![2022-2023學(xué)年廣東省中山市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第1頁](http://file4.renrendoc.com/view/a4529b04f05957e5f3f88540f45b2621/a4529b04f05957e5f3f88540f45b26211.gif)
![2022-2023學(xué)年廣東省中山市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第2頁](http://file4.renrendoc.com/view/a4529b04f05957e5f3f88540f45b2621/a4529b04f05957e5f3f88540f45b26212.gif)
![2022-2023學(xué)年廣東省中山市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第3頁](http://file4.renrendoc.com/view/a4529b04f05957e5f3f88540f45b2621/a4529b04f05957e5f3f88540f45b26213.gif)
![2022-2023學(xué)年廣東省中山市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第4頁](http://file4.renrendoc.com/view/a4529b04f05957e5f3f88540f45b2621/a4529b04f05957e5f3f88540f45b26214.gif)
![2022-2023學(xué)年廣東省中山市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)_第5頁](http://file4.renrendoc.com/view/a4529b04f05957e5f3f88540f45b2621/a4529b04f05957e5f3f88540f45b26215.gif)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年廣東省中山市普通高校對口單招高等數(shù)學(xué)一自考預(yù)測試題(含答案)學(xué)校:________班級:________姓名:________考號:________
一、單選題(20題)1.A.收斂B.發(fā)散C.收斂且和為零D.可能收斂也可能發(fā)散
2.設(shè)f(x)為連續(xù)函數(shù),則等于().A.A.f(x2)B.x2f(x2)C.xf(x2)D.2xf(x2)
3.當x→0時,x+x2+x3+x4為x的
A.等價無窮小B.2階無窮小C.3階無窮小D.4階無窮小
4.設(shè)z=ln(x2+y),則等于()。A.
B.
C.
D.
5.
6.
7.
8.
9.A.A.1/2B.1C.2D.e
10.
A.f(x)
B.f(x)+C
C.f/(x)
D.f/(x)+C
11.
12.
A.2x+1B.2xy+1C.x2+1D.2xy
13.圖示結(jié)構(gòu)中,F(xiàn)=10KN,1為圓桿,直徑d=15mm,2為正方形截面桿,邊長為a=20mm,a=30。,則各桿強度計算有誤的一項為()。
A.1桿受力20KNB.2桿受力17.3KNC.1桿拉應(yīng)力50MPaD.2桿壓應(yīng)力43.3MPa
14.設(shè)y=exsinx,則y'''=
A.cosx·ex
B.sinx·ex
C.2ex(cosx-sinx)
D.2ex(sinx-cosx)
15.
16.
17.A.6YB.6XYC.3XD.3X^2
18.
19.()A.A.1/2B.1C.2D.e
20.A.f(2x)
B.2f(x)
C.f(-2x)
D.-2f(x)
二、填空題(20題)21.設(shè)曲線y=f(x)在點(1,f(1))處的切線平行于x軸,則該切線方程為______.22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.36.cosx為f(x)的一個原函數(shù),則f(x)=______.
37.
38.
39.ylnxdx+xlnydy=0的通解是______.
40.設(shè).y=e-3x,則y'________。
三、計算題(20題)41.
42.43.求微分方程的通解.44.45.研究級數(shù)的收斂性(即何時絕對收斂,何時條件收斂,何時發(fā)散,其中常數(shù)a>0.
46.
47.求曲線在點(1,3)處的切線方程.48.求函數(shù)一的單調(diào)區(qū)間、極值及其曲線的凹凸區(qū)間和拐點.49.
50.求微分方程y"-4y'+4y=e-2x的通解.
51.求函數(shù)f(x)=x3-3x+1的單調(diào)區(qū)間和極值.
52.
53.設(shè)平面薄板所占Oxy平面上的區(qū)域D為1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求該薄板的質(zhì)量m.54.設(shè)拋物線Y=1-x2與x軸的交點為A、B,在拋物線與x軸所圍成的平面區(qū)域內(nèi),以線段AB為下底作內(nèi)接等腰梯形ABCD(如圖2—1所示).設(shè)梯形上底CD長為2x,面積為
S(x).
(1)寫出S(x)的表達式;
(2)求S(x)的最大值.
55.證明:56.
57.已知某商品市場需求規(guī)律為Q=100e-0.25p,當p=10時,若價格上漲1%,需求量增(減)百分之幾?
58.將f(x)=e-2X展開為x的冪級數(shù).59.求函數(shù)y=x-lnx的單調(diào)區(qū)間,并求該曲線在點(1,1)處的切線l的方程.60.當x一0時f(x)與sin2x是等價無窮小量,則四、解答題(10題)61.62.
63.
64.
65.求∫arctanxdx。
66.67.
68.
69.70.五、高等數(shù)學(xué)(0題)71.求y=ln(x2+1)的凹凸區(qū)間,拐點。
六、解答題(0題)72.
參考答案
1.D
2.D解析:
3.A本題考查了等價無窮小的知識點。
4.A本題考查的知識點為偏導(dǎo)數(shù)的計算。由于故知應(yīng)選A。
5.B
6.A解析:
7.D
8.D
9.C
10.A由不定積分的性質(zhì)“先積分后求導(dǎo),作用抵消”可知應(yīng)選A.
11.C
12.B
13.C
14.C本題考查了萊布尼茨公式的知識點.
