版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
長風破浪會有時,直掛云帆濟滄海。住在富人區(qū)的她2023年菏澤職業(yè)學院高職單招(數(shù)學)試題庫含答案解析(圖片大小可自由調整)全文為Word可編輯,若為PDF皆為盜版,請謹慎購買!第1卷一.綜合題(共50題)1.已知直線l:(t為參數(shù))的傾斜角是()
A.
B.
C.
D.答案:D2.已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α∥β,則λ的值是()
A.-
B.-6
C.6
D.答案:C3.不等式的解集是(
)
A.(-∞,-1)∪(-1,2]
B.[-1,2]
C.(-∞,-1)∪[2,+∞)
D.(-1,2]答案:D4.已知A(-4,6,-1),B(4,3,2),則下列各向量中是平面AOB(O是坐標原點)的一個法向量的是()A.(0,1,6)B.(-1,2,-1)C.(-15,4,36)D.(15,4,-36)答案:設平面AOB(O是坐標原點)的一個法向量是u=(x,y,z)則u?OA=0u?OB=0,即-4x+6y-z=04x+3y+2z=0,令x=-1,解得x=-1y=2z=-1,故u=(-1,2,-1),故選B.5.在平面直角坐標系xOy中,雙曲線x24-y212=1上一點M,點M的橫坐標是3,則M到雙曲線右焦點的距離是______答案:MFd=e=2,d為點M到右準線x=1的距離,則d=2,∴MF=4.故為46.已知:a={2,-3,1},b={2,0,-2},c={-1,-2,0},r=2a-3b+c,
則r的坐標為______.答案:∵a=(2,-3,1),b=(2,0,-2),c=(-1,-2,0)∴r=2a-
3b+c=2(2,-3,1)-3(2,0,-2)+(-1,-2,0)=(4,-6,2)-(6,0,-6)+(-1,-2,0)=(-3,-8,8)故為:(-3,-8,8)7.如圖,四邊形ABCD是圓O的內(nèi)接四邊形,延長AB和DC相交于點P,若PBPA=12,PCPD=13,則BCAD的值為______.答案:因為A,B,C,D四點共圓,所以∠DAB=∠PCB,∠CDA=∠PBC,因為∠P為公共角,所以△PBC∽△PAB,所以PBPD=PCPA=BCAD.設OB=x,PC=y,則有x3y=y2x?x=6y2,所以BCAD=x3y=66.故填:66.8.若指數(shù)函數(shù)f(x)與冪函數(shù)g(x)的圖象相交于一點(2,4),則f(x)=______,g(x)=______.答案:設f(x)=ax(a>0且a≠1),g(x)=xα將(2,4)代入兩個解析式得4=a2,4=2α解得a=2,α=2故為:f(x)=2x,g(x)=x29.已知|a|=8,e是單位向量,當它們之間的夾角為π3時,a在e方向上的投影為
______.答案:a在e方向上的投影為a?e=|a||e|cosπ3=4故為:410.(選做題)方程ρ=cosθ與(t為參數(shù))分別表示何種曲線(
)。答案:圓,雙曲線11.將函數(shù)y=sin(x+)的圖象按向量=(-m,0)平移所得的圖象關于y軸對稱,則m最小正值是
(
)
A.
B.
C.
D.答案:A12.
選修1:幾何證明選講
如圖,設AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點,AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD,求證:
(1)l是⊙O的切線;
(2)PB平分∠ABD.答案:證明:(1)連接OP,因為AC⊥l,BD⊥l,所以AC∥BD.又OA=OB,PC=PD,所以OP∥BD,從而OP⊥l.因為P在⊙O上,所以l是⊙O的切線.(2)連接AP,因為l是⊙O的切線,所以∠BPD=∠BAP.又∠BPD+∠PBD=90°,∠BAP+∠PBA=90°,所以∠PBA=∠PBD,即PB平分∠ABD.13.如圖所示,正四面體V—ABC的高VD的中點為O,VC的中點為M.
(1)求證:AO、BO、CO兩兩垂直;
(2)求〈,〉.答案:(1)證明略(2)45°解析:(1)
設=a,=b,=c,正四面體的棱長為1,則=(a+b+c),=(b+c-5a),=(a+c-5b),=(a+b-5c)∴·=(b+c-5a)·(a+c-5b)=(18a·b-9|a|2)=(18×1×1·cos60°-9)=0.∴⊥,∴AO⊥BO,同理⊥,BO⊥CO,∴AO、BO、CO兩兩垂直.(2)
=+=-(a+b+c)+=(-2a-2b+c).∴||==,||==,·=(-2a-2b+c)·(b+c-5a)=,∴cos〈,〉==,∵〈,〉∈(0,),∴〈,〉=45°.14.某學校要從5名男生和2名女生中選出2人作為上海世博會志愿者,若用隨機變量ξ表示選出的志愿者中女生的人數(shù),則數(shù)學期望Eξ______(結果用最簡分數(shù)表示).答案:用隨機變量ξ表示選出的志愿者中女生的人數(shù),ξ可取0,1,2,當ξ=0時,表示沒有選到女生;當ξ=1時,表示選到一個女生;當ξ=2時,表示選到2個女生,∴P(ξ=0)=C25C27=1021,P(ξ=1)=C15C12C27=1021,P(ξ=2)=C22C27=121,∴Eξ=0×1021+1×1021+2×121=47.故為:4715.已知圓O:x2+y2=5和點A(1,2),則過A且與圓O相切的直線與兩坐標軸圍成的三角形的面積=______.答案:由題意知,點A在圓上,切線斜率為-1KOA=-121=-12,用點斜式可直接求出切線方程為:y-2=-12(x-1),即x+2y-5=0,從而求出在兩坐標軸上的截距分別是5和52,所以,所求面積為12×52×5=254.16.點P1,P2是線段AB的2個三等分點,若P∈{P1,P2},則P分有線段AB的比λ的最大值和最小值分別為()
A.3,
B.3,
C.2,
D.2,1答案:C17.將包含甲、乙兩人的4位同學平均分成2個小組參加某項公益活動,則甲、乙兩名同學分在同一小組的概率為()
A.
B.
C.
D.答案:C18.直線y=3的一個單位法向量是______.答案:直線y=3的方向向量是(a,0)(a≠0),不妨?。?,0)設直線y=3的法向量為n=(x,y)∴(x,y)?(1,0)=0∴x=0∴直線y=3的一個單位法向量是(0,1)故為:(0,1)19.已知兩條直線y=ax-2和y=(a+2)x+1互相垂直,則a等于(
)
A.2
B.1
C.0
D.-1答案:D20.一牧場有10頭牛,因誤食含有病毒的飼料而被感染,已知該病的發(fā)病率為0.02.設發(fā)病的牛的頭數(shù)為ξ,則Dξ=______;.答案:∵由題意知該病的發(fā)病率為0.02,且每次實驗結果都是相互獨立的,∴ξ~B(10,0.02),∴由二項分布的方差公式得到Dξ=10×0.02×0.98=0.196.故為:0.19621.已知向量,,,則(
)A.B.C.5D.25答案:C解析:將平方即可求得C.22.將一枚均勻硬幣
隨機擲20次,則恰好出現(xiàn)10次正面向上的概率為()
A.
