江蘇省丹陽市2022年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第1頁
江蘇省丹陽市2022年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第2頁
江蘇省丹陽市2022年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第3頁
江蘇省丹陽市2022年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第4頁
江蘇省丹陽市2022年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2021-2022高考數(shù)學(xué)模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.82.在中,為上異于,的任一點,為的中點,若,則等于()A. B. C. D.3.已知函數(shù)若恒成立,則實數(shù)的取值范圍是()A. B. C. D.4.將函數(shù)的圖象向右平移個周期后,所得圖象關(guān)于軸對稱,則的最小正值是()A. B. C. D.5.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件6.已知曲線的一條對稱軸方程為,曲線向左平移個單位長度,得到曲線的一個對稱中心的坐標(biāo)為,則的最小值是()A. B. C. D.7.在精準(zhǔn)扶貧工作中,有6名男干部、5名女干部,從中選出2名男干部、1名女干部組成一個扶貧小組分到某村工作,則不同的選法共有()A.60種 B.70種 C.75種 D.150種8.已知函數(shù)f(x)=xex2+axeA.1 B.-1 C.a(chǎn) D.-a9.已知數(shù)列的首項,且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有10.過雙曲線的右焦點F作雙曲線C的一條弦AB,且,若以AB為直徑的圓經(jīng)過雙曲線C的左頂點,則雙曲線C的離心率為()A. B. C.2 D.11.關(guān)于函數(shù),有下列三個結(jié)論:①是的一個周期;②在上單調(diào)遞增;③的值域為.則上述結(jié)論中,正確的個數(shù)為()A. B. C. D.12.如圖是國家統(tǒng)計局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯誤的是()A.2019年12月份,全國居民消費價格環(huán)比持平B.2018年12月至2019年12月全國居民消費價格環(huán)比均上漲C.2018年12月至2019年12月全國居民消費價格同比均上漲D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格二、填空題:本題共4小題,每小題5分,共20分。13.已知的展開式中第項與第項的二項式系數(shù)相等,則__________.14.已知向量,且向量與的夾角為_______.15.集合,,則_____.16.如圖,某市一學(xué)校位于該市火車站北偏東方向,且,已知是經(jīng)過火車站的兩條互相垂直的筆直公路,CE,DF及圓弧都是學(xué)校道路,其中,,以學(xué)校為圓心,半徑為的四分之一圓弧分別與相切于點.當(dāng)?shù)卣顿Y開發(fā)區(qū)域發(fā)展經(jīng)濟,其中分別在公路上,且與圓弧相切,設(shè),的面積為.(1)求關(guān)于的函數(shù)解析式;(2)當(dāng)為何值時,面積為最小,政府投資最低?三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知,,動點滿足直線與直線的斜率之積為,設(shè)點的軌跡為曲線.(1)求曲線的方程;(2)若過點的直線與曲線交于,兩點,過點且與直線垂直的直線與相交于點,求的最小值及此時直線的方程.18.(12分)已知函數(shù),.(1)討論函數(shù)的單調(diào)性;(2)已知在處的切線與軸垂直,若方程有三個實數(shù)解、、(),求證:.19.(12分)在直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標(biāo)系.(1)求圓的極坐標(biāo)方程;(2)直線的極坐標(biāo)方程是,射線與圓的交點為、,與直線的交點為,求線段的長.20.(12分)已知函數(shù),直線是曲線在處的切線.(1)求證:無論實數(shù)取何值,直線恒過定點,并求出該定點的坐標(biāo);(2)若直線經(jīng)過點,試判斷函數(shù)的零點個數(shù)并證明.21.(12分)設(shè)函數(shù).(1)當(dāng)時,求不等式的解集;(2)若對任意都有,求實數(shù)的取值范圍.22.(10分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在上存在兩個極值點,,且,證明.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

利用列舉法,結(jié)合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型的計算,屬于基礎(chǔ)題.2.A【解析】

根據(jù)題意,用表示出與,求出的值即可.【詳解】解:根據(jù)題意,設(shè),則,又,,,故選:A.【點睛】本題主要考查了平面向量基本定理的應(yīng)用,關(guān)鍵是要找到一組合適的基底表示向量,是基礎(chǔ)題.3.D【解析】

