版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第五講TransportationandNetworkModels第五講1IntroductionSeveralspecificmodels(whichcanbeusedastemplatesforreal-lifeproblems)willbeintroduced.TRANSPORTATIONMODEL
ASSIGNMENTMODEL
NETWORKMODELS
IntroductionSeveralspecificm2IntroductionTRANSPORTATIONMODEL
ASSIGNMENTMODEL
Determinehowtosendproductsfromvarioussourcestovariousdestinationsinordertosatisfyrequirementsatthelowestpossiblecost.Allocatingfixed-sizedresourcestodeterminetheoptimalassignmentofsalespeopletodistricts,jobstomachines,taskstocomputers…NETWORKMODELS
Involvethemovementorassignmentofphysicalentities(e.g.,money).
IntroductionTRANSPORTATIONMOD3TransportationModelAnexample,theAutoPowerCompanymakesavarietyofbatteryandmotorizeduninterruptibleelectricpowersupplies(UPS’s).AutoPowerhas4finalassemblyplantsinEuropeandthedieselmotorsusedbytheUPS’sareproducedintheUS,shippedto3harborsandthensenttotheassemblyplants.Productionplansforthethirdquarter(July–Sept.)havebeenset.Therequirements(demandatthedestination)andtheavailablenumberofmotorsatharbors(supplyatorigins)areshownonthenextslide:TransportationModelAnexample4DemandSupplyAssemblyPlant
No.ofMotorsRequiredLeipzig 400(2)Nancy
900(3)Liege 200(4)Tilburg 500 2000
Harbor
No.ofMotorsAvailable(A)Amsterdam 500(B)Antwerp
700(C)LeHavre 800 2000BalancedDemandSupplyAssemblyPlant N5GraphicalpresentationofLeHavre(C)800Antwerp(B)700Amsterdam(A)500SupplyLiege(3)200Tilburg(4)500Leipzig(1)400Nancy(2)900andDemand:GraphicalpresentationofLeHa6TransportationModelAutoPowermustdecidehowmanymotorstosendfromeachharbor(supply)toeachplant(demand).Thecost($,onapermotorbasis)ofshippingisgivenbelow.
TODESTINATION
LeipzigNancyLiegeTilburgFROMORIGIN
(1)(2)(3)(4)
(A)Amsterdam 1201304159.50(B)Antwerp
6140100110(C)LeHavre102.509012242TransportationModelAutoPower7Thegoalistominimizetotaltransportationcost.Sincethecostsintheprevioustableareonaperunitbasis,wecancalculatetotalcostbasedonthefollowingmatrix(wherexijrepresentsthenumberofunitsthatwillbetransportedfromOriginitoDestinationj):TransportationModelThegoalistominimizetotal8
TODESTINATIONFROMORIGIN
1234
A 120xA1130xA241xA359.50xA4
B 61xB140xB2100xB3110xB4C102.50xC190xC2122xC342xC4TotalTransportationCost=
120xA1+130xA2+41xA3+…+122xC3+42xC4TransportationModel TODESTINATIONTota9Twogeneraltypesofconstraints.1.
Thenumberofitemsshippedfromaharbor
cannotexceedthenumberofitemsavailable.ForAmsterdam:xA1+xA2+xA3+xA4
<500ForAntwerp:
xB1+xB2+xB3+xB4
<700ForLeHavre:xC1+xC2+xC3+xC4
<800Note:Wecouldhaveusedan“=“insteadof“<“sincesupplyanddemandarebalancedforthismodel.TransportationModelTwogeneraltypesofconstrain102.