由萊布尼茨公式,得(exsinx)'''=(ex)'''sinx+3(ex)''(sinx)'+3(ex)'(sinx)''+ex(sinx)'''=exsinx+3excosx+3ex(-sinx)+ex(-cosx)=2ex(cosx-sinx).
15.A
16.B解析:
17.D
18.C
19.C
20.A由可變上限積分求導(dǎo)公式可知因此選A.21.y=f(1)本題考查的知識點有兩個:一是導(dǎo)數(shù)的幾何意義,二是求切線方程.
設(shè)切點為(x0,f(x0)),則曲線y=f(x)過該點的切線方程為
y-f(x0)=f'(x0)(x-x0).
由題意可知x0=1,且在(1,f(1))處曲線y=f(x)的切線平行于x軸,因此應(yīng)有f'(x0)=0,故所求切線方程為
y=f(1)=0.
本題中考生最常見的錯誤為:將曲線y=f(x)在點(x0,f(x0))處的切線方程寫為
y-f(x0)=f'(x)(x-x0)
而導(dǎo)致錯誤.本例中錯誤地寫為
y-f(1)=f'(x)(x-1).
本例中由于f(x)為抽象函數(shù),一些考生不習(xí)慣于寫f(1),有些人誤寫切線方程為
y-1=0.
22.
23.1/21/2解析:
24.
本題考查的知識點為可分離變量方程的求解.
可分離變量方程求解的一般方法為:
(1)變量分離;
(2)兩端積分.
25.3x+y-5z+1=03x+y-5z+1=0解析:
26.
27.e
28.
29.1/21/2解析:
30.
31.x=-3
32.1/2本題考查了對∞-∞型未定式極限的知識點,
33.7
34.35.
本題考查的知識點為不定積分計算.
36.-sinx本題考查的知識點為原函數(shù)的概念.
由于cosx為f(x)的原函數(shù),可知
f(x)=(cosx)'=-sinx.
37.<0
38.2x-4y+8z-7=0
39.(lnx)2+(lny)2=C
40.-3e-3x
41.
則
42.
43.
44.
45.
46.
47.曲線方程為,點(1,3)在曲線上.
因此所求曲線方程為或?qū)憺?x+y-5=0.
如果函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f′(x0)存在,則表明曲線y=f(x)在點
(x0,fx0))處存在切線,且切線的斜率為f′(x0).切線方程為
48.
列表:
說明
49.
50.解:原方程對應(yīng)的齊次方程為y"-4y'+4y=0,
51.函數(shù)的定義域為
注意
52.53.由二重積分物理意義知
54.
55.
56.由一階線性微分方程通解公式有
57.需求規(guī)律為Q=100ep-2.25p
∴當P=10時價格上漲1%需求量減少2.5%需求規(guī)律為Q=100ep-2.25p,
∴當P=10時,價格上漲1%需求量減少2.5%
58.
59.
60.由等價無窮小量的定義可知61.本題考查的知識點為將函數(shù)展開為x的冪級數(shù).
【解題指導(dǎo)】
將函數(shù)展開為x的冪級數(shù)通常利用間接法.先將f(x)與標準展開式中的函數(shù)對照,以便確定使用相應(yīng)的公式.如果f(x)可以經(jīng)過恒等變形變?yōu)闃藴收归_式中函數(shù)的和、差形式,則可以先變形.
62.
63.
64.
65.
66.
67.
68.69.本題考查的知識點為計算二重積分;選擇積分次序或利用極坐標計算.
積分區(qū)域D如圖2—1所示.
解法1利用極坐標系.
D可以表示為
解法2利用直角坐標系.
如果利用直角坐標計算,區(qū)域D的邊界曲線關(guān)于x,y地位等同,因此選擇哪種積分次序應(yīng)考慮被積函數(shù)的特點.注意
可以看出,兩種積分次序下的二次積分都可以進行計算,但是若先對x積分,后對y積分,將簡便些.
本題中考生出現(xiàn)的較普遍的錯誤為,利用極坐標將二重積分化為二次積分:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025委托招標代理合同
- 2025【合同范本】建筑工程施工合同示本
- 2025二手空調(diào)購銷合同范本
- 長城遺址修繕方案
- 促銷活動合同范例
- 2024年六年級品社下冊《去中學(xué)看看》說課稿2 蘇教版
- 配件報價實施方案
- 2024年五年級英語下冊 Unit 4 Did You Have a Nice Trip Lesson 19 Li Ming Goes Home說課稿 冀教版(三起)
- 貴州籠式球場護欄施工方案
- 砂石加工賬目處理方案
- 城市道路智慧路燈項目 投標方案(技術(shù)標)
- 水泥采購?fù)稑朔桨福夹g(shù)標)
- 醫(yī)院招標采購管理辦法及實施細則(試行)
- 初中英語-Unit2 My dream job(writing)教學(xué)設(shè)計學(xué)情分析教材分析課后反思
- 廣州市勞動仲裁申請書
- 江西省上饒市高三一模理綜化學(xué)試題附參考答案
- 23-張方紅-IVF的治療流程及護理
- 頂部板式吊耳計算HGT-20574-2018
- 因數(shù)和倍數(shù)復(fù)習(xí)思維導(dǎo)圖
- LY/T 2986-2018流動沙地沙障設(shè)置技術(shù)規(guī)程
- 三級教育考試卷(電工)答案
評論
0/150
提交評論