版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
SYSTEMIDENTIFICATIONTheoryfortheUserByLENNARTLJUNGLinkopingUniversity,SwedenC40COLLEGEOFELECTRICALENGINEERINGPartISystemsandModelsC41COLLEGEOFELECTRICALENGINEERINGCHAPTER4ModelsofLinearTime-InvariantSystemsC42COLLEGEOFELECTRICALENGINEERINGAmodelofasystemisadescriptionof(someof)itsproperties,suitableforacertainpurpose.Inordertoserveitspurpose,themodel
neednotbeatrueand
accuratedescriptionofthesystem.Systemidentificationisthesubjectofconstructingorselectingmodelsofdynamicalsystemstoservecertainpurposes.Thefirststepistodetermineaclassofmodelswithinwhichthesearchforthemostsuitablemodelistobeconducted.C43COLLEGEOFELECTRICALENGINEERING4.1LinearModelsandSetsofLinearModelsC44COLLEGEOFELECTRICALENGINEERINGInChapter2,alineartime-invariantmodelisspecifiedbytheimpulseresponse{g(k)}1,∞,thespectrumFv(w)=l|H(eiw)|2
ofthe
additivedisturbance,andtheprobabilitydensityfunction
(PDF)
ofthedisturbancee(t):
y(t)=G(q)u(t)+H(q)e(t)
fe(.),thePDFofe
(4.1)
with
G(q)=Sk=1,∞g(k)q-k,H(q)=
1
+Sk=1,∞h(k)q-k
(4.2)Inmostcases,itisimpracticaltomakethisspecificationbyenumeratingtheinfinitesequences{g(k)},{h(k)}andtogetherwiththefunctionfe(x).ThespecificationofGandHintermsofafinitenumberofnumericalvaluesisrequired.Typicalexamplesare:Rationaltransferfunctionandfinite-dimensionalstatespacedescriptionsC45COLLEGEOFELECTRICALENGINEERINGAlso,thePDFfeisoftennotspecifiedasafunction,butdescribedtypicallybythefirstandsecondmoments:
(4.3)Ife(t)isassumedtobeGaussian,thePDFisentirelyspecifiedby(4.3).
Thefinitenumberofcoefficientsin(4.1)areoftennotpossibletodetermineapriorifromknowledgeofthephysicalmechanism.Thedeterminationofallorsomeofthemmustbelefttoestimationprocedures.Denotingsuchparametersbythevectorq,thuswehavethefollowingdescription:
y(t)=G(q,q)u(t)+H(q,q)e(t)
(4.4a)
fe(x,q),thePDFofe(t);{e(t)}whitenoise
(4.4b)C46COLLEGEOFELECTRICALENGINEERINGUsing(3.20),theone-step-aheadpredictionfor(4.4)canbecomputedas
y^(t|q)=H-1(q,q)G(q,q)u(t)+[1-H-1(q,q)]y(t)
(4.6)Thepredictionisdenotedbyy^(t|q)toemphasizeitsdependenceonq.
Thispredictorformdoesnotdependonfe(x,q).ThetermpredictormodelisusedformodelsthatjustspecifyGandH
in(4.4)orintheform(4.6).Probabilisticmodelswillsignifydescriptions(4.4)thatgiveacompletecharacterizationoftheprobabilisticproperties.Inthefollowing,differentwaysofdescribing(4.4)intermsofqwillbediscussed.C47COLLEGEOFELECTRICALENGINEERING4.2AFamilyofTransfer-FunctionModelsC48COLLEGEOFELECTRICALENGINEERINGEquationError
ModelStructureC49COLLEGEOFELECTRICALENGINEERINGARXModelStructureThemostsimpleinput-outputrelationshipisobtainedbydescribingitasalineardifferenceequation:y(t)+a1y(t-1)+…+anay(t-na)=b1u(t-1)+…+bnbu(t-nb)+e(t)
(4.7)Sincethewhite-noiseterme(t)entersasadirecterror(Why?UseEq.4.6),themodelisoftencalledanequationerrormodel.Theadjustableparametersareq
=
[a1a2…anab1…bnb](4.8)IntroducingA(q)=1+a1q-1+…+anaq-naandB(q)=b1q-1+…bnbq-nb,(4.7)willcorrespondto(4.4)y=G
u+H
ewith G(q,q)=B(q)/A(q),H(q,q)=1/A(q)
(4.9)Themodel(4.7)isalsocalledanARXmodel,whereARreferstotheAutoRegressivepartA(q)y(t)andXtotheeXtrainputB(q)u(t).Whenna=
0,y(t)ismodeledasafiniteimpulseresponse(FIR).C410COLLEGEOFELECTRICALENGINEERINGTheequationerrormodelsethasaveryimportantproperty:
Thepredictordefinesalinearregression.