Demandateachplantmustbesatisfied.ForLeipzig:xA1+xB1+xC1
>400ForNancy:
xA2+xB2+xC2
>900ForLiege:xA3+xB3+xC3>200Note:Wecouldhaveusedan“=“insteadof“>“sincesupplyanddemandarebalancedforthismodel.ForTilburg:xA4+xB4+xC4>500TransportationModelTwogeneraltypesofconstraints.2.Demandateachplantmust11VariationsontheTransportationModelSupposewenowwanttomaximizethevalueoftheobjectivefunctioninsteadofminimizingit.Inthiscase,wewouldusethesamemodel,butnowtheobjectivefunctioncoefficientsdefinethecontributionmargins(i.e.,unitreturns)insteadofunitcosts.SolvingMaxTransportationModelsVariationsontheTransportati12Whensupplyanddemandarenotequal,thentheproblemisunbalanced.Therearetwosituations:Whensupplyisgreaterthandemand:WhenSupplyandDemandDifferInthiscase,whenalldemandissatisfied,theremainingsupplythatwasnotallocatedateachoriginwouldappearasslackinthesupplyconstraintforthatorigin.Usinginequalitiesintheconstraints(asinthepreviousexample)wouldnotcauseanyproblems.VariationsontheTransportationModelWhensupplyanddemandarenot13Inthiscase,theLPmodelhasnofeasiblesolution.However,therearetwoapproachestosolvingthisproblem:1.
Rewritethesupplyconstraintstobe
equalitiesandrewritethedemand
constraintstobe<.Unfulfilleddemandwillappearasslackoneachofthedemandconstraintswhenoneoptimizesthemodel.Whendemandisgreaterthansupply:VariationsontheTransportationModelInthiscase,theLPmodelhas142.
Revisethemodeltoappendaplaceholder
origin,calledadummyorigin,withsupply
equaltothedifferencebetweentotal
demandandtotalsupply.Thepurposeofthedummyoriginistomaketheproblembalanced(totalsupply=totaldemand)sothatonecansolveit.Thecostofsupplyinganydestinationfromthisoriginiszero.Oncesolved,anysupplyallocatedfromthisorigintoadestinationisinterpretedasunfilleddemand.VariationsontheTransportationModel2.Revisethemodeltoappend15Certainroutesinatransportationmodelmaybeunacceptableduetoregionalrestrictions,deliverytime,etc.Inthiscase,youcanassignanarbitrarilylargeunitcostnumber(identifiedasM)tothatroute.Thiswillforceonetoeliminatetheuseofthatroutesincethecostofusingitwouldbemuchlargerthanthatofanyotherfeasiblealternative.EliminatingUnacceptableRoutesChooseMsuchthatitwillbelargerthananyotherunitcostnumberinthemodel.VariationsontheTransportationModelCertainroutesinatransporta16Generally,LPmodelsdonotproduceintegersolutions.TheexceptiontothisistheTransportationmodel.Ingeneral:IntegerValuedSolutionsIfallofthesuppliesanddemandsinatransportationmodelhaveintegervalues,theoptimalvaluesofthedecisionvariableswillalsohaveintegervalues.VariationsontheTransportationModelGenerally,LPmodelsdonotpr17AssignmentModelIngeneral,theAssignmentmodelistheproblemofdeterminingtheoptimalassignmentofn“indivisible”agentsorobjectstontasks.Forexample,youmightwanttoassignSalespeopletosalesterritoriesComputerstonetworksConsultantstoclientsServicerepresentativestoservicecallsCommercialartiststoadvertisingcopyTheimportantconstraintisthateachpersonormachinebeassignedtooneandonlyonetask.AssignmentModelIngeneral,th18WewillusetheAutoPowerexampletoillustrateAssignmentproblems.AutoPowerEurope’sAuditingProblemAutoPower’sEuropeanheadquartersisinBrussels.Thisyear,eachofthefourcorporatevice-presidentswillvisitandauditoneoftheassemblyplantsinJune.Theplantsarelocatedin:Leipzig,GermanyLiege,BelgiumNancy,FranceTilburg,theNetherlandsAssignmentModelWewillusetheAutoPowerexam19Theissuestoconsiderinassigningthedifferentvice-presidentstotheplantsare:1.
Matchingthevice-presidents’areasof
expertisewiththeimportanceofspecific
problemareasinaplant.2.
Thetimethemanagementauditwillrequire
andtheotherdemandsoneachvice-
presidentduringthetwo-weekinterval.3.
