2022-2023學年福建省四地六校高三下第一次測試數(shù)學試題含解析_第1頁
2022-2023學年福建省四地六校高三下第一次測試數(shù)學試題含解析_第2頁
2022-2023學年福建省四地六校高三下第一次測試數(shù)學試題含解析_第3頁
2022-2023學年福建省四地六校高三下第一次測試數(shù)學試題含解析_第4頁
2022-2023學年福建省四地六校高三下第一次測試數(shù)學試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,,,點C在AB上,且,設,則的值為()A. B. C. D.2.函數(shù)的部分圖象大致為()A. B.C. D.3.已知a>b>0,c>1,則下列各式成立的是()A.sina>sinb B.ca>cb C.ac<bc D.4.定義在R上的函數(shù)滿足,為的導函數(shù),已知的圖象如圖所示,若兩個正數(shù)滿足,的取值范圍是()A. B. C. D.5.已知i是虛數(shù)單位,則1+iiA.-12+32i6.已知拋物線:,點為上一點,過點作軸于點,又知點,則的最小值為()A. B. C.3 D.57.給出下列三個命題:①“”的否定;②在中,“”是“”的充要條件;③將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象.其中假命題的個數(shù)是()A.0 B.1 C.2 D.38.設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結論中不正確的是A.y與x具有正的線性相關關系B.回歸直線過樣本點的中心(,)C.若該大學某女生身高增加1cm,則其體重約增加0.85kgD.若該大學某女生身高為170cm,則可斷定其體重比為58.79kg9.造紙術、印刷術、指南針、火藥被稱為中國古代四大發(fā)明,此說法最早由英國漢學家艾約瑟提出并為后來許多中國的歷史學家所繼承,普遍認為這四種發(fā)明對中國古代的政治,經(jīng)濟,文化的發(fā)展產生了巨大的推動作用.某小學三年級共有學生500名,隨機抽查100名學生并提問中國古代四大發(fā)明,能說出兩種發(fā)明的有45人,能說出3種及其以上發(fā)明的有32人,據(jù)此估計該校三級的500名學生中,對四大發(fā)明只能說出一種或一種也說不出的有()A.69人 B.84人 C.108人 D.115人10.若函數(shù)在時取得極值,則()A. B. C. D.11.四人并排坐在連號的四個座位上,其中與不相鄰的所有不同的坐法種數(shù)是()A.12 B.16 C.20 D.812.某中學有高中生人,初中生人為了解該校學生自主鍛煉的時間,采用分層抽樣的方法從高生和初中生中抽取一個容量為的樣本.若樣本中高中生恰有人,則的值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),則下列結論中正確的是_________.①是周期函數(shù);②的對稱軸方程為,;③在區(qū)間上為增函數(shù);④方程在區(qū)間有6個根.14.已知以x±2y=0為漸近線的雙曲線經(jīng)過點,則該雙曲線的標準方程為________.15.設(其中為自然對數(shù)的底數(shù)),,若函數(shù)恰有4個不同的零點,則實數(shù)的取值范圍為________.16.連續(xù)2次拋擲一顆質地均勻的骰子(六個面上分別標有數(shù)字1,2,3,4,5,6的正方體),觀察向上的點數(shù),則事件“點數(shù)之積是3的倍數(shù)”的概率為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)討論的單調性;(2)若存在兩個極值點,,證明:.18.(12分)設橢圓的左右焦點分別為,離心率,右準線為,是上的兩個動點,.(Ⅰ)若,求的值;(Ⅱ)證明:當取最小值時,與共線.19.(12分)2019年9月26日,攜程網(wǎng)發(fā)布《2019國慶假期旅游出行趨勢預測報告》,2018年國慶假日期間,西安共接待游客1692.56萬人次,今年國慶有望超過2000萬人次,成為西部省份中接待游客量最多的城市.旅游公司規(guī)定:若公司某位導游接待旅客,旅游年總收人不低于40(單位:萬元),則稱該導游為優(yōu)秀導游.經(jīng)驗表明,如果公司的優(yōu)秀導游率越高,則該公司的影響度越高.已知甲、乙家旅游公司各有導游40名,統(tǒng)計他們一年內旅游總收入,分別得到甲公司的頻率分布直方圖和乙公司的頻數(shù)分布表如下:分組頻數(shù)(1)求的值,并比較甲、乙兩家旅游公司,哪家的影響度高?(2)從甲、乙兩家公司旅游總收人在(單位:萬元)的導游中,隨機抽取3人進行業(yè)務培訓,設來自甲公司的人數(shù)為,求的分布列及數(shù)學期望.20.(12分)已知數(shù)列和,前項和為,且,是各項均為正數(shù)的等比數(shù)列,且,.(1)求數(shù)列和的通項公式;(2)求數(shù)列的前項和.21.(12分)已知函數(shù),(其中,).(1)求函數(shù)的最小值.(2)若,求證:.22.(10分)如圖,底面ABCD是邊長為2的菱形,,平面ABCD,,,BE與平面ABCD所成的角為.(1)求證:平面平面BDE;(2)求二面角B-EF-D的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