Thatis:y^(t|q)=B(q)u(t)+[1-A(q)]y(t)Thispropertymakesitaprimechoiceinmanyapplications.C411COLLEGEOFELECTRICALENGINEERINGLinearRegressionsWithoutastochasticframework,thepredictorforA
y
=
B
u
+
ecanbecomputedbyinserting(4.9)into(4.6)as: y^(t|q)=B(q)u(t)+[1-A(q)]y(t)
(4.10)(4.10)isalsoanaturalchoiceiftheterme(t)isconsideredtobe“insignificant”or“difficulttoguess”ignoringe.Thusitisperfectfor“deterministic”models.Introducingthevector
j(t)=[-
y(t
-1)…-
y(t
-
na)u(t
-1)…u(t
-
nb)]T
(4.11)
Then(4.10)canberewrittenas y^(t|q)=qTj(t)=jT(t)
q
(4.12)Thepredictorisascalarproductbetweenaknowndatavectorj(t)andtheparametervector
qtobeestimated.C412COLLEGEOFELECTRICALENGINEERINGSuchamodeliscalledalinearregressioninstatistics,andthevectorj(t)isknownastheregressionvector.IncasessomecoefficientsofthepolynomialsAandBareknown,wearriveatlinearregressionsoftheform y^(t|q)=jT(t)
q+m(t)
(4.13)wherem(t)isaknownterm.ImportantAdvantage:SomepowerfulandsimpleestimationmethodssuchasLScanbeappliedforthedeterminationofq.BasicDisadvantage:Itlackstheadequatefreedomindescribingthepropertiesofthedisturbanceterm.Thewhitenoisee(t)isassumedtogothroughthedenominatordynamicsofthesystem
(y=B/Au+1/Ae).C413COLLEGEOFELECTRICALENGINEERINGARMAXModelStructureTodescribethepropertiesofthedisturbance
term
moreadequately,weconsidertheequationerrorasamovingaverage(MA)ofwhitenoise: A(q)y(t)=B(q)u(t)+C(q)e(t)
(4.15)withC(q)=1+c1q-1+…+cncq-nc.TheARMAX
modelhasbecomeastandardtoolincontrolandeconometricsforbothsystemdescriptionandcontroldesign.ComparedwithlinearregressionsfortheARXmodel,theregressionfortheARMAXmodelispseudolinear.C414COLLEGEOFELECTRICALENGINEERINGPeudolinearRegressionsThepredictorHy^=Gu+[H-1]yforARMAXmodelAy=Bu+Ceis C(q)y^(t|q)=B(q)u(t)+[C(q)–A(q)]y(t)
(4.18)Adding[1–C(q)]y^(t|q)tobothsideof(4.18)gives y^(t|q)=B(q)u(t)+[1-A(q)]y(t)+[C(q)-1][y(t)-y^(t|q)](4.19)Introducethepredictionerror
e(t,q)=y(t)–y^(t|q) andthevectorj(t,q)=[-y(t-1)…-y(t-na)u(t-1)… u(t-nb)
e(t-1,
q)…e(t-nc,
q)]T(4.20)Then(4.19)canbewrittenasy^(t|q)=jT(t,q)
q
(4.21)Theequation(4.21)itselfisnotalinearregression,duetothenonlineareffectofqinthevectorj(t,
q),andisthereforecalledapseudolinearregreesion.C415COLLEGEOFELECTRICALENGINEERINGOutputError
ModelStructureC416COLLEGEOFELECTRICALENGINEERINGInequationerrormodel,thetransferfunctionsG(=B/A)andH(=1/AorC/A)havethepolynomialAasacommonfactorinthedenominators.Fromaphysicalpointofview,itismorenaturaltoparametrizethesetransferfunctionindependently.Supposingthattherelationshipbetweeninputandundisturbedoutputwcanbewrittenasalineardifferenceequation,andthatthedisturbancesconsistofwhitemeasurementnoise,thenwehave:
w(t)+f1w(t-1)+…+fnfw(t-nf)=b1u(t-1)+…+bnbu(t-nb)
(4.24a) y(t)=w(t)+e(t)
(4.24b)or y(t)=B(q)/F(q)*u(t)+e(t)
(4.25)(4.25)iscalledanoutputerror
(OE)