由恒成立,等價于的圖像在的圖像的上方,然后作出兩個函數(shù)的圖像,利用數(shù)形結(jié)合的方法求解答案.【詳解】因為由恒成立,分別作出及的圖象,由圖知,當(dāng)時,不符合題意,只須考慮的情形,當(dāng)與圖象相切于時,由導(dǎo)數(shù)幾何意義,此時,故.故選:D【點睛】此題考查的是函數(shù)中恒成立問題,利用了數(shù)形結(jié)合的思想,屬于難題.4.D【解析】

由函數(shù)的圖象平移變換公式求出變換后的函數(shù)解析式,再利用誘導(dǎo)公式得到關(guān)于的方程,對賦值即可求解.【詳解】由題意知,函數(shù)的最小正周期為,即,由函數(shù)的圖象平移變換公式可得,將函數(shù)的圖象向右平移個周期后的解析式為,因為函數(shù)的圖象關(guān)于軸對稱,所以,即,所以當(dāng)時,有最小正值為.故選:D【點睛】本題考查函數(shù)的圖象平移變換公式和三角函數(shù)誘導(dǎo)公式及正余弦函數(shù)的性質(zhì);熟練掌握誘導(dǎo)公式和正余弦函數(shù)的性質(zhì)是求解本題的關(guān)鍵;屬于中檔題、??碱}型.5.A【解析】

本題根據(jù)基本不等式,結(jié)合選項,判斷得出充分性成立,利用“特殊值法”,通過特取的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識、基礎(chǔ)知識、邏輯推理能力的考查.【詳解】當(dāng)時,,則當(dāng)時,有,解得,充分性成立;當(dāng)時,滿足,但此時,必要性不成立,綜上所述,“”是“”的充分不必要條件.【點睛】易出現(xiàn)的錯誤有,一是基本不等式掌握不熟,導(dǎo)致判斷失誤;二是不能靈活的應(yīng)用“賦值法”,通過特取的值,從假設(shè)情況下推出合理結(jié)果或矛盾結(jié)果.6.C【解析】

在對稱軸處取得最值有,結(jié)合,可得,易得曲線的解析式為,結(jié)合其對稱中心為可得即可得到的最小值.【詳解】∵直線是曲線的一條對稱軸.,又..∴平移后曲線為.曲線的一個對稱中心為..,注意到故的最小值為.故選:C.【點睛】本題考查余弦型函數(shù)性質(zhì)的應(yīng)用,涉及到函數(shù)的平移、函數(shù)的對稱性,考查學(xué)生數(shù)形結(jié)合、數(shù)學(xué)運算的能力,是一道中檔題.7.C【解析】

根據(jù)題意,分別計算“從6名男干部中選出2名男干部”和“從5名女干部中選出1名女干部”的取法數(shù),由分步計數(shù)原理計算可得答案.【詳解】解:根據(jù)題意,從6名男干部中選出2名男干部,有種取法,從5名女干部中選出1名女干部,有種取法,則有種不同的選法;故選:C.【點睛】本題考查排列組合的應(yīng)用,涉及分步計數(shù)原理問題,屬于基礎(chǔ)題.8.A【解析】

令xex=t,構(gòu)造g(x)=xex,要使函數(shù)f(x)=xex2+axex-a有三個不同的零點x1,x2,【詳解】令xex=t,構(gòu)造g(x)=xex,求導(dǎo)得g'(x)=故g(x)在-∞,1上單調(diào)遞增,在1,+∞上單調(diào)遞減,且x<0時,g(x)<0,x>0時,g(x)>0,g(x)max=g(1)=1e,可畫出函數(shù)g(x)的圖象(見下圖),要使函數(shù)f(x)=xex2+axex-a有三個不同的零點x1,x若a>0,即t1+t2=-a<0t1故1-x若a<-4,即t1+t2=-a>4t1故選A.【點睛】解決函數(shù)零點問題,常常利用數(shù)形結(jié)合、等價轉(zhuǎn)化等數(shù)學(xué)思想.9.C【解析】