利用向量的數(shù)量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用.2、B【解析】

圖像分析采用排除法,利用奇偶性判斷函數(shù)為奇函數(shù),再利用特值確定函數(shù)的正負情況。【詳解】,故奇函數(shù),四個圖像均符合。當時,,,排除C、D當時,,,排除A。故選B?!军c睛】圖像分析采用排除法,一般可供判斷的主要有:奇偶性、周期性、單調性、及特殊值。3、B【解析】

根據(jù)函數(shù)單調性逐項判斷即可【詳解】對A,由正弦函數(shù)的單調性知sina與sinb大小不確定,故錯誤;對B,因為y=cx為增函數(shù),且a>b,所以ca>cb,正確對C,因為y=xc為增函數(shù),故,錯誤;對D,因為在為減函數(shù),故,錯誤故選B.【點睛】本題考查了不等式的基本性質以及指數(shù)函數(shù)的單調性,屬基礎題.4、C【解析】

先從函數(shù)單調性判斷的取值范圍,再通過題中所給的是正數(shù)這一條件和常用不等式方法來確定的取值范圍.【詳解】由的圖象知函數(shù)在區(qū)間單調遞增,而,故由可知.故,又有,綜上得的取值范圍是.故選:C【點睛】本題考查了函數(shù)單調性和不等式的基礎知識,屬于中檔題.5、D【解析】

利用復數(shù)的運算法則即可化簡得出結果【詳解】1+i故選D【點睛】本題考查了復數(shù)代數(shù)形式的乘除運算,屬于基礎題。6、C【解析】

由,再運用三點共線時和最小,即可求解.【詳解】.故選:C【點睛】本題考查拋物線的定義,合理轉化是本題的關鍵,注意拋物線的性質的靈活運用,屬于中檔題.7、C【解析】

結合不等式、三角函數(shù)的性質,對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題①,因為,所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數(shù)的單調性可知,,即,即可得到,即充分性成立;必要性:中,,若,結合余弦函數(shù)的單調性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數(shù)的圖象向左平移個單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點睛】本題考查了命題真假的判斷,考查了余弦函數(shù)單調性的應用,考查了三角函數(shù)圖象的平移變換,考查了學生的邏輯推理能力,屬于基礎題.8、D【解析】根據(jù)y與x的線性回歸方程為y=0.85x﹣85.71,則=0.85>0,y與x具有正的線性相關關系,A正確;回歸直線過樣本點的中心(),B正確;該大學某女生身高增加1cm,預測其體重約增加0.85kg,C正確;該大學某女生身高為170cm,預測其體重約為0.85×170﹣85.71=58.79kg,D錯誤.故選D.9、D【解析】

先求得名學生中,只能說出一種或一種也說不出的人數(shù),由此利用比例,求得名學生中對四大發(fā)明只能說出一種或一種也說不出的人數(shù).【詳解】在這100名學生中,只能說出一種或一種也說不出的有人,設對四大發(fā)明只能說出一種或一種也說不出的有人,則,解得人.故選:D【點睛】本小題主要考查利用樣本估計總體,屬于基礎題.10、D【解析】

對函數(shù)求導,根據(jù)函數(shù)在時取得極值,得到,即可求出結果.【詳解】因為,所以,又函數(shù)在時取得極值,所以,解得.故選D【點睛】本題主要考查導數(shù)的應用,根據(jù)函數(shù)的極值求參數(shù)的問題,屬于??碱}型.11、A【解析】

先將除A,B以外的兩人先排,再將A,B在3個空位置里進行插空,再相乘得答案.【詳解】先將除A,B以外的兩人先排,有種;再將A,B在3個空位置里進行插空,有種,所以共有種.故選:A【點睛】本題考查排列中不相鄰問題,常用插空法,屬于基礎題.12、B【解析】

利用某一層樣本數(shù)等于某一層的總體個數(shù)乘以抽樣比計算即可.【詳解】由題意,,解得.故選:B.【點睛】本題考查簡單隨機抽樣中的分層抽樣,某一層樣本數(shù)等于某一層的總體個數(shù)乘以抽樣比,本題是一道基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、①②④【解析】

由函數(shù),對選項逐個驗證即得答案.【詳解】函數(shù),是周期函數(shù),最小正周期為,故①正確;當或時,有最大值或最小值,此時或,即或,即.的對稱軸方程為,,故②正確;當時,,此時在上單調遞減,在上單調遞增,在區(qū)間上不是增函數(shù),故③錯誤;作出函數(shù)的部分圖象,如圖所示方程在區(qū)間有6個根,故④正確.故答案為:①②④.【點睛】本題考查三角恒等變換,考查三角函數(shù)的性質,屬于中檔題.14、【解析】