model.C417COLLEGEOFELECTRICALENGINEERINGe
uwy
Fig.4.3TheoutputerrormodelstructureTheparametervectortobedeterminedis
q=[b1b2…bnbf1f2…fnf]T
(4.26)Sincew(t)
is
neverobservedandisconstructedfromuusing(4.24a)w=B/F*u,itshouldcarryanindexq:
w(t,q)+f1w(t-1,q)+…+fnfw(t-nf,q)=b1u(t-1)+…+bnbu(t-nb)
(4.27)Comparingy
=
B/F*u
+
ewith(4.4),H(q,q)=1,thepredictoris y^(t|q)=B(q)/F(q)*u(t)=w(t,q)
(4.28)Notethaty^(t|q)isconstructedfrompastinputsonly.B/F+C418COLLEGEOFELECTRICALENGINEERINGWiththeaidofthevector
j(t,q)=[u(t
-1)…u(t
-
nb)-
w(t
-1,
q)…-
w(t
-
nf,
q)]T
(4.29)
wehave
y^(t|q)=jT(t,q)
q
(4.30)Note
thatin(4.29)the
w
(t
-1,
q)arenotobserved,but,using
(4.28),
theycanbe
computed: w(t
-
k,
q)=y^(t
-
k|q)=B/F
*
u(t
-
k),k=1,2,…,nf.C419COLLEGEOFELECTRICALENGINEERINGBox-JenkinsModelStructureThismodelissuggestedbyBoxandJenkinsin1970.Itisanaturaldevelopmentoftheoutputerrormodeltofurthermodel
thepropertiesoftheoutputerror: y(t)=B(q)/F(q)*u(t)+C(q)/D(q)*e(t)
(4.31)Thisisthemostnatural
finite-dimensionalparameterization:GandHareindependentlyparameterizedasrationalfunctions.Accordingto(4.6):y^(t|q)=H-1(q,q)G(q,q)u(t)+[1-H-1(q,q)]y(t),thepredictorfor(4.31)is
y^(t|q)=D(q)B(q)/(C(q)F(q))*u(t)+(C(q)
-
D(q))/C(q)*y(t)
(4.32)C420COLLEGEOFELECTRICALENGINEERINGAGeneralFamilyofModelStructuresC421COLLEGEOFELECTRICALENGINEERINGSelectingfromthefivepolynomialsused:A,B,C,D,andF,wecouldactuallyconstruct32differentmodelsets.Thesixpossibilitiesexplicitlydisplayedinthissectionarethemostcommonlyusedonesinpractice.Fortheconvenienceofexplicitalgorithmsandanalyticresults,ageneralizedmodelstructureshouldbeused: A(q)
y(t)=B(q)/F(q)*u(t)+C(q)/D(q)*e(t)
(4.33)From(4.6):y^(t|q)=H-1(q,q)
G(q,
q)
u(t)+[1
-
H-1(q,
q)]
y(t),thepredictorfor(4.33)is
y^(t|q)=D(q)B(q)/(C(q)F(q))*u(t)+[1
-
D(q)A(q)/C(q)]*y(t)
(4.35)C422COLLEGEOFELECTRICALENGINEERINGTable4.1SomecommonBlack-boxSISOModelsasSpecialCasesof(4.33)A
y=B/F
*
u+C/D
*
e
---------------------------------------------------------------------------PolynomialsUsedin(4.33)NameofModelStructure
---------------------------------------------------------------------------
B FIR
AB ARX
ABC ARMAX
AC ARMA
ABD ARARX
ABCD ARARMAX
BF OE(outputerror)
BFCD BJ(Box-Jenkins)
---------------------------------------------------------------------------C423COLLEGEOFELECTRICALENGINEERINGOtherModelExpansionsTheFIRmodelstructureG(q,
q)
=
Sk=1,n
bk
q-khastwoimportantadvantages:Itisalinearregression
(aspecialcaseofARX,(EE)).Itisanoutputerrormodel
(aspecialcaseofOE).Thismeansthatthemodelcanbeefficientlyestimatedandthatitisrobustagainstnoise.Thebasicdisadvantageisthatmanyparametersmaybeneeded.Apoleclosetotheunitcirclemakestheimpulseresponsedecayslowly,sonhastobelargetoapproximatethesystemwell.C424COLLEGEOFELECTRICALENGINEERINGAmodelwhichretainsthelinearregressionandoutputerrorfeaturewhileoffersbetterpossibilitiestotreatslowlydecayingimpulseresponsewouldlooklike