B.
C.
D.答案:D23.已知等差數(shù)列{an}的前n項和為Sn,若向量OB=a100OA+a101OC,且A、B、C三點共線(該直線不過點O),則S200等于______.答案:由題意可知:向量OB=a100OA+a101OC,又∵A、B、C三點共線,則a100+a101=1,等差數(shù)列前n項的和為Sn=(a1+an)?n
2,∴S200=(a1+a200)×200
2=(a100+
a101)×2002=100,故為100.24.已知A(2,1,1),B(1,1,2),C(2,0,1),則下列說法中正確的是()A.A,B,C三點可以構成直角三角形B.A,B,C三點可以構成銳角三角形C.A,B,C三點可以構成鈍角三角形D.A,B,C三點不能構成任何三角形答案:∵|AB|=2,|BC|=3,|AC|=1,∴|BC|2=|AC|2+|AB|2,∴A,B,C三點可以構成直角三角形,故選A.25.在直角坐標系xOy中,直線l的參數(shù)方程為x=3-22ty=5+22t(t為參數(shù)).在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,圓C的方程為ρ=25sinθ.
(I)求圓C的參數(shù)方程;
(II)設圓C與直線l交于點A,B,求弦長|AB|答案:(Ⅰ)∵ρ=25sinθ,∴ρ2=25ρsinθ…(1分)所以,圓C的直角坐標方程為x2+y2-25y=0,即x2+(y-5)2=5…(3分)所以,圓C的參數(shù)方程為x=5cosθy=5+5sinθ(θ為參數(shù))
…(4分)(Ⅱ)將直線l的參數(shù)方程代入圓C的直角坐標方程,得(3-22t)2+(22t)2=5即t2-32t+4=0…(5分)設兩交點A,B所對應的參數(shù)分別為t1,t2,則t1+t2=32t1t2=4…(7分)∴|AB|=|t1-t2|=(t1+t2)2-4t1t2=18-16=2…(8分)26.
已知向量
=(4,3),=(1,2),若向量
+k
與
-
垂直,則k的值為(
)A.
233B.7C.-
115D.-
233答案:考點:數(shù)量積判斷兩個平面向量的垂直關系.27.在大小相同的5個球中,2個是紅球,3個是白球,若從中任取2個,則所取的2個球中至少有一個紅球的概率是______.答案:由題意知本題是一個古典概型,試驗發(fā)生包含的基本事件有C52=10種結果,其中至少有一個紅球的事件包括C22+C21C31=7個基本事件,根據(jù)古典概型公式得到P=710,故為:710.28.已知某試驗范圍為[10,90],若用分數(shù)法進行4次優(yōu)選試驗,則第二次試點可以是(
)。答案:40或60(不唯一)29.已知|a|=1,|b|=2,<a,b>=60°,則|2a+b|=______.答案:∵|a|=1,|b|=2,<a,b>=60°,∴a?b=|a|×|b|cos60°=1由此可得(2a+b)2=4a2+4a?b+b2=4×12+4×1+22=12∴|2a+b|=(2a+b)2=23故為:2330.直線l與拋物線y2=2x相交于A、B兩點,O為拋物線的頂點,若OA⊥OB.證明:直線l過定點.答案:證明:設點A,B的坐標分別為(x1,y1),(x2,y2)(I)當直線l有存在斜率時,設直線方程為y=kx+b,顯然k≠0且b≠0.(2分)聯(lián)立方程得:y=kx+by2=2x消去y得k2x2+(2kb-2)x+b2=0由題意:x1x2=b2k2,&
y1y2=(kx1+b)(kx2+b)=2bk(5分)又由OA⊥OB得x1x2+y1y2=0,(7分)即b2k2+2bk=0,解得b=0(舍去)或b=-2k(9分)故直線l的方程為:y=kx-2k=k(x-2),故直線過定點(2,0)(11分)(II)當直線l不存在斜率時,設它的方程為x=m,顯然m>0聯(lián)立方程得:x=my2=2x解得y=±2m,即y1y2=-2m又由OA⊥OB得x1x2+y1y2=0,即m2-2m=0,解得m=0(舍去)或m=2可知直線l方程為:x=2,故直線過定點(2,0)綜合(1)(2)可知,滿足條件的直線過定點(2,0).31.若e1、e2、e3是三個不共面向量,則向量a=3e1+2e2+e3,b=-e1+e2+3e3,c=2e1-e2-4e3是否共面?請說明理由.答案:解:設c=1a+2b,則即∵a、b不共線,向量a、b、c共面.32.方程x(x2+y2-1)=0和x2-(x2+y2-1)2=0表示的圖形是()
A.都是兩個點
B.一條直線和一個圓
C.前者為兩個點,后者是一條直線和一個圓
D.前者是一條直線和一個圓,后者是兩個圓答案:D33.關于x的方程(m+3)x2-4mx+2m-1=0的兩根異號,且負數(shù)根的絕對值比正數(shù)根大,那么實數(shù)m的取值范圍是()
A.-3<m<0
B.0<m<3
C.m<-3或m>0
D.m<0或m>3答案:A34.(2的c的?湛江一模)已知⊙O的方程為x2+y2=c,則⊙O上的點到直線x=2+45ty=c-35t(t為參數(shù))的距離的最大值為______.答案:∵直線x=2+45t一=1-35t(t為參數(shù))∴3x+4一=10,∵⊙e的方程為x2+一2=1,圓心為(0,0),設直線3x+4一=k與圓相切,∴|k|5=1,∴k=±5,∴直線3x+4一=k與3x+4一=10,之間的距離就是⊙e上的點到直線的距離的最大值,∴d=|10±5|5,∴d的最大值是155=3,故為:3.35.過P(-1,1),Q(3,9)兩點的直線的斜率為(
)
A.2
B.