Matchingthelanguageabilityofavice-
presidentwiththeplant’sdominantlanguage.Keepingtheseissuesinmind,firstestimatethe(opportunity)costtoAutoPowerofsendingeachvice-presidenttoeachplant.AssignmentModelTheissuestoconsiderinassi20Thefollowingtableliststheassignmentcostsin$000sforeveryvice-president/plantcombination.
PLANT
LeipzigNancyLiegeTilburgV.P.(1)(2)(3)(4)
Finance(F) 24102111Marketing(M)
14221015Operations(O)15172019Personnel(P)11191413AssignmentModelThefollowingtableliststhe21
PLANT
LeipzigNancyLiegeTilburgV.P.(1)(2)(3)(4)
Finance(F) 24102111Marketing(M)
14221015Operations(O)15172019Personnel(P)11191413Considerthefollowingassignment:Totalcost=24+22+20+13=79Thequestionis,isthistheleastcostassignment?AssignmentModel PLANTConsi22Completeenumerationisthecalculationofthetotalcostofeachfeasibleassignmentpatterninordertopicktheassignmentwiththelowesttotalcost.SolvingbyCompleteEnumerationThisisnotaproblemwhenthereareonlyafewrowsandcolumns(e.g.,vice-presidentsandplants).However,completeenumerationcanquicklybecomeburdensomeasthemodelgrowslarge.AssignmentModelCompleteenumerationistheca231.
Fcanbeassignedtoanyofthe4plants.2.
OnceFisassigned,Mcanbeassignedtoany
oftheremaining3plants.3.
NowOcanbeassignedtoanyofthe
remaining2plants.4.
Pmustbeassignedtotheonlyremaining
plant.Thereare4x3x2x1=24possiblesolutions.Ingeneral,iftherearenrowsandncolumns,thentherewouldben(n-1)(n-2)(n-3)…(2)(1)=n!
(nfactorial)solutions.Asnincreases,n!increasesrapidly.Therefore,thismaynotbethebestmethod.AssignmentModel1.Fcanbeassignedtoanyo24Forthismodel,let
xij=numberofV.P’softypeiassignedtoplantjwherei=F,M,O,P
j=1,2,3,4TheLPFormulationandSolutionNoticethatthismodelisbalancedsincethetotalnumberofV.P.’sisequaltothetotalnumberofplants.Remember,onlyoneV.P.(supply)isneededateachplant(demand).AssignmentModelForthismodel,let
xij=num25Asaresult,theoptimalassignmentis:
PLANT
LeipzigNancyLiegeTilburgV.P.(1)(2)(3)(4)
Finance(F) 24102111Marketing(M)
14221015Operations(O)15172019Personnel(P)11191413TotalCost($000’s)=10+10+15+13=48AssignmentModelAsaresult,theoptimalassig26TheAssignmentmodelissimilartotheTransportationmodelwiththeexceptionthatsupplycannotbedistributedtomorethanonedestination.RelationtotheTransportationModelIntheAssignmentmodel,allsuppliesanddemandsareone,andhenceintegers.Asaresult,eachdecisionvariablecellwilleithercontaina0(noassignment)ora1(assignmentmade).Ingeneral,theassignmentmodelcanbeformulatedasatransportationmodelinwhichthesupplyateachoriginandthedemandateachdestination=1.AssignmentModelTheAssignmentmodelissimila27Case1:SupplyExceedsDemandUnequalSupplyandDemand:Intheexample,supposethecompanyPresidentdecidesnottoaudittheplantinTilburg.Nowthereare4V.P.’stoassignto3plants.Hereisthecost(in$000s)matrixforthisscenario:
PLANT NUMBEROFV.P.sV.P. 1 2 3 AVAILABLE
F 24 10 21 1
M 14 22 10 1
O 15 17 20 1
P 11 19 14 1No.ofV.P.s 4Required 1 1 1 3
AssignmentModelCase1:SupplyExceedsDemand28Toformulatethismodel,simplydroptheconstraintthatrequiredaV.P.atplant4andsolveit.AssignmentModelUnequalSupplyandDemand:Toformulatethismodel,simpl29Case2:DemandExceedsSupplyUnequalSupplyandDemand:Inthisexample,assumethattheV.P.ofPersonnelisunabletoparticipateintheEuropeanaudit.Nowthecostmatrixisasfollows:
PLANT NUMBEROFV.P.sV.P. 1 2 3 4 AVAILABLE
F 24 10 21 11 1
M 14 22 10 15 1
O 15 17 20 19 1No.ofV.P.s 3Required 1 1 1 1 4
AssignmentModelCase2:DemandExceedsSupply30
1.Modifytheinequalitiesintheconstraints
(similartotheTransportationexample)
2.AddadummyV.P.asaplaceholdertothe
costmatrix(shownbelow).
