusethesamemodel,butnowtheobjectivefunctioncoefficientsdefinethecontributionmargins(i.e.,unitreturns)insteadofunitcosts.SolvingMaxTransportationModelsVariationsontheTransportati12Whensupplyanddemandarenotequal,thentheproblemisunbalanced.Therearetwosituations:Whensupplyisgreaterthandemand:WhenSupplyandDemandDifferInthiscase,whenalldemandissatisfied,theremainingsupplythatwasnotallocatedateachoriginwouldappearasslackinthesupplyconstraintforthatorigin.Usinginequalitiesintheconstraints(asinthepreviousexample)wouldnotcauseanyproblems.VariationsontheTransportationModelWhensupplyanddemandarenot13Inthiscase,theLPmodelhasnofeasiblesolution.However,therearetwoapproachestosolvingthisproblem:1.

Rewritethesupplyconstraintstobe

equalitiesandrewritethedemand

constraintstobe<.Unfulfilleddemandwillappearasslackoneachofthedemandconstraintswhenoneoptimizesthemodel.Whendemandisgreaterthansupply:VariationsontheTransportationModelInthiscase,theLPmodelhas142.

Revisethemodeltoappendaplaceholder

origin,calledadummyorigin,withsupply

equaltothedifferencebetweentotal

demandandtotalsupply.Thepurposeofthedummyoriginistomaketheproblembalanced(totalsupply=totaldemand)sothatonecansolveit.Thecostofsupplyinganydestinationfromthisoriginiszero.Oncesolved,anysupplyallocatedfromthisorigintoadestinationisinterpretedasunfilleddemand.VariationsontheTransportationModel2.Revisethemodeltoappend15Certainroutesinatransportationmodelmaybeunacceptableduetoregionalrestrictions,deliverytime,etc.Inthiscase,youcanassignanarbitrarilylargeunitcostnumber(identifiedasM)tothatroute.Thiswillforceonetoeliminatetheuseofthatroutesincethecostofusingitwouldbemuchlargerthanthatofanyotherfeasiblealternative.EliminatingUnacceptableRoutesChooseMsuchthatitwillbelargerthananyotherunitcostnumberinthemodel.VariationsontheTransportationModelCertainroutesinatransporta16Generally,LPmodelsdonotproduceintegersolutions.TheexceptiontothisistheTransportationmodel.Ingeneral:IntegerValuedSolutionsIfallofthesuppliesanddemandsinatransportationmodelhaveintegervalues,theoptimalvaluesofthedecisionvariableswillalsohaveintegervalues.VariationsontheTransportationModelGenerally,LPmodelsdonotpr17AssignmentModelIngeneral,theAssignmentmodelistheproblemofdeterminingtheoptimalassignmentofn“indivisible”agentsorobjectstontasks.Forexample,youmightwanttoassignSalespeopletosalesterritoriesComputerstonetworksConsultantstoclientsServicerepresentativestoservicecallsCommercialartiststoadvertisingcopyTheimportantconstraintisthateachpersonormachinebeassignedtooneandonlyonetask.AssignmentModelIngeneral,th18WewillusetheAutoPowerexampletoillustrateAssignmentproblems.AutoPowerEurope’sAuditingProblemAutoPower’sEuropeanheadquartersisinBrussels.Thisyear,eachofthefourcorporatevice-presidentswillvisitandauditoneoftheassemblyplantsinJune.Theplantsarelocatedin:Leipzig,GermanyLiege,BelgiumNancy,FranceTilburg,theNetherlandsAssignmentModelWewillusetheAutoPowerexam19Theissuestoconsiderinassigningthedifferentvice-presidentstotheplantsare:1.

Matchingthevice-presidents’areasof

expertisewiththeimportanceofspecific

problemareasinaplant.2.

Thetimethemanagementauditwillrequire

andtheotherdemandsoneachvice-

presidentduringthetwo-weekinterval.3.

Matchingthelanguageabilityofavice-

presidentwiththeplant’sdominantlanguage.Keepingtheseissuesinmind,firstestimatethe(opportunity)costtoAutoPowerofsendingeachvice-presidenttoeachplant.AssignmentModelTheissuestoconsiderinassi20Thefollowingtableliststheassignmentcostsin$000sforeveryvice-president/plantcombination.