G(q,q)=Sk=1,nqkLk(q,a)
(4.47)
whereLk(q,a)representsafunctionexpansioninthedecayoperatorwithaauser-chosenparameter.Theparameteraistreatedasfixedtomake(4.47)alinearregression.Asimplechoiceis Lk(q,a)=q-k/(q
-
a)whereaisanestimateofthesystempole
closesttotheunitcircle.Asamoresophisticatedchoiceintermsoforthonormalbasisexpansion,Laguerrepolynomialshavebeenused: Lk(q,a)=1/(q
-
a)*[(1
–
a
q)/(q
-
a)]k-1
(4.48)withaanestimateofthedominatingpole
(timeconstant).C425COLLEGEOFELECTRICALENGINEERING4.3State-SpaceModelsC426COLLEGEOFELECTRICALENGINEERINGInthestate-space,therelationshipamongtheinput,noiseandoutputiswrittenasasystemoffirst-orderdifferentialor
differenceequationsusinganauxiliarystatevectorx(t).ThisdescriptionbecameanincreasinglydominatingapproachafterKalman’s(1960)workonpredictionandlinearquadraticcontrol.Theinsightsintophysicalmechanismsofthesystemcanmoreeasilybeincorporatedintostate-spacemodels.C427COLLEGEOFELECTRICALENGINEERINGContinuous-timeModelsBasedonPhysicalInsightWhythemodelisconstructedincontinuoustimeratherthanindiscretetime?Mostlawsofphysics
(Newton’slawofmotion,relationshipsinelectricalcircuits,etc.)areexpressedincontinuoustime.State-spacemodelingnormallyleadstoarepresentationx’(t)=F(q)
x(t)+G(q)
u(t)or[p
I-F(q)]
x(t)=G(q)
u(t)
(4.62)Herepisthedifferentiationoperator,FandGarematricesofn
x
nandn
x
m,andqisavectorofparametersthattypicallycorrespondtounknownvaluesofphysicalcoefficients,materialconstantsandthelike.Thestatevariablesxusuallyhavephysicalsignificance
(position,velocities,etc.)andthemeasuredoutputyistheknowncombinationofthestates.C428COLLEGEOFELECTRICALENGINEERINGLet
h(t)
bethe
measurements
obtainedwith
ideal,noise-free
sensors:
h(t)=H
x(t)
(4.63)
Thenthe
transferoperator
from
utohin
(4.63)is
h(t)=Gc(p,
q)u(t)withGc(p,
q)=H
[p
I-F(q)]-1G(q)
(4.64)Thisisthecontinuous-timetransfer-functionmodelofthesystemparameterizedintermsofphysicalcoefficients.Consideringthemeasurementimperfections
(affectingtheoutput)anddisturbancesactingon(4.62)
(affectingthestatevariables),somenoise-corruptedversionofh(t)isobtained.Thereareseveraldifferentpossibilitiestodescribethesenoiseanddisturbanceeffects.ThesimplestapproachwithmeasurementimperfectionsvT(kT)is y(kT)=H
x(kT)+vT(kT)=Gc(p,
q)u(t)+vT(kT)
(4.65)C429COLLEGEOFELECTRICALENGINEERINGSamplingtheTransferFunctionOnewaytotransportGc(p,q)toarepresentationinexplicitlydiscretetime:SupposetheinputisconstantoverthesamplingintervalT: u(t)=uk=u(kT),kT≤t≤(k+1)T(4.66)Thenx’(t)=F(q)
x(t)+G(q)
u(t)caneasilybesolvedfromt=kTtot=kT
+
Tas x(kT
+
T)=AT(q)
x(kT)+BT(q)
u(kT)
(4.67)whereAT(q)=eF(q)T,(4.68a,b)IntroducingqfortheforwardshiftofTtimeunits,wecanrewrite(4.67)as[q
I-AT(q)]x(kT)=BT(q)u(kT)or
h(kT)=GT(q,
q)u(kT)