PLANT NUMBEROFV.P.sV.P. 1 2 3 4 AVAILABLE
F 24 10 21 11 1
M 14 22 10 15 1
O 15 17 20 19 1Dummy 0 0 0 0 1No.ofV.P.s 4Required 1 1 1 1 4
ZerocosttoassignthedummyDummysupply;nowsupply=demandAssignmentModel 1.Modifytheinequalitiesi31Inthesolution,thedummyV.P.wouldbeassignedtoaplant.Inreality,thisplantwouldnotbeaudited.AssignmentModelUnequalSupplyandDemand:Inthesolution,thedummyV.P32InthisAssignmentmodel,theresponsefromeachassignmentisaprofitratherthanacost.MaximizationModelsForexample,AutoPowermustnowassignfournewsalespeopletothreeterritoriesinordertomaximizeprofit.Theeffectofassigninganysalespersontoaterritoryismeasuredbytheanticipatedmarginalincreaseinprofitcontributionduetotheassignment.AssignmentModelInthisAssignmentmodel,the33Hereistheprofitmatrixforthismodel.
NUMBEROF TERRITORY SALESPEOPLE SALESPERSON 1 2 3AVAILABLE
A 40 30 20 1
B 18 28 22 1
C 12 16 20 1
D 25 24 27 1No.of 4
Salespeople 1 1 1 3
Required
ThisvaluerepresentstheprofitcontributionifAisassignedtoTerritory3.AssignmentModelHereistheprofitmatrixfor34TheAssignmentModelCertainassignmentsinthemodelmaybeunacceptableforvariousreasons.SituationswithUnacceptableAssignmentsInthiscase,youcanassignanarbitrarilylargeunitcost(orsmallunitprofit)numbertothatassignment.ThiswillforceSolvertoeliminatetheuseofthatassignmentsince,forexample,thecostofmakingthatassignmentwouldbemuchlargerthanthatofanyotherfeasiblealternative.AssignmentModelTheAssignmentModelCertainas35NetworkModelsTransportationandassignmentmodelsaremembersofamoregeneralclassofmodelscallednetworkmodels.Networkmodelsinvolvefrom-tosourcesanddestinations.Appliedtomanagementlogisticsanddistribution,networkmodelsareimportantbecause:Theycanbeappliedtoawidevarietyofrealworldmodels.Flowsmayrepresentphysicalquantities,Internetdatapackets,cash,airplanes,cars,ships,products,…NetworkModelsTransportationa36ZigwellInc.isAutoPower’slargestUSdistributorofUPSgeneratorsinfiveMidwesternstates.NetworkModelsACapacitatedTransshipmentModelZigwellhas10BigGen’satsite1Thesegeneratorsmustbedeliveredtoconstructionsitesintwocitiesdenotedand343BigGen’sarerequiredatsiteand7arerequiredatsite34NetworkModelsZigwellInc.isAutoPower’sla371+102543-3-7Thisisanetworkdiagramornetworkflowdiagram.Eacharrowiscalledanarcorbranch.