PLANT

LeipzigNancyLiegeTilburgV.P.(1)(2)(3)(4)

Finance(F) 24102111Marketing(M)

14221015Operations(O)15172019Personnel(P)11191413AssignmentModelThefollowingtableliststhe21

PLANT

LeipzigNancyLiegeTilburgV.P.(1)(2)(3)(4)

Finance(F) 24102111Marketing(M)

14221015Operations(O)15172019Personnel(P)11191413Considerthefollowingassignment:Totalcost=24+22+20+13=79Thequestionis,isthistheleastcostassignment?AssignmentModel PLANTConsi22Completeenumerationisthecalculationofthetotalcostofeachfeasibleassignmentpatterninordertopicktheassignmentwiththelowesttotalcost.SolvingbyCompleteEnumerationThisisnotaproblemwhenthereareonlyafewrowsandcolumns(e.g.,vice-presidentsandplants).However,completeenumerationcanquicklybecomeburdensomeasthemodelgrowslarge.AssignmentModelCompleteenumerationistheca231.

Fcanbeassignedtoanyofthe4plants.2.

OnceFisassigned,Mcanbeassignedtoany

oftheremaining3plants.3.

NowOcanbeassignedtoanyofthe

remaining2plants.4.

Pmustbeassignedtotheonlyremaining

plant.Thereare4x3x2x1=24possiblesolutions.Ingeneral,iftherearenrowsandncolumns,thentherewouldben(n-1)(n-2)(n-3)…(2)(1)=n!

(nfactorial)solutions.Asnincreases,n!increasesrapidly.Therefore,thismaynotbethebestmethod.AssignmentModel1.Fcanbeassignedtoanyo24Forthismodel,let

xij=numberofV.P’softypeiassignedtoplantjwherei=F,M,O,P

j=1,2,3,4TheLPFormulationandSolutionNoticethatthismodelisbalancedsincethetotalnumberofV.P.’sisequaltothetotalnumberofplants.Remember,onlyoneV.P.(supply)isneededateachplant(demand).AssignmentModelForthismodel,let

xij=num25Asaresult,theoptimalassignmentis:

PLANT

LeipzigNancyLiegeTilburgV.P.(1)(2)(3)(4)

Finance(F) 24102111Marketing(M)

14221015Operations(O)15172019Personnel(P)11191413TotalCost($000’s)=10+10+15+13=48AssignmentModelAsaresult,theoptimalassig26TheAssignmentmodelissimilartotheTransportationmodelwiththeexceptionthatsupplycannotbedistributedtomorethanonedestination.RelationtotheTransportationModelIntheAssignmentmodel,allsuppliesanddemandsareone,andhenceintegers.Asaresult,eachdecisionvariablecellwilleithercontaina0(noassignment)ora1(assignmentmade).Ingeneral,theassignmentmodelcanbeformulatedasatransportationmodelinwhichthesupplyateachoriginandthedemandateachdestination=1.AssignmentModelTheAssignmentmodelissimila27Case1:SupplyExceedsDemandUnequalSupplyandDemand:Intheexample,supposethecompanyPresidentdecidesnottoaudittheplantinTilburg.Nowthereare4V.P.’stoassignto3plants.Hereisthecost(in$000s)matrixforthisscenario:

PLANT NUMBEROFV.P.sV.P. 1 2 3 AVAILABLE

F 24 10 21 1

M 14 22 10 1

O 15 17 20 1

P 11 19 14 1No.ofV.P.s 4Required 1 1 1 3

AssignmentModelCase1:SupplyExceedsDemand28Toformulatethismodel,simplydroptheconstraintthatrequiredaV.P.atplant4andsolveit.AssignmentModelUnequalSupplyandDemand:Toformulatethismodel,simpl29Case2:DemandExceedsSupplyUnequalSupplyandDemand:Inthisexample,assumethattheV.P.ofPersonnelisunabletoparticipateintheEuropeanaudit.Nowthecostmatrixisasfollows:

PLANT NUMBEROFV.P.sV.P. 1 2 3 4 AVAILABLE

F 24 10 21 11 1

M 14 22 10 15 1

O 15 17 20 19 1No.ofV.P.s 3Required 1 1 1 1 4

AssignmentModelCase2:DemandExceedsSupply30

1.Modifytheinequalitiesintheconstraints

(similartotheTransportationexample)

2.AddadummyV.P.asaplaceholdertothe

costmatrix(shownbelow).