C.4
D.答案:A36.方程組的解集為()
A.{2,1}
B.{1,2}
C.{(2,1)}
D.(2,1)答案:C37.給出下列說法:①球的半徑是球面上任意一點與球心的連線段;②球的直徑是球面上任意兩點的連線段;③用一個平面截一個球面,得到的是一個圓;④球常用表示球心的字母表示.其中說法正確的是______.答案:根據(jù)球的定義直接判斷①正確;②錯誤;;③用一個平面截一個球面,得到的是一個圓;可以是小圓,也可能是大圓,正確;④球常用表示球心的字母表示.滿足球的定義正確;故為:①③④38.如圖,從圓O外一點P作圓O的割線PAB、PCD,AB是圓O的直徑,若PA=4,PC=5,CD=3,則∠CBD=______.答案:由割線長定理得:PA?PB=PC?PD即4×PB=5×(5+3)∴PB=10∴AB=6∴R=3,所以△OCD為正三角形,∠CBD=12∠COD=30°.39.(1)把二進制數(shù)化為十進制數(shù);(2)把化為二進制數(shù).答案:(1)45,(2)解析:(1)先把二進制數(shù)寫成不同位上數(shù)字與2的冪的乘積之和的形式,再按照十進制的運算規(guī)則計算出結果;(2)根據(jù)二進制數(shù)“滿二進一”的原則,可以用連續(xù)去除或所得商,然后取余數(shù).(1)(2),,,,.所以..這種算法叫做除2余法,還可以用下面的除法算式表示;把上式中各步所得的余數(shù)從下到上排列,得到【名師指引】直接插入排序和冒泡排序是兩種常用的排序方法,通過該例,我們對比可以發(fā)現(xiàn),直接插入排序比冒泡排序更有效一些,執(zhí)行的操作步驟更少一些..40.已知正三角形的外接圓半徑為63cm,求它的邊長.答案:設正三角形的邊長為a,則12a=Rcos30°=63?32=9(cm)∴a=18(cm).它的邊長為18cm.41.已知實數(shù)x、y、z滿足x+2y+3z=1,則x2+y2+z2的最小值為______.答案:由柯西不等式可知:(x+2y+3z)2≤(x2+y2+z2+)(12+22+32)故x2+y2+z2≥114,當且僅當x1=y2=z3,即:x2+y2+z2的最小值為114.故為:11442.求圓心在直線y=-4x上,并且與直線l:x+y-1=0相切于點P(3,-2)的圓的方程.答案:設圓的方程為(x-a)2+(y-b)2=r2(r>0)由題意有:b=-4a|a+b+1|2=rb+2a-3?(-1)=-1解之得a=1b=-4r=22∴所求圓的方程為(x-1)2+(y+4)2=843.某程序框圖如圖所示,該程序運行后輸出的k的值是()A.4B.5C.6D.7答案:根據(jù)流程圖所示的順序,程序的運行過程中各變量值變化如下表:是否繼續(xù)循環(huán)
S
K循環(huán)前/0
0第一圈
是
1
1第二圈
是
3
2第三圈
是
11
3第四圈
是
20594第五圈
否∴最終輸出結果k=4故為A44.命題:“方程X2-2=0的解是X=±2”中使用邏輯聯(lián)系詞的情況是()A.沒有使用邏輯連接詞B.使用了邏輯連接詞“且”C.使用了邏輯連接詞“或”D.使用了邏輯連接詞“非”答案:命題:“方程X2-2=0的解是X=±2”可以化為:“方程X2-2=0的解是X=2,或X=-2”故命題:“方程X2-2=0的解是X=±2”中使用邏輯聯(lián)系詞為:或故選C45.拋物線y=4x2的焦點坐標為()
A.(1,0)
B.(0,)
C.(0,1)
D.(,0)答案:B46.直線l過橢圓x24+y23=1的右焦點F2并與橢圓交與A、B兩點,則△ABF1的周長是()A.4B.6C.8D.16答案:根據(jù)題意結合橢圓的定義可得:|AF1|+|AF2|=2a=4,,并且|BF1|+|BF2|=2a=4,又因為|AF2|+|BF2|=|AB|,所以△ABF1的周長為:|AF1|+|BF1|+|AB|=|AF1|+|AF2|+|BF1|+|BF2|=4a=8.故選C.47.在△ABC中,已知A(2,3),B(8,-4),點G(2,-1)在中線AD上,且|AG|=2|GD|,則C的坐標為______.答案:設C(x,y),則D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故為:(-4,-2).48.某班有40名學生,其中有15人是共青團員.現(xiàn)將全班分成4個小組,第一組有學生10人,共青團員4人,從該班任選一個學生代表.在選到的學生代表是共青團員的條件下,他又是第一組學生的概率為()A.415B.514C.14D.34答案:由于所有的共青團員共有15人,而第一小組有4人是共青團員,故在選到的學生代表是共青團員的條件下,他又是第一組學生的概率為415,故選A.49.函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),則a+b=______.答案:∵函數(shù)f(x)=x2+(a+1)x+2是定義在[a,b]上的偶函數(shù),∴其定義域關于原點對稱,既[a,b]關于原點對稱.所以a與b互為相反數(shù)即a+b=0.故為:0.50.若復數(shù)z=(2-i)(a-i),(i為虛數(shù)單位)為純虛數(shù),則實數(shù)a的值為______.答案:z=(2-i)(a-i)=2a-1-(2+a)i∵若復數(shù)z=(2-i)(a-i)為純虛數(shù),∴2a-1=0,a+2≠0,∴a=12故為:12第2卷一.綜合題(共50題)1.已知函數(shù)f(x)=x+3x+1(x≠-1).設數(shù)列{an}滿足a1=1,an+1=f(an),數(shù)列{bn}滿足bn=|an-3|,Sn=b1+b2+…+bn(n∈N*).
(Ⅰ)用數(shù)學歸納法證明bn≤(3-1)n2n-1;
(Ⅱ)證明Sn<233.答案:證明:(Ⅰ)當x≥0時,f(x)=1+2x+1≥1.因為a1=1,所以an≥1(n∈N*).下面用數(shù)學歸納法證明不等式bn≤(3-1)n2n-1.(1)當n=1時,b1=3-1,不等式成立,(2)假設當n=k時,不等式成立,即bk≤(3-1)k2k-1.那么bk+1=|ak+1-3|=(3-1)|ak-3|1+ak3-12bk≤(3-1)k+12k.所以,當n=k+1時,不等式也成立.根據(jù)(1)和(2),可知不等式對任意n∈N*都成立.(Ⅱ)由(Ⅰ)知,bn≤(3-1)n2n-1.所以Sn=b1+b2+…+bn≤(3-1)+(3-1)22+…+(3-1)n2n-1=(3-1)?1-(3-12)n1-3-12<(3-1)?11-3-12=233.故對任意n∈N*,Sn<233.2.平面直角坐標系中,O為坐標原點,設向量其中,若且0≤μ≤λ≤1,那么C點所有可能的位置區(qū)域用陰影表示正確的是()
A.
B.
C.
D.
答案:A3.若向量=(2,-3,1),=(2,0,3),=(0,2,2),則(+)=()
A.4
B.15
C.7
D.3答案:D4.一部記錄影片在4個單位輪映,每一單位放映一場,則不同的輪映方法數(shù)有()A.16B.44C.A44D.43答案:本題可以看做把4個單位看成四個位置,在四個位置進行全排列,故有A44種結果,故選C.5.已知復數(shù)w滿足w-4=(3-2w)i(i為虛數(shù)單位),z=5w+|w-2|,求一個以z為根的實系數(shù)一元二次方程.答案:[解法一]∵復數(shù)w滿足w-4=(3-2w)i,∴w(1+2i)=4+3i,∴w(1+2i)(1-2i)=(4+3i)(1-2i),∴5w=10-5i,∴w=2-i.∴z=52-i+|2-i-2|=5(2+i)(2-i)(2+i)+1=2+i+1=3+i.若實系數(shù)一元二次方程有虛根z=3+i,則必有共軛虛根.z=3-i.∵z+.z=6,z?.z=10,∴所求的一個一元二次方程可以是x2-6x+10=0.[解法二]設w=a+b,(a,b∈Z),∴a+bi-4=3i-2ai+2b,得a-4=2bb=3-2a解得a=2b=-1,∴w=2-i,以下解法同[解法一].6.以數(shù)集A={a,b,c,d}中的四個元素為邊長的四邊形只能是()A.平行四邊形B.矩形C.菱形D.梯形答案:∵數(shù)集A={a,b,c,d}中的四個元素互不相同,∴以數(shù)集A={a,b,c,d}中的四個元素為邊長的四邊形,四條邊不相等∴四邊形只可能是梯形故選D.7.點(1,1)在圓(x-a)2+(y+a)2=4的內(nèi)部,則a的取值范圍是(
)
A.-1<a<1
B.0<a<1
C.a(chǎn)<-1或a>1
D.a(chǎn)=±1答案:A8.如圖,四邊形ABCD內(nèi)接于圓O,且AC、BD交于點E,則此圖形中一定相似的三角形有()對.