設雙曲線方程為,代入點,計算得到答案.【詳解】雙曲線漸近線為,則設雙曲線方程為:,代入點,則.故雙曲線方程為:.故答案為:.【點睛】本題考查了根據(jù)漸近線求雙曲線,設雙曲線方程為是解題的關鍵.15、【解析】

求函數(shù),研究函數(shù)的單調性和極值,作出函數(shù)的圖象,設,若函數(shù)恰有4個零點,則等價為函數(shù)有兩個零點,滿足或,利用一元二次函數(shù)根的分布進行求解即可.【詳解】當時,,由得:,解得,由得:,解得,即當時,函數(shù)取得極大值,同時也是最大值,(e),當,,當,,作出函數(shù)的圖象如圖,設,由圖象知,當或,方程有一個根,當或時,方程有2個根,當時,方程有3個根,則,等價為,當時,,若函數(shù)恰有4個零點,則等價為函數(shù)有兩個零點,滿足或,則,即(1)解得:,故答案為:【點睛】本題主要考查函數(shù)與方程的應用,利用換元法進行轉化一元二次函數(shù)根的分布以及.求的導數(shù),研究函數(shù)的的單調性和極值是解決本題的關鍵,屬于難題.16、【解析】總事件數(shù)為,目標事件:當?shù)谝活w骰子為1,2,4,6,具體事件有,共8種;當?shù)谝活w骰子為3,6,則第二顆骰子隨便都可以,則有種;所以目標事件共20中,所以。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】

(1)求得的導函數(shù),對分成兩種情況,討論的單調性.(2)由(1)判斷出的取值范圍,根據(jù)韋達定理求得的關系式,利用差比較法,計算,通過構造函數(shù),利用導數(shù)證得,由此證得,進而證得不等式成立.【詳解】(1).當時,,此時在上單調遞減;當時,由解得或,∵是增函數(shù),∴此時在和單調遞減,在單調遞增.(2)由(1)知.,,,不妨設,∴,,令,∴,∴在上是減函數(shù),,∴,即.【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調區(qū)間,考查利用導數(shù)證明不等式,考查分類討論的數(shù)學思想方法,考查化歸與轉化的數(shù)學思想方法,屬于中檔題.18、(Ⅰ)(Ⅱ)證明見解析.【解析】由與,得,,的方程為.設,則,由得.①(Ⅰ)由,得,②,③由①、②、③三式,消去,并求得,故.(Ⅱ),當且僅當或時,取最小值,此時,,故與共線.19、(1),乙公司影響度高;(2)見解析,【解析】

(1)利用各小矩形的面積和等于1可得a,由導游人數(shù)為40人可得b,再由總收人不低于40可計算出優(yōu)秀率;(2)易得總收入在中甲公司有4人,乙公司有2人,則甲公司的人數(shù)的值可能為1,2,3,再計算出相應取值的概率即可.【詳解】(1)由直方圖知,,解得,由頻數(shù)分布表中知:,解得.所以,甲公司的導游優(yōu)秀率為:,乙公司的導游優(yōu)秀率為:,由于,所以乙公司影響度高.(2)甲公司旅游總收入在中的有人,乙公司旅游總收入在中的有2人,故的可能取值為1,2,3,易知:,;.所以的分布列為:123P.【點睛】本題考查頻率分布直方圖、隨機變量的分布列與期望,考查學生數(shù)據(jù)處理與數(shù)學運算的能力,是一道中檔題.20、(1),;(2).【解析】

(1)令求出的值,然后由,得出,然后檢驗是否符合在時的表達式,即可得出數(shù)列的通項公式,并設數(shù)列的公比為,根據(jù)題意列出和的方程組,解出這兩個量,然后利用等比數(shù)列的通項公式可求出;(2)求出數(shù)列的前項和,然后利用分組求和法可求出.【詳解】(1)當時,,當時,.也適合上式,所以,.設數(shù)列的公比為,則,由,兩式相除得,,解得,,;(2)設數(shù)列的前項和為,則,.【點睛】本題考查利用求,同時也考查了等比數(shù)列通項的計算,以及分組求和法的應用,考查計算能力,屬于中等題.21、(1).(2)答案見解析【解析】

(1)利用絕對值不等式的性質即可求得最小值;(2)利用分析法,只需證明,兩邊平方后結合即可得證.【詳解】(1),當且僅當時取等號,∴的最小值;(2)證明:依題意,,要證,即證,即證,即證,即證,又可知,成立,故原不等式成立.【點睛】本題考查用絕對值三角不等式求最值,考查用分析法證明不等式,在不等式不易證明時,可通過執(zhí)果索因的方法尋找結論成立的充分條件,完成證明,這就是分析法.22、(1)證明見解析;(2)【解析】

(1)要證明平面平面BDE,只需在平面內找一條直線垂直平面BDE即可;(2)以O為坐標原點,OA,OB,OG所在直線分別為x、y、z軸建立如圖空間直角坐標系,分別求出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論