PLANT NUMBEROFV.P.sV.P. 1 2 3 4 AVAILABLE

F 24 10 21 11 1

M 14 22 10 15 1

O 15 17 20 19 1Dummy 0 0 0 0 1No.ofV.P.s 4Required 1 1 1 1 4

ZerocosttoassignthedummyDummysupply;nowsupply=demandAssignmentModel 1.Modifytheinequalitiesi31Inthesolution,thedummyV.P.wouldbeassignedtoaplant.Inreality,thisplantwouldnotbeaudited.AssignmentModelUnequalSupplyandDemand:Inthesolution,thedummyV.P32InthisAssignmentmodel,theresponsefromeachassignmentisaprofitratherthanacost.MaximizationModelsForexample,AutoPowermustnowassignfournewsalespeopletothreeterritoriesinordertomaximizeprofit.Theeffectofassigninganysalespersontoaterritoryismeasuredbytheanticipatedmarginalincreaseinprofitcontributionduetotheassignment.AssignmentModelInthisAssignmentmodel,the33Hereistheprofitmatrixforthismodel.

NUMBEROF TERRITORY SALESPEOPLE SALESPERSON 1 2 3AVAILABLE

A 40 30 20 1

B 18 28 22 1

C 12 16 20 1

D 25 24 27 1No.of 4

Salespeople 1 1 1 3

Required

ThisvaluerepresentstheprofitcontributionifAisassignedtoTerritory3.AssignmentModelHereistheprofitmatrixfor34TheAssignmentModelCertainassignmentsinthemodelmaybeunacceptableforvariousreasons.SituationswithUnacceptableAssignmentsInthiscase,youcanassignanarbitrarilylargeunitcost(orsmallunitprofit)numbertothatassignment.ThiswillforceSolvertoeliminatetheuseofthatassignmentsince,forexample,thecostofmakingthatassignmentwouldbemuchlargerthanthatofanyotherfeasiblealternative.AssignmentModelTheAssignmentModelCertainas35NetworkModelsTransportationandassignmentmodelsaremembersofamoregeneralclassofmodelscallednetworkmodels.Networkmodelsinvolvefrom-tosourcesanddestinations.Appliedtomanagementlogisticsanddistribution,networkmodelsareimportantbecause:Theycanbeappliedtoawidevarietyofrealworldmodels.Flowsmayrepresentphysicalquantities,Internetdatapackets,cash,airplanes,cars,ships,products,…NetworkModelsTransportationa36ZigwellInc.isAutoPower’slargestUSdistributorofUPSgeneratorsinfiveMidwesternstates.NetworkModelsACapacitatedTransshipmentModelZigwellhas10BigGen’satsite1Thesegeneratorsmustbedeliveredtoconstructionsitesintwocitiesdenotedand343BigGen’sarerequiredatsiteand7arerequiredatsite34NetworkModelsZigwellInc.isAutoPower’sla371+102543-3-7Thisisanetworkdiagramornetworkflowdiagram.Eacharrowiscalledanarcorbranch.

Eachsiteistermedanode.SupplyDemandNetworkModels1+102543-3-7Thisisanetwork38cij thecosts(perunit)oftraversingthe

routesuij thecapacitiesalongtheroutesCostsareprimarilyduetofuel,tolls,andthecostofthedriverfortheaveragetimeittakestotraversethearc.Becauseofpre-establishedagreementswiththeteamsters,Zigwellmustchangedriversateachsiteitencountersonaroute.Becauseoflimitationsonthecurrentavailabilityofdrivers,thereisanupperbound,uij,onthenumberofgeneratorsthatmaytraverseanarc.NetworkModelscij thecosts(perunit)oftr391+102543-3-7c12c23c24c25c34c43c53u12u23u24u25u34u43u53NetworkModels1+102543-3-7c12c23c24c25c34c4340LPFormulationoftheModelNetworkModelsACapacitatedTransshipmentModelThegoalistofindashipmentplanthatsatisfiesthedemandsatminimumcost,subjecttothecapacityconstraints.Thecapacitatedtransshipmentmodelisbasicallyidenticaltothetransportationmodelexceptthat:1.

Anyplantorwarehousecanshiptoanyother

plantorwarehouse2.

Therecanbeupperand/orlowerbounds

(capacities)oneachshipment(branch)NetworkModelsLPFormulationoftheModelNet41Thedecisionvariablesare:xij=totalnumberofBigGen’ssentonarc(i,j)=flowfromnodeitonodejThemodelbecomes:Minc12x12+c23x23+c24x24+c25x25+c34x34+

c43x43+c53x53+c54x54s.t.+x12=10-x12+x23+x24+x25=0-x23–x43–x53+x34=-3-x24+x43–x34–x54=-7-x25+x53+x54=00<

xij<uijallarcs(i,j)inthenetworkThedecisionvariablesare:xij42PropertiesoftheModel1.

xijisassociatedwitheachofthe8arcsinthe

network.Therefore,thereare8corresponding

variables:x12,x23,x24,x25,x34,x43,x53,andx54Theobjectiveistominimizetotalcost.2.