A.0
B.3
C.2
D.1
答案:C9.用反證法證明“如果a<b,那么“”,假設的內(nèi)容應是()
A.
B.
C.且
D.或
答案:D10.在△ABC中,已知A(2,3),B(8,-4),點G(2,-1)在中線AD上,且|AG|=2|GD|,則C的坐標為______.答案:設C(x,y),則D(8+x2,-4+y2),再由AG=2GD,得(0,-4)=2(4+x2,-2+y2),∴4+x=0,-2+y=-4,即C(-4,-2)故為:(-4,-2).11.直線L1:x-y=0與直線L2:x+y-10=0的交點坐標是()
A.(5,5)
B.(5,-5)
C.(-1,1)
D.(1,1)答案:A12.求證:答案:證明見解析解析:證明:此題采用了從第三項開始拆項放縮的技巧,放縮拆項時,不一定從第一項開始,須根據(jù)具體題型分別對待,即不能放的太寬,也不能縮的太窄,真正做到恰倒好處。13.已知|log12x+4i|≥5,則實數(shù)x
的取值范圍是______.答案:由題意,得(log12x)2+42≥5?|log12x|≥3?0<x≤18或x≥8.∴則實數(shù)x
的取值范圍是0<x≤18或x≥8.故為:0<x≤18或x≥8.14.i是虛數(shù)單位,若(3+5i)x+(2-i)y=17-2i,則x、y的值分別為()
A.7,1
B.1,7
C.1,-7
D.-1,7答案:B15.4位學生與2位教師并坐合影留念,針對下列各種坐法,試問:各有多少種不同的坐法?(用數(shù)字作答)
(1)教師必須坐在中間;
(2)教師不能坐在兩端,但要坐在一起;
(3)教師不能坐在兩端,且不能相鄰.答案:(1)先排4位學生,有A44種坐法,2位教師坐在中間,可以交換位置,有A22種坐法,則共有A22A44=48種坐法;(2)先排4位學生,有A44種坐法,2位教師坐在一起,將其看成一個整體,可以交換位置,有2種坐法,將這個“整體”插在4個學生的空位中,又由教師不能坐在兩端,則有3個空位可選,則共有2A44A31=144種坐法;(3)先排4位學生,有A44種坐法,教師不能相鄰,將其依次插在4個學生的空位中,又由教師不能坐在兩端,則有3個空位可選,有A32種坐法,則共有A44A32=144種坐法..16.某次我市高三教學質量檢測中,甲、乙、丙三科考試成績的直方圖如如圖所示(由于人數(shù)眾多,成績分布的直方圖可視為正態(tài)分布),則由如圖曲線可得下列說法中正確的一項是()
A.甲科總體的標準差最小
B.丙科總體的平均數(shù)最小
C.乙科總體的標準差及平均數(shù)都居中
D.甲、乙、丙的總體的平均數(shù)不相同
答案:A17.袋中裝著標有數(shù)字1,2,3,4,5的小球各2個,現(xiàn)從袋中任意取出3個小球,假設每個小球被取出的可能性都相等.
(Ⅰ)求取出的3個小球上的數(shù)字分別為1,2,3的概率;
(Ⅱ)求取出的3個小球上的數(shù)字恰有2個相同的概率;
(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,求P(X≥4)的值.答案:(I)記“取出的3個小球上的數(shù)字分別為1,2,3”的事件記為A,則P(A)=C12C12C12C310=8120=115;(Ⅱ)記“取出的3個小球上的數(shù)字恰有2個相同”的事件記為A,則P(B)=C15C18C310=40120=13;(Ⅲ)用X表示取出的3個小球上的最大數(shù)字,則X≥4包含取出的3個小球上的最大數(shù)字為4或5兩種情況,當取出的3個小球上的最大數(shù)字為4時,P(X=4)=C12C26+C22C16C310=36120=310;當取出的3個小球上的最大數(shù)字為5時,P(X=5)=C12C28+C22C18C310=64120=815故P(X≥4)=56.18.附加題選做題B.(矩陣與變換)
設矩陣A=m00n,若矩陣A的屬于特征值1的一個特征向量為10,屬于特征值2的一個特征向量為01,求實數(shù)m,n的值.答案:由題意得m00n10=110,m00n01=201,…6分化簡得m=10?n=00?m=0n=2所以m=1n=2.…10分19.如圖,在圓錐中,B為圓心,AB=8,BC=6
(1)求出這個幾何體的表面積;
(2)求出這個幾何體的體積.(保留π)答案:圓錐母線AC的長=AB2+BC2=82+62=10(1)表面積=π×62+π×6×10=96π(2)體積=13×π×62×8=96π20.用反證法證明命題“三角形的內(nèi)角中至多有一個是鈍角”時,第一步是:“假設______.答案:根據(jù)用反證法證明數(shù)學命題的方法和步驟,應先假設命題的否定成立,而命題“三角形的內(nèi)角中至多有一個是鈍角”的否定為:“三角形的內(nèi)角中至少有兩個鈍角”,故為“三角形的內(nèi)角中至少有兩個鈍角”.21.(文)對于任意的平面向量a=(x1,y1),b=(x2,y2),定義新運算⊕:a⊕b=(x1+x2,y1y2).若a,b,c為平面向量,k∈R,則下列運算性質一定成立的所有序號是______.