(4.70) GT(q,
q)=H[q
I-AT(q)]-1BT(q)
(4.71)C430COLLEGEOFELECTRICALENGINEERINGHence(4.65)can
equivalently
begiveninthe
sampled-dataform
y(t)=GT(q,
q)u(t)+vT(t),t=T,2T,…(4.72)Note:Whenu(t)=uk
=u(kT)holds,noapproximationisinvolvedinthisrepresentation.InviewofAT(q)andBT(q),GT(q,
q)couldbequiteacomplicatedfunctionofq.ReadExample4.1withthefollowingquestions(p.95):Howmanydisturbancescanbeconsideredinastate-spacemodel?ComparingwithARX(EE)orOEmodel,whatisthemainadvantageanddisadvantageofusingastate-spacemodeltodescribethesystem?C431COLLEGEOFELECTRICALENGINEERINGEquations(4.67):x(kT
+
T)=AT(q)x(kT)+BT(q)u(kT)
and(4.65):
y(kT)=H
x(kT)+vT(kT)=Gc(p,
q)u(t)+vT(kT)
constitute
a
standarddiscrete-time
state-spacemodel.Forsimplicity,wetakeT
=
1anddropthecorrespondingindex,andintroduceamatrixrelatingxtoh:H=C(q),thuswehave
x(t
+1)=A(q)x(t)+B(q)u(t)
(4.80a)
y(t)=C(q)x(t)+v(t)
(4.80b)Correspondingto
y(t)=G(q,
q)u(t)+v(t)
(4.81) G(q,
q)=C(q)[q
I-A(q)]-1B(q)
(4.82)C432COLLEGEOFELECTRICALENGINEERINGNoiseRepresentationandtheTime-invariableKalmanFilterAstraightforwardbutentirelyvalidapproachtomodelthenoiseterm{v(t)}in(4.80)and(4.81)istopostulateitas v(t)=H(q,q)e(t)
(4.83)with{e(t)}beingwhitenoisewithvariancel.Forstate-spacedescription,itismorecommontosplitv(t)intomeasurementnoisev
(t)actingontheoutputandprocessnoisew(t)actingonthestates:x(t+1)
=
A(q)
x(t)
+
B(q)
u(t)
+
w
(t)y(t)
=
C(q)
x(t)
+
v
(t)
(4.84)withw
(t)andv
(t)beingindependentrandomvariableswithzeromeanvaluesandcovariancesE
w(t)
wT(t)
=
R1(q)E
v(t)
vT(t)=R2(q)E
w(t)
vT(t)
=
R12(q)
(4.85)Whenwandvarenotwhitenoises,extramodelingandextensionofthestatevectorarerequiredin(4.84)and(4.85).C433COLLEGEOFELECTRICALENGINEERINGApplythecelebratedKalmanfilter,theconditionalexpectationofy(t),givendatay(s)andu(s),s
≤
t-1,is,providedwandvareGaussianprocess,givenbyx^(t+1,q)=A(q)x^(t,q)+B(q)u(t)+K(q)[y(t)-C(q)x^(t,q)] y^(t|q)=C(q)x^(t,q)
(4.86)
HereK(q)isgivenas
whereP(q)isthepositivesemidefinitesolutionofthestationaryRiccatiequation:andisthecovariancematrixofthestateestimateerror:
Howtopredicty(t)in(4.84)?C434COLLEGEOFELECTRICALENGINEERINGTowritethepredictor
intermofinput,wehave:
y^(t|q)
=C(q)[q
I-A(q)+K(q)C(q)]-1B(q)u(t) +C(q)[q
I-A(q)+K(q)C(q)]-1K(q)y(t)
(4.88)C435COLLEGEOFELECTRICALENGINEERINGInnovationsRepresentationThepredicterrorof(4.86)isthepartofy(t)thatcannotbepredictedfrompastdata:“theinnovation”denotedby
e(t):y(t)-C(q)x^(t,q)=C(q)[x(t)-x^(t,q)]+v(t)=e(t)
(4.90)Then(4.86)canberewrittenas x^(t+1,q)=A(q)x^(t,q)+B(q)u(t)+K(q)e(t) y(t)=C(q)x^(t,q)+e(t)
(4.91a)Thecovarianceofe(t)canbefoundfrom(4.90)and(4.89): Ee(t)eT(t)=L(q)=C(q)P(q)CT(q)+R2(q)
(4.91b)Sincee(t)appearsexplicitly,thisrepresentationisknownastheinnovationsformofthestate-spacedescription.C436COLLEGEOFELECTRICALENGINEERINGDirectlyParameterizedInnovationsFormIn(4.91)theKalmangainK(q)iscomputedfromA,C,R1,R12andR2inthefairlycomplicatedmannergivenby(4.87)forK,P.ItisanattractiveideatoparameterizeK(q)