Thereisonematerialflowbalanceequation

associatedwitheachnodeinthenetwork.For

example:Totalflowoutofnodeis10units1Totalflowoutofnodeminusthetotalflowintonodeiszero(i.e.,totalflowoutmustequaltotalflowintonode).222Totalflowoutofnodemustbe3unitslessthanthetotalflowintonode.33PropertiesoftheModel1.xij43Intermediatenodesthatareneithersupplypointsnordemandpointsareoftentermedtransshipmentnodes.3.

Thepositiveright-handsidescorrespondto

nodesthatarenetsuppliers(origins).Thesumofallright-hand-sidetermsiszero(i.e.,totalsupplyinthenetworkequalstotaldemand).Thezeroright-handsidescorrespondtonodesthathaveneithersupplynordemand.Thenegativeright-handsidescorrespondtonodesthatarenetdestinations.Intermediatenodesthatarene44Ingeneral,flowbalanceforagivennode,j,is:Totalflowoutofnodej–totalflowintonodej=supplyatnodejNegativesupplyisarequirement.Nodeswithnegativesupplyarecalleddestinations,

sinks,

or

demandpoints.Nodeswithpositivesupplyarecalledorigins,sources,orsupplypoints.Nodeswithzerosupplyarecalledtransshipmentpoints.4.

AsmallmodelcanbeoptimizedwithSolver.Ingeneral,flowbalancefora45IntegerOptimalSolutionsNetworkModelsACapacitatedTransshipmentModelTheintegerpropertyofthenetworkmodelcanbestatedthus:IfalltheRHStermsandarccapacities,uij,areintegersinthecapacitatedtransshipmentmodel,therewillalwaysbeaninteger-valuedoptimalsolutiontothismodel.NetworkModelsIntegerOptimalSolutionsNetwo46ThestructureofthismodelmakesitpossibletoapplyspecialsolutionmethodsandsoftwarethatoptimizethemodelmuchmorequicklythanthemoregeneralsimplexmethodusedbySolver.EfficientSolutionProceduresNetworkModelsACapacitatedTransshipmentModelThismakesitpossibletooptimizeverylargescalenetworkmodelsquicklyandcheaply.NetworkModelsThestructureofthismodelma47Theshortest-routemodelreferstoanetworkforwhicheacharc(i,j)hasanassociatednumber,cij,whichisinterpretedasthedistance(orcost,ortime)fromnodeitonodej.NetworkModelsAShortest-RouteModelArouteorpathbetweentwonodesisanysequenceofarcsconnectingthetwonodes.Theobjectiveistofindtheshortest(orleast-costorleast-time)routesfromaspecificnodetoeachoftheothernodesinthenetwork.NetworkModelsTheshortest-routemodelrefer48Inthisexample,AaronDrunnermakesfrequentwinedeliveriesto7differentsites:874H12347651611213323Notethatthearcsareundirected(flowispermittedineitherdirection).Distancebetweennodes.HomeBaseInthisexample,AaronDrunner49Thegoalistominimizeoverallcostsbymakingsurethatanyfuturedeliverytoanygivensiteismadealongtheshortestroutetothatsite.ThegoalistominimizeoverallcostsbyfindingtheshortestroutefromnodeHtoanyoftheother7nodes.Notethatinthismodel,thetaskistofindanoptimalroute,notoptimalxij’s.NetworkModelsThegoalistominimizeoveral50Inthisexample,MichaelCarrisresponsibleforobtainingahighspeedprintingpressforhisnewspapercompany.NetworkModelsAnEquipmentReplacementModelInagivenyearhemustchoosebetweenpurchasing:NewPrintingPressOldPrintingPresshighannual

acquisitioncostlowinitial

maintenancecostnoannual

acquisitioncosthighinitial

maintenancecostNetworkModelsInthisexample,MichaelCarr51Assumea4-yeartimehorizon.Let:cijdenotethecostofbuyingnewequipment

atthebeginningofyeari,i=1,2,3,4

andmaintainingittothebeginningofyear

j,j=2,3,4,5Threealternativefeasiblepoliciesare:1.

Buyingnewequipmentatthebeginningof

eachyear.Total(acquisition+maintenance)cost=

c12+c23+c34+c452.