①a⊕b=b⊕a;
②(ka)⊕b=a⊕(kb);
③a⊕(b⊕c)=(a⊕b)⊕c;
④a⊕(b+c)=a⊕b+a⊕c.答案:①a⊕b=(x1+x2,y1y2)=(x2+x1,y2y1)=b⊕a,故正確;②∵(ka)⊕b=(kx1+x2,ky1y2),a⊕(kb)=(x1+kx2,y1ky2),∴(ka)⊕b≠a⊕(kb),故不正確;③設c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),(a⊕b)⊕c=(x1+x2,y1y2)⊕c=(x1+x2+x3,y1y2y3),∴a⊕(b⊕c)=(a⊕b)⊕c,故正確;④設c=(x3,y3),∵a⊕(b⊕c)=a⊕(x2+x3,y2y3)=(x1+x2+x3,y1y2y3),a⊕b+a⊕c=(x1+x2,y1y2)+(x1+x3,y1y3)=(2x1+x2+x3,y1(y2+y3)),∴a⊕(b⊕c)≠a⊕b+a⊕c,故不正確.綜上可知:只有①③正確.故為①③.22.某種燈泡的耐用時間超過1000小時的概率為0.2,有3個相互獨立的燈泡在使用1000小時以后,最多只有1個損壞的概率是()
A.0.008
B.0.488
C.0.096
D.0.104答案:D23.兩不重合直線l1和l2的方向向量分別為答案:∵直線l1和l2的方向向量分別為24.已知f(n)=1+12+13+L+1n(n∈N*),用數(shù)學歸納法證明f(2n)>n2時,f(2k+1)-f(2k)等于______.答案:因為假設n=k時,f(2k)=1+12+13+…+12k,當n=k+1時,f(2k+1)=1+12+13+…+12k+12k+1+…+12k+1∴f(2k+1)-f(2k)=12k+1+12k+2+…+12k+1故為:12k+1+12k+2+…+12k+125.若集合S={a,b,c}(a、b、c∈R)中三個元素為邊可構成一個三角形,那么該三角形一定不可能是()
A.銳角三角形
B.直角三角形
C.鈍角三角形
D.等腰三角形答案:D26.已知當m∈R時,函數(shù)f(x)=m(x2-1)+x-a的圖象和x軸恒有公共點,求實數(shù)a的取值范圍.答案:(1)m=0時,f(x)=x-a是一次函數(shù),它的圖象恒與x軸相交,此時a∈R.(2)m≠0時,由題意知,方程mx2+x-(m+a)=0恒有實數(shù)解,其充要條件是△=1+4m(m+a)=4m2+4am+1≥0.又只需△′=(4a)2-16≤0,解得-1≤a≤1,即a∈[-1,1].∴m=0時,a∈R;m≠0時,a∈[-1,1].27.當圓x=4cosθy=4sinθ上一點P的旋轉角為θ=23π時,點P的坐標為______.答案:根據(jù)圓的參數(shù)方程的意義,當圓x=4cosθy=4sinθ上一點P的旋轉角為θ=23π時,點P的坐標為(4cos2π3,4sin2π3),即(-2,23).故為:(-2,23).28.平面α外一點P到平面α內(nèi)的四邊形的四條邊的距離都相等,且P在α內(nèi)的射影在四邊形內(nèi)部,則四邊形是()
A.梯形
B.圓外切四邊形
C.圓內(nèi)接四邊
D.任意四邊形答案:B29.過點M(0,1)作直線,使它被兩直線l1:x-3y+10=0,l2:2x+y-8=0所截得的線段恰好被M所平分,求此直線方程.答案:設所求直線與已知直線l1,l2分別交于A、B兩點.∵點B在直線l2:2x+y-8=0上,故可設B(t,8-2t).又M(0,1)是AB的中點,由中點坐標公式得A(-t,2t-6).∵A點在直線l1:x-3y+10=0上,∴(-t)-3(2t-6)+10=0,解得t=4.∴B(4,0),A(-4,2),故所求直線方程為:x+4y-4=0.30.極坐標系中,若A(3,π3),B(-3,π6),則s△AOB=______(其中O是極點).答案:∵極坐標系中,A(3,π3),B(-3,π6),3cosπ3=32,3sinπ3=332;-3cosπ6=-332,-3sinπ6=-32.∴在平面直角坐標系中,A(32,332),B(-332,-32),∴OA=(32,332),OB=(-332,-32),∴|OA|
=
3,|OB|=3,∴cos<OA,OB>=-934-93494+274=-32,∴sin<OA,OB>=1-34=12,∴S△AOB=12×3×3×12=94.故為:94.31.若3π2<α<2π,則直線xcosα+ysinα=1必不經(jīng)過()A.第一象限B.第二象限C.第三象限D.第四象限答案:令x=0,得y=sinα<0,令y=0,得x=cosα>0,直線過(0,sinα),(cosα,0)兩點,因而直線不過第二象限.故選B32.已知a=(5,4),b=(3,2),則與2a-3b同向的單位向量為
______.答案:∵a=(5,4),b=(3,2),∴2a-3b=(1,2)設與2a-3b平行的單位向量為e=(x,y),則2a-3b=λe,|e|=1∴(1,2)=(λx,λy);x2+y2=1∴1=λx2=λyx2+y2=1解之x=55y=255或x=-55y=-255故為e=±(55,255)33.學校成員、教師、后勤人員、理科教師、文科教師的結構圖正確的是()
A.
B.
C.
D.
答案:A34.一個凸多面體的各個面都是四邊形,它的頂點數(shù)是16,則它的面數(shù)為()
A.14
B.7
C.15
D.不能確定答案:A35.由9個正數(shù)組成的矩陣
中,每行中的三個數(shù)成等差數(shù)列,且a11+a12+a13,a21+a22+a23,a31+a32+a33成等比數(shù)列,給出下列判斷:①第2列a12,a22,a32必成等比數(shù)列;②第1列a11,a21,a31不一定成等比數(shù)列;③a12+a32≥a21+a23;④若9個數(shù)之和等于9,則a22≥1.其中正確的個數(shù)有()
A.1個
B.2個
C.3個
D.4個答案:B36.曲線y=log2x在M=0110作用下變換的結果是曲線方程______.答案:設P(x,y)是曲線y=log2x上的任一點,P1(x′,y′)是P(x,y)在矩陣M=0110對應變換作用下新曲線上的對應點,則x′y′=0110xy=yx(3分)即x′=yy′=x,所以x=y′y=x′,(6分)將x=y′y=x′代入曲線y=log2x,得x′=log2y′,(8分)即y′=2x′曲線y=log2x在M=0110作用下變換的結果是曲線方程y=2x故為:y=2x37.過點(1,0)且與直線x-2y-2=0平行的直線方程是()
A.x-2y-1=0
B.x-2y+1=0
C.2x+y-2=0
D.x+2y-1=0答案:A38.若不共線的平面向量,,兩兩所成角相等,且||=1,||=1,||=3,則|++|等于(
)
A.2
B.5
C.2或5
D.或答案:A39.某批n件產(chǎn)品的次品率為1%,現(xiàn)在從中任意地依次抽出2件進行檢驗,問:
(1)當n=100,1000,10000時,分別以放回和不放回的方式抽取,恰好抽到一件次品的概率各是多少?(精確到0.00001)
(2)根據(jù)(1),談談你對超幾何分布與二項分布關系的認識.答案:(1)當n=100時,如果放回,這是二項分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.100件產(chǎn)品中次品數(shù)為1,正品數(shù)是99,從100件產(chǎn)品里抽2件,總的可能是C1002,次品的可能是C11C991.所以概率為C11C199C2100=0.2.當n=1000時,如果放回,這是二項分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.1000件產(chǎn)品中次品數(shù)為10,正品數(shù)是990,從1000件產(chǎn)品里抽2件,總的可能是C10002,次品的可能是C101C9901.所以概率為是C110C1990C21000≈0.0198.如果放回,這是二項分布.抽到的2件產(chǎn)品中有1件次品1件正品,其概率為C21?0.01?0.99=0.0198.如果不放回,這是超幾何分布.10000件產(chǎn)品中次品數(shù)為1000,正品數(shù)是9000,從10000件產(chǎn)品里抽2件,總的可能是C100002,次品的可能是C1001C99001.所以概率為C1100?C19900C210000≈0.0198.(2)對超幾何分布與二項分布關系的認識:共同點:每次試驗只有兩種可能的結果:成功或失敗.不同點:1、超幾何分布是不放回抽取,二項分布是放回抽??;
2、超幾何分布需要知道總體的容量,二項分布不需要知道總體容量,但需要知道“成功率”;聯(lián)系:當產(chǎn)品的總數(shù)很大時,超幾何分布近似于二項分布.40.①學校為了了解高一學生的情況,從每班抽2人進行座談;②一次數(shù)學競賽中,某班有10人在110分以上,40人在90~100分,12人低于90分.現(xiàn)在從中抽取12人了解有關情況;③運動會服務人員為參加400m決賽的6名同學安排跑道.就這三件事,合適的抽樣方法為()A.分層抽樣,分層抽樣,簡單隨機抽樣B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣D.系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣答案:①是從較多的一個總體中抽取樣本,且總體之間沒有差異,故用系統(tǒng)抽樣,②是從不同分數(shù)的總體中抽取樣本,總體之間的差異比較大,故用分層抽樣,③是六名運動員選跑道,用簡單隨機抽樣,故選D.41.如圖所示,在幾何體ABCDE中,△ABC是等腰直角三角形,∠ABC=90°,BE和CD都垂直于平面ABC,且BE=AB=2,CD=1,點F是AE的中點.求AB與平面BDF所成角的正弦值.答案:AB與平面BDF所成角的正弦值為.解析:以點B為原點,BA、BC、BE所在的直線分別為x,y,z軸,建立如圖所示的空間直角坐標系,則B(0,0,0),A(2,0,0),C(0,2,0),D(0,2,1),E(0,0,2),F(xiàn)(1,0,1).∴=(0,2,1),=(1,-2,0).設平面BDF的一個法向量為n=(2,a,b),∵n⊥,n⊥,∴即解得a=1,b=-2.∴n=(2,1,-2).設AB與平面BDF所成的角為,則法向量n與的夾角為-,∴cos(-)===,即sin=,故AB與平面BDF所成角的正弦值為.42.已知A(3,4,5),B(0,2,1),O(0,0,0),若,則C的坐標是()
A.(-,-,-)
B.(,-,-)
C.(-,-,)
D.(,,)答案:A43.若方程x2-3x+mx+m=0的兩根均在(0,+∞)內(nèi),則m的取值范圍是(
)
A.m≤1
B.0<m≤1
C.m>1
D.0<m<1答案:B44.方程x2+y2=1(xy<0)的曲線形狀是()
A.