Eachsiteistermedanode.SupplyDemandNetworkModels1+102543-3-7Thisisanetwork38cij thecosts(perunit)oftraversingthe
routesuij thecapacitiesalongtheroutesCostsareprimarilyduetofuel,tolls,andthecostofthedriverfortheaveragetimeittakestotraversethearc.Becauseofpre-establishedagreementswiththeteamsters,Zigwellmustchangedriversateachsiteitencountersonaroute.Becauseoflimitationsonthecurrentavailabilityofdrivers,thereisanupperbound,uij,onthenumberofgeneratorsthatmaytraverseanarc.NetworkModelscij thecosts(perunit)oftr391+102543-3-7c12c23c24c25c34c43c53u12u23u24u25u34u43u53NetworkModels1+102543-3-7c12c23c24c25c34c4340LPFormulationoftheModelNetworkModelsACapacitatedTransshipmentModelThegoalistofindashipmentplanthatsatisfiesthedemandsatminimumcost,subjecttothecapacityconstraints.Thecapacitatedtransshipmentmodelisbasicallyidenticaltothetransportationmodelexceptthat:1.
Anyplantorwarehousecanshiptoanyother
plantorwarehouse2.
Therecanbeupperand/orlowerbounds
(capacities)oneachshipment(branch)NetworkModelsLPFormulationoftheModelNet41Thedecisionvariablesare:xij=totalnumberofBigGen’ssentonarc(i,j)=flowfromnodeitonodejThemodelbecomes:Minc12x12+c23x23+c24x24+c25x25+c34x34+
c43x43+c53x53+c54x54s.t.+x12=10-x12+x23+x24+x25=0-x23–x43–x53+x34=-3-x24+x43–x34–x54=-7-x25+x53+x54=00<
xij<uijallarcs(i,j)inthenetworkThedecisionvariablesare:xij42PropertiesoftheModel1.
xijisassociatedwitheachofthe8arcsinthe
network.Therefore,thereare8corresponding
variables:x12,x23,x24,x25,x34,x43,x53,andx54Theobjectiveistominimizetotalcost.2.
Thereisonematerialflowbalanceequation
associatedwitheachnodeinthenetwork.For
example:Totalflowoutofnodeis10units1Totalflowoutofnodeminusthetotalflowintonodeiszero(i.e.,totalflowoutmustequaltotalflowintonode).222Totalflowoutofnodemustbe3unitslessthanthetotalflowintonode.33PropertiesoftheModel1.xij43Intermediatenodesthatareneithersupplypointsnordemandpointsareoftentermedtransshipmentnodes.3.
Thepositiveright-handsidescorrespondto
nodesthatarenetsuppliers(origins).Thesumofallright-hand-sidetermsiszero(i.e.,totalsupplyinthenetworkequalstotaldemand).Thezeroright-handsidescorrespondtonodesthathaveneithersupplynordemand.Thenegativeright-handsidescorrespondtonodesthatarenetdestinations.Intermediatenodesthatarene44Ingeneral,flowbalanceforagivennode,j,is:Totalflowoutofnodej–totalflowintonodej=supplyatnodejNegativesupplyisarequirement.Nodeswithnegativesupplyarecalleddestinations,
sinks,
or
demandpoints.Nodeswithpositivesupplyarecalledorigins,sources,orsupplypoints.Nodeswithzerosupplyarecalledtransshipmentpoints.4.