Buynewequipmentonlyatthebeginningof

year1andmaintainitthroughallsuccessive

years.Total(buying+maintenance)cost=c15Assumea4-yeartimehorizon.523.

Buynewequipmentatthebeginningofyears

1and4.Totalcost=c14+c45Thesolutiontothismodelisobtainedbyfindingtheshortest(i.e.,minimumcost)routefromnode1tonode5ofthenetwork.Eachnodeontheshortestroutedenotesareplacement,thatis,ayearatwhichnewequipmentshouldbebought.3.Buynewequipmentattheb53Hereisthenetworkmodelforthisproblem.Assumethefollowingcosts:$1,600,000purchasecost$500,000maintenancecostinpurchaseyear$1,000,000,$1,500,000,and$2,200,000foreachadditionalyeartheequipmentiskept12345c12c23c34c45c13c14c15c24c25c35Hereisthenetworkmodelfor54Inthemaximal-flowmodel,thereisasinglesourcenode(theinputnode)andasinglesinknode(theoutputnode).NetworkModelsAMaximalFlowModelThegoalistofindthemaximumamountoftotalflowthatcanberoutedthroughaphysicalnetwork(fromsourcetosink)inaunitoftime.Theamountofflowperunittimeoneacharcislimitedbycapacityrestrictions.Theonlyrequirementisthatforeachnode(otherthanthesourceorthesink):flowoutofthenode=flowintothenodeNetworkModelsInthemaximal-flowmodel,the55TheUDPC(UrbanDevelopmentPlanningCommission)isanadhocspecialintereststudygroup.AnApplicationofMaximal-Flow:

TheUrbanDevelopmentPlanningCommissionNetworkModelsAMaximalFlowModelThegroup’scurrentresponsibilityistocoordinatetheconstructionofthenewsubwaysystemwiththestate’shighwaymaintenancedepartment.Becausethenewsubwaysystemisbeingbuiltnearthecity’sbeltway,theeastboundtrafficonthebeltwaymustbedetoured.NetworkModelsTheUDPC(UrbanDevelopmentPl56Theproposednetworkofalternativeroutesandthedifferentspeedlimitsandtrafficpatterns(producingdifferentflowcapacities)aregivenbelow:154326406003402060016002DetourBeginsDetourEndsIndicatesacapacityof6000vehiclesperhourinthedirectionofthearrow.Indicates0capacityinthedirectionofthearrow.Theproposednetworkofaltern57TranslatingtheExcelsolutiontotheoriginalnetworkdiagramgivesthefollowingtrafficpattern:154326442266288TranslatingtheExcelsolution58第五講TransportationandNetworkModels第五講59IntroductionSeveralspecificmodels(whichcanbeusedastemplatesforreal-lifeproblems)willbeintroduced.TRANSPORTATIONMODEL

ASSIGNMENTMODEL

NETWORKMODELS

IntroductionSeveralspecificm60IntroductionTRANSPORTATIONMODEL

ASSIGNMENTMODEL

Determinehowtosendproductsfromvarioussourcestovariousdestinationsinordertosatisfyrequirementsatthelowestpossiblecost.Allocatingfixed-sizedresourcestodeterminetheoptimalassignmentofsalespeopletodistricts,jobstomachines,taskstocomputers…NETWORKMODELS

Involvethemovementorassignmentofphysicalentities(e.g.,money).

IntroductionTRANSPORTATIONMOD61TransportationModelAnexample,theAutoPowerCompanymakesavarietyofbatteryandmotorizeduninterruptibleelectricpowersupplies(UPS’s).AutoPowerhas4finalassemblyplantsinEuropeandthedieselmotorsusedbytheUPS’sareproducedintheUS,shippedto3harborsandthensenttotheassemblyplants.Productionplansforthethirdquarter(July–Sept.)havebeenset.Therequirements(demandatthedestination)andtheavailablenumberofmotorsatharbors(supplyatorigins)areshownonthenextslide:TransportationModelAnexample62DemandSupplyAssemblyPlant

No.ofMotorsRequiredLeipzig 400(2)Nancy

900(3)Liege 200(4)Tilburg 500 2000

Harbor

No.ofMotorsAvailable(A)Amsterdam 500(B)Antwerp

700(C)LeHavre 800 2000BalancedDemandSupplyAssemblyPlant N63GraphicalpresentationofLeHavre(C)800Antwerp(B)700Amsterdam(A)500SupplyLiege(3)200Tilburg(4)500Leipzig(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論