B.
C.
D.
答案:C45.選修4-4:坐標系與參數(shù)方程
已知直線l:x=m+tcosαy=tsinα(t為參數(shù))經(jīng)過橢圓C:x=2cosφy=3sinφ(φ為參數(shù))的左焦點F.
(Ⅰ)求m的值;
(Ⅱ)設直線l與橢圓C交于A、B兩點,求|FA|?|FB|的最大值和最小值.答案:(Ⅰ)將橢圓C的參數(shù)方程化為普通方程,得x24+y23=1.a(chǎn)=2,b=3,c=1,則點F坐標為(-1,0).l是經(jīng)過點(m,0)的直線,故m=-1.…(4分)(Ⅱ)將l的參數(shù)方程代入橢圓C的普通方程,并整理,得(3cos2α+4sin2α)t2-6tcosα-9=0.設點A,B在直線參數(shù)方程中對應的參數(shù)分別為t1,t2,則|FA|?|FB|=|t1t2|=93cos2α+4sin2α=93+sin2α.當sinα=0時,|FA|?|FB|取最大值3;當sinα=±1時,|FA|?|FB|取最小值94.…(10分)46.無論m,n取何實數(shù)值,直線(3m-n)x+(m+2n)y-n=0都過定點P,則P點坐標為
A.(-1,3)
B.
C.
D.答案:D47.拋物線C:y=x2上兩點M、N滿足MN=12MP,若OP=(0,-2),則|MN|=______.答案:設M(x1,x12),N(x2,x22),則MN=(x2-x1,x22-x12)MP=(-x1,-2-x12).因為MN=12MP,所以(x2-x1,x22-x12)=12(-x1,-2-x12),即x2-x1=-12x1,x22-x12=12(-2-x12),所以x1=2x2,2x22=-2+x12,聯(lián)立解得:x2=1,x1=2或x2=-1,x1=-2即M(1,1),N(2,4)或M(-1,1),N(-2,4)所以|MN|=10故為10.48.若a2+b2+c2=1,則a+2b+3c的最大值為______.答案:因為已知a、b、c是實數(shù),且a2+b2+c2=1根據(jù)柯西不等式(a2+b2+c2)(x2+y2+z2)≥(ax+by+cz)2故有(a2+b2+c2)(12+22+32)≥(a+2b+3c)2故(a+2b+3c)2≤14,即2a+b+2c≤14.即a+2b+3c的最大值為14.故為:14.49.若點(2,-2)在圓(x-a)2+(y-a)2=16的內(nèi)部,則實數(shù)a的取值范圍是()
A.-2<a<2
B.0<a<2
C.a(chǎn)<-2或a>2
D.a(chǎn)=±2答案:A50.若點M是△ABC的重心,則下列向量中與AB共線的是______.(填寫序號)
(1)AB+BC+AC
(2)AM+MB+BC
(3)AM+BM+CM
(4)3AM+AC.答案:對于(1)AB+BC+AC=2AC不與AB共線對于(2)AM+MB+BC=AB+BC=AC不與AB對于(3)AM+BM+CM=13(AB+AC)+13(BA+BC)+13(CA+CB)=0與AB對于(4)3AM+AC=AB+AC+AC不與AB故為:(3)第3卷一.綜合題(共50題)1.一個公司共有240名員工,下設一些部門,要采用分層抽樣方法從全體員工中抽取一個容量為20的樣本.已知某部門有60名員工,那么從這一部門抽取的員工人數(shù)是______.答案:每個個體被抽到的概率是
20240=112,那么從甲部門抽取的員工人數(shù)是60×112=5,故為:5.2.如圖,直線l1、l2、l3的斜率分別為k1、k2、k3,則必有()A.k1<k3<k2B.k3<k1<k2C.k1<k2<k3D.k3<k2<k1答案:設直線l1、l2、l3的傾斜角分別為α1,α2,α3.由已知為α1為鈍角,α2>α3,且均為銳角.由于正切函數(shù)y=tanx在(0,π2)上單調遞增,且函數(shù)值為正,所以tanα2>tanα3>0,即k2>k3>0.當α為鈍角時,tanα為負,所以k1=tanα1<0.綜上k1<k3<k2,故選A.3.在邊長為1的正方形ABCD中,若AB=a,BC=b,AC=c.則|a+b+2c|的值是______.答案:由題意可得|a|=|b|=1,|c|=2,a+
b=c,∴|a+b+2c|=|3c|=32,故為32.4.(Ⅰ)已知z∈C,且|z|-i=.z+2+3i(i為虛數(shù)單位),求復數(shù)z2+i的虛部.
(Ⅱ)已知z1=a+2i,z2=3-4i(i為虛數(shù)單位),且z1z2為純虛數(shù),求實數(shù)a的值.答案:(Ⅰ)設z=x+yi,代入方程|z|-i=.z+2+3i,得出x2+y2-i=x-yi+2+3i=(x+2)+(3-y)i,故有x2+y2=x+23-y=-1,解得x=3y=4,∴z=3+4i,復數(shù)z2+i=3+4i2+i=2+i,虛部為1(Ⅱ)z1z2=a+2i3-4i=3a-8+(4a+6)i25,且z1z2為純虛數(shù)則3a-8=0,且4a+6≠0,解得a=835.用一枚質地均勻的硬幣,甲、乙兩人做拋擲硬幣游戲,甲拋擲4次,記正面向上的次數(shù)為ξ;乙拋擲3次,記正面向上的次數(shù)為η.