AsmallmodelcanbeoptimizedwithSolver.Ingeneral,flowbalancefora45IntegerOptimalSolutionsNetworkModelsACapacitatedTransshipmentModelTheintegerpropertyofthenetworkmodelcanbestatedthus:IfalltheRHStermsandarccapacities,uij,areintegersinthecapacitatedtransshipmentmodel,therewillalwaysbeaninteger-valuedoptimalsolutiontothismodel.NetworkModelsIntegerOptimalSolutionsNetwo46ThestructureofthismodelmakesitpossibletoapplyspecialsolutionmethodsandsoftwarethatoptimizethemodelmuchmorequicklythanthemoregeneralsimplexmethodusedbySolver.EfficientSolutionProceduresNetworkModelsACapacitatedTransshipmentModelThismakesitpossibletooptimizeverylargescalenetworkmodelsquicklyandcheaply.NetworkModelsThestructureofthismodelma47Theshortest-routemodelreferstoanetworkforwhicheacharc(i,j)hasanassociatednumber,cij,whichisinterpretedasthedistance(orcost,ortime)fromnodeitonodej.NetworkModelsAShortest-RouteModelArouteorpathbetweentwonodesisanysequenceofarcsconnectingthetwonodes.Theobjectiveistofindtheshortest(orleast-costorleast-time)routesfromaspecificnodetoeachoftheothernodesinthenetwork.NetworkModelsTheshortest-routemodelrefer48Inthisexample,AaronDrunnermakesfrequentwinedeliveriesto7differentsites:874H12347651611213323Notethatthearcsareundirected(flowispermittedineitherdirection).Distancebetweennodes.HomeBaseInthisexample,AaronDrunner49Thegoalistominimizeoverallcostsbymakingsurethatanyfuturedeliverytoanygivensiteismadealongtheshortestroutetothatsite.ThegoalistominimizeoverallcostsbyfindingtheshortestroutefromnodeHtoanyoftheother7nodes.Notethatinthismodel,thetaskistofindanoptimalroute,notoptimalxij’s.NetworkModelsThegoalistominimizeoveral50Inthisexample,MichaelCarrisresponsibleforobtainingahighspeedprintingpressforhisnewspapercompany.NetworkModelsAnEquipmentReplacementModelInagivenyearhemustchoosebetweenpurchasing:NewPrintingPressOldPrintingPresshighannual
acquisitioncostlowinitial
maintenancecostnoannual
acquisitioncosthighinitial
maintenancecostNetworkModelsInthisexample,MichaelCarr51Assumea4-yeartimehorizon.Let:cijdenotethecostofbuyingnewequipment
atthebeginningofyeari,i=1,2,3,4
andmaintainingittothebeginningofyear
j,j=2,3,4,5Threealternativefeasiblepoliciesare:1.
Buyingnewequipmentatthebeginningof
eachyear.Total(acquisition+maintenance)cost=
c12+c23+c34+c452.
Buynewequipmentonlyatthebeginningof
year1andmaintainitthroughallsuccessive
years.Total(buying+maintenance)cost=c15Assumea4-yeartimehorizon.523.
Buynewequipmentatthebeginningofyears
1and4.Totalcost=c14+c45Thesolutiontothismodelisobtainedbyfindingtheshortest(i.e.,minimumcost)routefromnode1tonode5ofthenetwork.Eachnodeontheshortestroutedenotesareplacement,thatis,ayearatwhichnewequipmentshouldbebought.3.Buynewequipmentattheb53Hereisthenetworkmodelforthisproblem.Assumethefollowingcosts:$1,600,000purchasecost$500,000maintenancecostinpurchaseyear$1,000,000,$1,500,000,and$2,200,000foreachadditionalyeartheequipmentiskept12345c12c23c34c45c13c14c15c24c25c35Hereisthenetworkmodelfor54Inthemaximal-flowmodel,thereisasinglesourcenode(theinputnode)andasinglesinknode(theoutputnode).NetworkModelsAMaximalFlowModelThegoalistofindthemaximumamountoftotalflowthatcanberoutedthroughaphysicalnetwork(fromsourcetosink)inaunitoftime.Theamountofflowperunittimeoneacharcislimitedbycapacityrestrictions.Theonlyrequirementisthatforeachnode(otherthanthesourceorthesink):flowoutofthenode=flowintothenodeNetworkModelsInthemaximal-flowmodel,the55TheUDPC(UrbanDevelopmentPlanningCommission)isanadhocspecialintereststudygroup.AnApplicationofMaximal-Flow:
TheUrbanDevelopmentPlanningCommissionNetworkModelsAMaximalFlowModelThegroup’scurrentresponsibilityistocoordinatetheconstructionofthenewsubwaysystemwiththestate’shighwaymaintenancedepartment.Becausethenewsubwaysystemisbeingbuiltnearthecity’sbeltway,theeastboundtrafficonthebeltwaymustbedetoured.NetworkModelsTheUDPC(UrbanDevelopmentPl56Theproposednetworkofalternativeroutesandthedifferentspeedlimitsandtrafficpatterns(producingdifferentflowcapacities)aregivenbelow:154326406003402060016002DetourBeginsDetourEndsIndicatesacapacityof6000vehiclesperhourinthedirectionofthearrow.Indicates0capacityinthedirectionofthearrow.Theproposednetworkofaltern57TranslatingtheExcelsolutiontotheoriginalnetworkdiagramgivesthefollowingtrafficpattern:154326442266288TranslatingtheExcelsolution58第五講TransportationandNetworkModels第五講59IntroductionSeveralspecificmodels(whichcanbeusedastemplatesforreal-lifeproblems)willbeintroduced.TRANSPORTATIONMODEL
ASSIGNMENTMODEL
NETWORKMODELS
IntroductionSeveralspecificm60IntroductionTRANSPORTATIONMODEL
ASSIGNMENTMODEL
Determinehowtosendproductsfromvarioussourcestovariousdestinationsinordertosatisfyrequirementsatthelowestpossiblecost.Allocatingfixed-sizedresourcestodeterminetheoptimalassignmentofsalespeopletodistricts,jobstomachines,taskstocomputers…NETWORKMODELS
Involvethemovementorassignmentofphysicalentities(e.g.,money).