根據(jù)等差數(shù)列和等比數(shù)列的定義進行判斷即可.【詳解】A:當(dāng)時,,顯然符合是等差數(shù)列,但是此時不成立,故本說法不正確;B:當(dāng)時,,顯然符合是等比數(shù)列,但是此時不成立,故本說法不正確;C:當(dāng)時,因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時,一定有,故本說法正確;D:當(dāng)時,若時,顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C【點睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.10.C【解析】

由得F是弦AB的中點.進而得AB垂直于x軸,得,再結(jié)合關(guān)系求解即可【詳解】因為,所以F是弦AB的中點.且AB垂直于x軸.因為以AB為直徑的圓經(jīng)過雙曲線C的左頂點,所以,即,則,故.故選:C【點睛】本題是對雙曲線的漸近線以及離心率的綜合考查,是考查基本知識,屬于基礎(chǔ)題.11.B【解析】

利用三角函數(shù)的性質(zhì),逐個判斷即可求出.【詳解】①因為,所以是的一個周期,①正確;②因為,,所以在上不單調(diào)遞增,②錯誤;③因為,所以是偶函數(shù),又是的一個周期,所以可以只考慮時,的值域.當(dāng)時,,在上單調(diào)遞增,所以,的值域為,③錯誤;綜上,正確的個數(shù)只有一個,故選B.【點睛】本題主要考查三角函數(shù)的性質(zhì)應(yīng)用.12.D【解析】

先對圖表數(shù)據(jù)的分析處理,再結(jié)簡單的合情推理一一檢驗即可【詳解】由折線圖易知A、C正確;2019年3月份及6月份的全國居民消費價格環(huán)比是負的,所以B錯誤;設(shè)2018年12月份,2018年11月份,2017年12月份的全國居民消費價格分別為,由題意可知,,,則有,所以D正確.故選:D【點睛】此題考查了對圖表數(shù)據(jù)的分析處理能力及進行簡單的合情推理,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

根據(jù)的展開式中第項與第項的二項式系數(shù)相等,得到,再利用組合數(shù)公式求解.【詳解】因為的展開式中第項與第項的二項式系數(shù)相等,所以,即,所以,即,解得.故答案為:10【點睛】本題主要考查二項式的系數(shù),還考查了運算求解的能力,屬于基礎(chǔ)題.14.1【解析】

根據(jù)向量數(shù)量積的定義求解即可.【詳解】解:∵向量,且向量與的夾角為,∴||;所以:?()2cos2﹣2=1,故答案為:1.【點睛】本題主要考查平面向量的數(shù)量積的定義,屬于基礎(chǔ)題.15.【解析】

分析出集合A為奇數(shù)構(gòu)成的集合,即可求得交集.【詳解】因為表示為奇數(shù),故.故答案為:【點睛】此題考查求集合的交集,根據(jù)已知集合求解,屬于簡單題.16.(1);(2).【解析】

(1)以點為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,,進而表示直線的方程,由直線與圓相切構(gòu)建關(guān)系化簡整理得,即可表示OA,OB,最后由三角形面積公式表示面積即可;(2)令,則,由輔助角公式和三角函數(shù)值域可求得t的取值范圍,進而對原面積的函數(shù)用含t的表達式換元,再令進行換元,并構(gòu)建新的函數(shù),由二次函數(shù)性質(zhì)即可求得最小值.【詳解】解:(1)以點為坐標(biāo)原點建立如圖所示的平面直角坐標(biāo)系,則,在中,設(shè),又,故,.所以直線的方程為,即.因為直線與圓相切,所以.因為點在直線的上方,所以,所以式可化為,解得.所以,.所以面積為.(2)令,則,且,所以,.令,,所以在上單調(diào)遞減.所以,當(dāng),即時,取得最大值,取最小值.答:當(dāng)時,面積為最小,政府投資最低.【點睛】本題考查三角函數(shù)的實際應(yīng)用,應(yīng)優(yōu)先結(jié)合實際建立合適的數(shù)學(xué)模型,再按模型求最值,屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)的最小值為1,此時直線:【解析】