(Ⅰ)分別求ξ和η的期望;
(Ⅱ)規(guī)定:若ξ>η,則甲獲勝;否則,乙獲勝.求甲獲勝的概率.答案:(Ⅰ)由題意,ξ~B(4,0.5),η~B(3,0.5),所以Eξ=4×0.5=2,Eη=3×0.5=1.5…(4分)(Ⅱ)P(ξ=1)=C14(12)4=14,P(ξ=2)=C24(12)4=38,P(ξ=3)=C34(12)4=14,P(ξ=4)=C44(12)4=116P(η=0)=C03(12)3=18,P(η=1)=C13(12)3=38,P(η=2)=C23(12)3=38,P(η=3)=C33(12)3=18…(8分)甲獲勝有以下情形:ξ=1,η=0;ξ=2,η=0,1;ξ=3,η=0,1,2;ξ=4,η=0,1,2,3則甲獲勝的概率為P=14×18+38(18+38)+14(18+38+38)+116×1=12.…(13分)6.求圓心在直線y=-4x上,并且與直線l:x+y-1=0相切于點P(3,-2)的圓的方程.答案:設圓的方程為(x-a)2+(y-b)2=r2(r>0)由題意有:b=-4a|a+b+1|2=rb+2a-3?(-1)=-1解之得a=1b=-4r=22∴所求圓的方程為(x-1)2+(y+4)2=87.已知e1,e2是夾角為60°的單位向量,且a=2e1+e2,b=-3e1+2e2
(1)求a?b;
(2)求a與b的夾角<a,b>.答案:(1)求a?b=(2e1+e2)?
(-3e1+2e2)=
-6e12+e1
?e2+2e22=-6+1×1×cos60°+2=-72.(2)|a|=|2e1+e2|=(2e1+e2)2=4e12+2e1?e2+e22=7同樣地求得|b|=7.所以cos<a,b>=a?b|a||b|=-727
×7=-12,又0<<a,b><π,所以<a,b>=2π3.8.某工廠生產(chǎn)A,B,C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5.現(xiàn)用分層抽樣方法抽出一個容量為n的樣本,樣本中A型號產(chǎn)品有16件,則此樣本的容量為()
A.40
B.80
C.160
D.320答案:B9.已知點A(1-t,1-t,t),B(2,t,t),則A、B兩點距離的最小值為()
A.
B.
C.
D.2答案:A10.語句|x|≤3或|x|>5的否定是()
A.|x|≥3或|x|<5
B.|x|>3或|x|≤5
C.|x|≥3且|x|<5
D.|x|>3且|x|≤5答案:D11.設m∈R,向量=(1,m).若||=2,則m等于()
A.1
B.
C.±1
D.±答案:D12.乒乓球單打比賽在甲、乙兩名運動員間進行,比賽采用7局4勝制(即先勝4局者獲勝,比賽結束),假設兩人在每一局比賽中獲勝的可能性相同,那么甲以4比2獲勝的概率為()
A.
B.
C.
D.答案:D13.與直線3x+4y-3=0平行,并且距離為3的直線方程為______.答案:設所求直線上任意一點P(x,y),由題意可得點P到所給直線的距離等于3,即|3x+4y-3|5=3,∴|3x+4y-3|=15,∴3x+4y-3=±15,即3x+4y-18=0或3x+4y+12=0.故為3x+4y-18=0或3x+4y+12=0.14.直線l與拋物線y2=2x相交于A、B兩點,O為拋物線的頂點,若OA⊥OB.證明:直線l過定點.答案:證明:設點A,B的坐標分別為(x1,y1),(x2,y2)(I)當直線l有存在斜率時,設直線方程為y=kx+b,顯然k≠0且b≠0.(2分)聯(lián)立方程得:y=kx+by2=2x消去y得k2x2+(2kb-2)x+b2=0由題意:x1x2=b2k2,&
y1y2=(kx1+b)(kx2+b)=2bk(5分)又由OA⊥OB得x1x2+y1y2=0,(7分)即b2k2+2bk=0,解得b=0(舍去)或b=-2k(9分)故直線l的方程為:y=kx-2k=k(x-2),故直線過定點(2,0)(11分)(II)當直線l不存在斜率時,設它的方程為x=m,顯然m>0聯(lián)立方程得:x=my2=2x解得y=±2m,即y1y2=-2m又由OA⊥OB得x1x2+y1y2=0,即m2-2m=0,解得m=0(舍去)或m=2可知直線l方程為:x=2,故直線過定點(2,0)綜合(1)(2)可知,滿足條件的直線過定點(2,0).15.三棱錐A-BCD中,平面ABD與平面BCD的法向量分別為n1,n2,若<n1,n2>=,則二面角A-BD-C的大小為()
A.
B.
C.或
D.或答案:C16.若向量{}是空間的一個基底,則一定可以與向量構成空間的另一個基底的向量是()
A.
B.
C.
D.答案:C17.方程組的解集是()
A.{-1,2}
B.(-1,2)
C.{(-1,2)}
D.{(x,y)|x=-1或y=2}答案:C18.不論k為何實數(shù),直線y=kx+1與曲線x2+y2-2ax+a2-2a-4=0恒有交點,則實數(shù)a的取值范圍是______.答案:直線y=kx+1恒過(0,1)點,與曲線x2+y2-2ax+a2-2a-4=0恒有交點,必須定點在圓上或圓內(nèi),即:a2+12
≤4+2a所以,-1≤a≤3故為:-1≤a≤3.19.已知△A′B′C′是水平放置的邊長為a的正三角形△ABC的斜二測平面直觀圖,那么△A′B′C′的面積為______.答案:正三角形ABC的邊長為a,故面積為34a2,而原圖和直觀圖面積之間的關系S直觀圖S原圖=24,故直觀圖△A′B′C′的面積為6a216故為:6a216.20.一個正三棱錐的底面邊長等于一個球的半徑,該正三棱錐的高等于這個球的直徑,則球的體積與正三棱錐體積的比值為()
A.
B.
C.