IntroductionTRANSPORTATIONMOD61TransportationModelAnexample,theAutoPowerCompanymakesavarietyofbatteryandmotorizeduninterruptibleelectricpowersupplies(UPS’s).AutoPowerhas4finalassemblyplantsinEuropeandthedieselmotorsusedbytheUPS’sareproducedintheUS,shippedto3harborsandthensenttotheassemblyplants.Productionplansforthethirdquarter(July–Sept.)havebeenset.Therequirements(demandatthedestination)andtheavailablenumberofmotorsatharbors(supplyatorigins)areshownonthenextslide:TransportationModelAnexample62DemandSupplyAssemblyPlant
No.ofMotorsRequiredLeipzig 400(2)Nancy
900(3)Liege 200(4)Tilburg 500 2000
Harbor
No.ofMotorsAvailable(A)Amsterdam 500(B)Antwerp
700(C)LeHavre 800 2000BalancedDemandSupplyAssemblyPlant N63GraphicalpresentationofLeHavre(C)800Antwerp(B)700Amsterdam(A)500SupplyLiege(3)200Tilburg(4)500Leipzig(1)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 醫(yī)療設(shè)備租賃價格策略與定價機制考核試卷
- 第五單元 第1課時 9加幾 (說課稿)一年級數(shù)學(xué)上冊同步高效課堂系列(人教版·2024秋)
- 安全網(wǎng)絡(luò)數(shù)據(jù)安全監(jiān)控與預(yù)警體系建設(shè)考核試卷
- 冷藏車運輸企業(yè)人力資源開發(fā)與管理考核試卷
- 醫(yī)藥信息化學(xué)品在新藥研發(fā)中的角色考核試卷
- 農(nóng)作物病蟲害防治中的生物物理方法考核試卷
- 2025年度熱水器環(huán)保技術(shù)創(chuàng)新合同2篇
- 2025年粵教新版必修3地理下冊階段測試試卷含答案
- 創(chuàng)業(yè)空間的綠色可持續(xù)發(fā)展策略考核試卷
- 二手房過戶名稱變更協(xié)議一
- 2020小升初復(fù)習-小升初英語總復(fù)習題型專題訓(xùn)練-完形填空15篇
- 2023年浙江省公務(wù)員考試面試真題解析
- GB/T 5796.3-2022梯形螺紋第3部分:基本尺寸
- GB/T 16407-2006聲學(xué)醫(yī)用體外壓力脈沖碎石機的聲場特性和測量
- 簡潔藍色科技商業(yè)PPT模板
- 錢素云先進事跡學(xué)習心得體會
- 道路客運車輛安全檢查表
- 宋曉峰辣目洋子小品《來啦老妹兒》劇本臺詞手稿
- 附錄C(資料性)消防安全評估記錄表示例
- 噪音檢測記錄表
- 推薦系統(tǒng)之協(xié)同過濾算法
評論
0/150
提交評論