(1)用直接法求軌跡方程,即設(shè)動點為,把已知用坐標(biāo)表示并整理即得.注意取值范圍;(2)設(shè):,將其與曲線的方程聯(lián)立,消元并整理得,設(shè),,則可得,,由求出,將直線方程與聯(lián)立,得,求得,計算,設(shè).顯然,構(gòu)造,由導(dǎo)數(shù)的知識求得其最小值,同時可得直線的方程.【詳解】(1)設(shè),則,即整理得(2)設(shè):,將其與曲線的方程聯(lián)立,得即設(shè),,則,將直線:與聯(lián)立,得∴∴設(shè).顯然構(gòu)造在上恒成立所以在上單調(diào)遞增所以,當(dāng)且僅當(dāng),即時取“=”即的最小值為1,此時直線:.(注:1.如果按函數(shù)的性質(zhì)求最值可以不扣分;2.若直線方程按斜率是否存在討論,則可以根據(jù)步驟相應(yīng)給分.)【點睛】本題考查求軌跡方程,考查直線與橢圓相交中的最值.直線與橢圓相交問題中常采用“設(shè)而不求”的思想方法,即設(shè)交點坐標(biāo)為,設(shè)直線方程,直線方程與橢圓方程聯(lián)立并消元,然后用韋達定理得(或),把這個代入其他條件變形計算化簡得出結(jié)論,本題屬于難題,對學(xué)生的邏輯推理、運算求解能力有一定的要求.18.(1)①當(dāng)時,在單調(diào)遞增,②當(dāng)時,單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為(2)證明見解析【解析】

(1)先求解導(dǎo)函數(shù),然后對參數(shù)分類討論,分析出每種情況下函數(shù)的單調(diào)性即可;(2)根據(jù)條件先求解出的值,然后構(gòu)造函數(shù)分析出之間的關(guān)系,再構(gòu)造函數(shù)分析出之間的關(guān)系,由此證明出.【詳解】(1),①當(dāng)時,恒成立,則在單調(diào)遞增②當(dāng)時,令得,解得,又,∴∴當(dāng)時,,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.(2)依題意得,,則由(1)得,在單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增∴若方程有三個實數(shù)解,則法一:雙偏移法設(shè),則∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞減,∴,即設(shè),∴在上單調(diào)遞增,∴,∴,即∵,∴,其中,∵在上單調(diào)遞增,∴,即∴.法二:直接證明法∵,,在上單調(diào)遞增,∴要證,即證設(shè),則∴在上單調(diào)遞減,在上單調(diào)遞增∴,∴,即(注意:若沒有證明,扣3分)關(guān)于的證明:(1)且時,(需要證明),其中∴∴∴(2)∵,∴∴,即∵,,∴,則∴【點睛】本題考查函數(shù)與倒導(dǎo)數(shù)的綜合應(yīng)用,難度較難.(1)對于含參函數(shù)單調(diào)性的分析,可通過分析參數(shù)的臨界值,由此分類討論函數(shù)單調(diào)性;(2)利用導(dǎo)數(shù)證明不等式常用方法:構(gòu)造函數(shù),利用新函數(shù)的單調(diào)性確定函數(shù)的最值,從而達到證明不等式的目的.19.(1)(2)【解析】

(1)首先將參數(shù)方程轉(zhuǎn)化為普通方程再根據(jù)公式化為極坐標(biāo)方程即可;(2)設(shè),,由,即可求出,則計算可得;【詳解】解:(1)圓的參數(shù)方程(為參數(shù))可化為,∴,即圓的極坐標(biāo)方程為.(2)設(shè),由,解得.設(shè),由,解得.∵,∴.【點睛】本題考查了利用極坐標(biāo)方程求曲線的交點弦長,考查了推理能力與計算能力,屬于中檔題.20.(1)見解析,(2)函數(shù)存在唯一零點.【解析】

(1)首先求出導(dǎo)函數(shù),利用導(dǎo)數(shù)的幾何意義求出處的切線斜率,利用點斜式即可求出切線方程,根據(jù)方程即可求出定點.(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論