D.答案:A21.在正方體ABCD-A1B1C1D1中,直線BC1與平面A1BD所成角的余弦值是______.答案:分別以DA、DC、DD1為x、y、z軸建立如圖所示空間直角坐標系設正方體的棱長等于1,可得D(0,0,0),B(1,1,0),C1(0,1,1),A1(1,0,1),∴BC1=(-1,0,1),A1D=(-1,0,-1),BD=(-1,-1,0)設n=(x,y,z)是平面A1BD的一個法向量,則n?A1D=-x-z=0n?BD=-x-y=0,取x=1,得y=z=-1∴平面A1BD的一個法向量為n=(1,-1,-1)設直線BC1與平面A1BD所成角為θ,則sinθ=|cos<BC1,n>|=BC1?n|BC1|?n=63∴cosθ=1-sin2θ=33,即直線BC1與平面A1BD所成角的余弦值是33故為:3322.下列各量:①密度
②浮力
③風速
④溫度,其中是向量的個數(shù)有()個.A.1B.3C.2D.4答案:根據(jù)向量的定義,知道需要同時具有大小和方向兩個要素才是向量,在所給的四個量中,密度只有大小,浮力既有大小又有方向,風速既有大小又有方向,溫度只有大小沒有方向綜上可知向量的個數(shù)是2個,故選C.23.已知F1、F2為橢圓x225+y216=1的左、右焦點,若M為橢圓上一點,且△MF1F2的內(nèi)切圓的周長等于3π,則滿足條件的點M有
()個.A.0B.1C.2D.4答案:設△MF1F2的內(nèi)切圓的內(nèi)切圓的半徑等于r,則由題意可得2πr=3π,∴r=32.由橢圓的定義可得
MF1+MF2=2a=10,又2c=6,∴△MF1F2的面積等于12
(MF1+MF2+2c)r=8r=12.又△MF1F2的面積等于12
2cyM=12,∴yM=4,故M是橢圓的短軸頂點,故滿足條件的點M有2個,故選
C.24.設點P(t2+2t,1)(t>0),則|OP|(O為坐標原點)的最小值是()A.3B.5C.3D.5答案:解析:由已知得|OP|=(t2+2t)
2+1≥(2t2×2t)2+1=5,當t=2時取得等號.故選D.25.已知三點A(1,2),B(2,-1),C(2,2),E,F(xiàn)為線段BC的三等分點,則AE?AF=______.答案:∵A(1,2),B(2,-1),C(2,2),∴AB=(1,-3),BC=(0,3),AE=AB+13BC=(1,-2),AF=AB+23BC=(1,-1),∴AE?AF=1×1+(-2)×(-1)=3.故為:326.如果e1,e2是平面a內(nèi)所有向量的一組基底,那么()A.若實數(shù)λ1,λ2使λ1e1+λ2e2=0,則λ1=λ2=0B.空間任一向量可以表示為a=λ1e1+λ2e2,這里λ1,λ2∈RC.對實數(shù)λ1,λ2,λ1e1+λ2e2不一定在平面a內(nèi)D.對平面a中的任一向量a,使a=λ1e1+λ2e2的實數(shù)λ1,λ2有無數(shù)對答案:∵由基底的定義可知,e1和e2是平面上不共線的兩個向量,∴實數(shù)λ1,λ2使λ1e1+λ2e2=0,則λ1=λ2=0,不是空間任一向量都可以表示為a=λ1e1+λ2e2,而是平面a中的任一向量a,可以表示為a=λ1e1+λ2e2的形式,此時實數(shù)λ1,λ2有且只有一對,而對實數(shù)λ1,λ2,λ1e1+λ2e2一定在平面a內(nèi),故選A.27.在半徑為R的球內(nèi)作一內(nèi)接圓柱,這個圓柱的底面半徑和高為何值時,它的側面積最大?并求此最大值.答案:解
如圖,設內(nèi)接圓柱的高為h,圓柱的底面半徑為r,則h2+4r2=4R2因為h2+4r2≥4rh,當且僅當h=2r時取等.所以4R2≥4rh,即rh≤R2所以,S側=2πrh≤2πR2,當且僅當h=2r時取等.又因為h2+4r2=4R2,所以r=22R,h=2R時取等綜上,當內(nèi)接圓柱的底面半徑為22R,高為2R時,它的側面積最大,為2πR228.在某項體育比賽中,七位裁判為一選手打出的分數(shù)如下:
90
89
90
95
93
94
93
去掉一個最高分和一個最低分后,所剩數(shù)的平均值和方差分別為()
A.92,2
B.92,2.8
C.93,2
D.93,2.8答案:B29.設某種動物由出生算起活到10歲的概率為0.9,活到15歲的概率為0.6.現(xiàn)有一個10歲的這種動物,它能活到15歲的概率是______.答案:設活過10歲后能活到15歲的概率是P,由題意知0.9×P=0.6,解得P=23即一個10歲的這種動物,它能活到15歲的概率是23故為:23.30.已知點M在z軸上,A(1,0,2),B(1,-3,1),且|MA|=|MB|,則點M的坐標是
______.答案:∵點M在z軸上,∴設點M的坐標為(0,0,z)又|MA|=|MB|,由空間兩點間的距離公式得:12+02+(z-2)2=12+32+(z-1)2解得:z=-3.故點M的坐標是(0,0,-3).故為:(0,0,-3).31.過點(2,4)作直線與拋物線y2=8x只有一個公共點,這樣的直線有()
A.1條
B.2條
C.3條
D.4條答案:B32.盒子中有10張獎券,其中3張有獎,甲、乙先后從中各抽取1張(不放回),記“甲中獎”為A,“乙中獎”為B.
(1)求P(A),P(B),P(AB),P(A|B);
(2)A與B是否相互獨立,說明理由.答案:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因為P(A)≠P(A|B),所以A與B不相互獨立.解析:(1)P(A)==,P(B)=,P(AB)==,P(A|B)=.(2)因為P(A)≠P(A|B),所以A與B不相互獨立.33.直線kx-y+1=3k,當k變動時,所有直線都通過定點[
]
A.(3,1)
B.(0,1)
C.(0,0)
D.(2,1)答案:A34.如圖是《集合》的知識結構圖,如果要加入“子集”,那么應該放在()
A.“集合”的下位
B.“含義與表示”的下位
C.“基本關系”的下位
D.“基本運算”的下位
答案:C35.下面玩擲骰子放球游戲,若擲出1點或6點,甲盒放一球;若擲出2點,3點,4點或5點,乙盒放一球,設擲n次后,甲、乙盒內(nèi)的球數(shù)分別為x、y.
(1)當n=3時,設x=3,y=0的概率;
(2)當n=4時,求|x-y|=2的概率.答案:由題意知,在甲盒中放一球概率為13,在乙盒放一球的概率為23(3分)(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年學校教育教學工作總結范例(三篇)
- 2024年員工個人年度工作總結常用版(三篇)
- 2024年土地房屋買賣合同范文(三篇)
- 2024年后勤下半年工作計劃范例(四篇)
- 2024年幼兒園后勤工作計劃春模版(二篇)
- 2024年小班教學工作計劃范文(二篇)
- 2024年幼兒園保教計劃(二篇)
- 2024年市場治安安全管理制度范文(二篇)
- 2024年宿管部工作計劃例文(二篇)
- 2024年宅基地買賣合同模板(三篇)
- 綜合病房工程裝飾裝修工程監(jiān)理細則
- 角膜穿通傷護理查房
- 2023年國家電力投資集團公司招聘筆試題庫及答案解析
- 橈骨遠端骨折中醫(yī)治療培訓課件
- 提高護士對病人預見性管理及早期風險識別課件
- 西班牙語入門-字母與單詞發(fā)音課件
- 刑事申訴狀成功范文(通用十三篇)
- 建筑工程類專業(yè)答辯可能的問題匯總
- 小學四年級地方課程安全教育教案泰山出版社
- 買賣合同法律風險防范講座課件
- 《種樹郭橐駝傳》課件25張-統(tǒng)編版高中語文選擇性必修下冊
評論
0/150
提交評論