intermsofq
directly.Theimportantadvantageofthisisthatthepredictor
(4.88)becomesamuchsimplerfunctionofq.Suchamodelstructureiscalledadirectlyparameterizedinnovationsform.IfwehavenopriorknowledgeabouttheR-matrices,whichmeansthatmanyparametersareneededtodescribethem,thedirectparameterizationofK(q)isabetteralternative.Ifthephysicalinsightinto(4.84)entailsknowing,forexample,thattheprocessnoise
affectsonlyonestateandisindependentofmeasurementnoise,thecalculationofK(q)
via(4.85)and(4.87)isdoneeasilycomparedwiththedirectparameterizationofK(q).C437COLLEGEOFELECTRICALENGINEERINGGuidanceofthechoiceofparameterizedmodelsetsTwodifferentphilosophies
guidethechoiceofthemodel:Black-boxmodelstructure:Theyareflexiblemodelsetsthatcanaccommodateavarietyofsystems,withoutlookingintotheirinternalstructure.Theinput-outputmodelstructuresaswellascanonicallyparameterizedstate-spacemodelsareofthischaracter.Modelstructureswithphysicalparameters:Thephysicalinsightisincorporatedintothemodelsetsoastobringthenumberofadjustableparameters
downtowhatisactuallyunknownaboutthesystem.Continuous-timestate-spacemodelsaretypicalrepresentationsforthisapproach.C438COLLEGEOFELECTRICALENGINEERING4.6IdentifiabilityofSomeModelStructuresC439COLLEGEOFELECTRICALENGINEERINGIdentifiabilityConceptDefinition4.6.AmodelstructureMisgloballyidentifiableat q*ifM(q)=M(q*),q
eDM
q=q*(4.130)Theidentifiabilityconceptconcernstheuniquerepresentationofagivensystem.AgivensystemS: y(t)=G0(q)u(t)+H0(q)e(t)
(4.132)LetMbeamodelstructurebasedonone-step-aheadpredictorsfor y(t)=G(q,q)u(t)+H(q,q)e(t)
(4.133)DefinethesetDT(S,M)asthoseq-valuesinDMforwhichS=M(q): DT(S,M)={qeDM|G0(z)=G(z,q),H0(z)=H(z,q)almostallz} (4.134)ThissetisemptyincaseSnote
M.C440COLLEGEOFELECTRICALENGINEERINGNowsupposethatS
e
MsothatS=M(q0)forsomevalueq0.SupposethatMisgloballyidentifiableatq0.Than DT(S,M)={q0} (4.135)Note:
Mshouldbeselectedsothat(4.135)holdsforagivenS.SinceSisunknown,severaldifferentstructuresMshouldbetested.TheidentifiabilityconceptwillprovideusefulguidanceinfindinganMsuchthat(4.135)holds.C441COLLEGEOFELECTRICALENGINEERINGAmodelstructureisgloballyidentifiableatq*ifandonlyif G(z,q)=G(z,q*)andH(z,q)=H(z,q*) foralmostallz
q=q*
(4.136)Forlocalidentifiability,qwillbeconsideredtobeconfinedtoasufficientlysmallneighborhoodofq*.Globalidentifiabilityismoredifficulttodealwithingeneralterms.Weshallonlybrieflydiscussidentifiabilityofphysicalparametersandgivesomeresultsforgeneralblack-boxSISOmodels.C442COLLEGEOFELECTRICALENGINEERINGParametrizationsinTermsofPhysicalParametersForamodel y(t)=Gc(p,
q)u(t)+v(t)
(4.137)Asimpleridentifiabilitytesttoapplyis Gc(s,q)=Gc(s,q*)almostalls
q=q*
?
(4.138)Thisequationisnotsufficientfor(4.136)withbothGandHtoholdbutisareasonabletestforglobalidentifiabilityofthemodelatq*.But(4.138)isstilladifficultenoughproblemexceptforspecialstructures.C443COLLEGEOFELECTRICALENGINEERINGSISOTransfer-functionModelStructuresConsidertheARXmodelstructure G
(z,q)=B(z)/A(z),H(z,q)=1/A(z)
(4.139)with q=[a1…anab1…
bnb]TEqualityforH(z,
q)=H(z,
q*)in(4.136)impliesthattheA-polynomialscoincide,aa*,whichinturnimpliesthattheB-polynomialsmustcoincidefortheGtobeequal,bb*.Thatisq
q*.Itverifiesthat(4.136)holdsforallq*inthemodelstructure(4.139)---Thestructureisstrictlygloballyidentifiable.C444COLLEGEOFELECTRICALENGINEERINGFortheOEmodelstructure
(4.25)withordersnbandnf,atq=q*wehaveLetB~*(z)=znbB*(z)andqbeanarbitraryparametervalue,thenequation(4.136)
znf-nb
B~*
/
F~*
=
G(z,q*)
=
G(z,q)
=
B(z)
/
F(z)=
znf-nb
B~(z)
/
F~(z)canbewrittenas F~(z)B~*(z)–F~*(z)B~(z)=0(4.141)C445COLLEGEOFELECTRICALENGINEERING F~(z)B~*(z)–F~*(z)B~(z)=0(4.141)SinceF~*(z)isapolynomialofdegreenf,ithasnfzeros: F~*(ai)=0,i=1,…,nfSupposethatB~*andF~*arecoprime
B~*(ai)≠0.Then(4.141)impliesthat F~(ai)=0,i=1,…,nfConsequently,wehaveF~(z)
F~*(z),whichintu
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 滬科版八年級物理全一冊《2.1聲音的產生與傳播》同步測試題含答案
- 高一化學第四單元非金屬及其化合物第四講氨硝酸硫酸練習題
- 2024屆河南省淇縣某中學高考模擬試卷(化學試題文)試卷含解析
- 2024高中地理第4章區(qū)域經濟發(fā)展第2節(jié)第2課時問題和對策學案新人教版必修3
- 2024高中語文第四單元創(chuàng)造形象詩文有別賞析示例過小孤山大孤山學案新人教版選修中國古代詩歌散文欣賞
- DB37-T 5307-2024 住宅小區(qū)供水設施建設標準
- 肩周炎中醫(yī)診療指南
- 深圳城市的發(fā)展歷程
- 2025版:勞動合同法企業(yè)合規(guī)培訓及風險評估合同3篇
- 三講課件知識課件
- 直腸癌臨床路徑
- 綠化養(yǎng)護工作計劃表
- 《城市規(guī)劃設計計費指導意見》2017修訂稿
- 正數(shù)負數(shù)練習題
- QC成果提高內隔墻ALC板材安裝質量
- 韓國文化-課件
- 出院健康宣教課件
- 電袋復合除塵器工藝說明
- 六年級下冊第四單元語文園地-語文園地四-學習任務單
- 《新聞采訪寫作》課程思政優(yōu)秀教學案例(一等獎)
- 竣工驗收程序流程圖
評論
0/150
提交評論