版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年高考數(shù)學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.M、N是曲線y=πsinx與曲線y=πcosx的兩個不同的交點,則|MN|的最小值為()A.π B.π C.π D.2π2.已知,,且是的充分不必要條件,則的取值范圍是()A. B. C. D.3.已知點、.若點在函數(shù)的圖象上,則使得的面積為的點的個數(shù)為()A. B. C. D.4.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準線相切.其中,所有正確判斷的序號是()A.①②③ B.①② C.①③ D.②③5.若直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為坐標原點),則k的值為()A. B. C.或- D.和-6.根據(jù)散點圖,對兩個具有非線性關系的相關變量x,y進行回歸分析,設u=lny,v=(x-4)2,利用最小二乘法,得到線性回歸方程為=0.5v+2,則變量y的最大值的估計值是()A.e B.e2 C.ln2 D.2ln27.已知正方體的棱長為1,平面與此正方體相交.對于實數(shù),如果正方體的八個頂點中恰好有個點到平面的距離等于,那么下列結論中,一定正確的是A. B.C. D.8.若某幾何體的三視圖(單位:cm)如圖所示,則此幾何體的體積是()A.36cm3 B.48cm3 C.60cm3 D.72cm39.設,,是非零向量.若,則()A. B. C. D.10.已知復數(shù)z滿足(其中i為虛數(shù)單位),則復數(shù)z的虛部是()A. B.1 C. D.i11.中國古建筑借助榫卯將木構件連接起來,構件的凸出部分叫榫頭,凹進部分叫卯眼,圖中木構件右邊的小長方體是榫頭.若如圖擺放的木構件與某一帶卯眼的木構件咬合成長方體,則咬合時帶卯眼的木構件的俯視圖可以是A. B. C. D.12.已知為拋物線的焦點,點在上,若直線與的另一個交點為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.“今有女善織,日益功疾,初日織五尺,今一月共織九匹三丈.”其白話意譯為:“現(xiàn)有一善織布的女子,從第2天開始,每天比前一天多織相同數(shù)量的布,第一天織了5尺布,現(xiàn)在一個月(按30天計算)共織布390尺.”則每天增加的數(shù)量為____尺,設該女子一個月中第n天所織布的尺數(shù)為,則______.14.某市公租房源位于、、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的,則該市的任意位申請人中,恰好有人申請小區(qū)房源的概率是______.(用數(shù)字作答)15.數(shù)列的前項和為,則數(shù)列的前項和_____.16.設、、、、是表面積為的球的球面上五點,四邊形為正方形,則四棱錐體積的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)己知的內角的對邊分別為.設(1)求的值;(2)若,且,求的值.18.(12分)已知函數(shù)()(1)函數(shù)在點處的切線方程為,求函數(shù)的極值;(2)當時,對于任意,當時,不等式恒成立,求出實數(shù)的取值范圍.19.(12分)如圖,在四棱錐中,平面,四邊形為正方形,點為線段上的點,過三點的平面與交于點.將①,②,③中的兩個補充到已知條件中,解答下列問題:(1)求平面將四棱錐分成兩部分的體積比;(2)求直線與平面所成角的正弦值.20.(12分)已知函數(shù).(1)解不等式;(2)若函數(shù)的最小值為,求的最小值.21.(12分)將棱長為的正方體截去三棱錐后得到如圖所示幾何體,為的中點.(1)求證:平面;(2)求二面角的正弦值.22.(10分)已知等差數(shù)列中,,數(shù)列的前項和.(1)求;(2)若,求的前項和.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
兩函數(shù)的圖象如圖所示,則圖中|MN|最小,設M(x1,y1),N(x2,y2),則x1=,x2=π,|x1-x2|=π,|y1-y2|=|πsinx1-πcosx2|=π+π=π,∴|MN|==π.故選C.2、D【解析】
“是的充分不必要條件”等價于“是的充分不必要條件”,即中變量取值的集合是中變量取值集合的真子集.【詳解】由題意知:可化簡為,,所以中變量取值的集合是中變量取值集合的真子集,所以.【點睛】利用原命題與其逆否命題的等價性,對是的充分不必要條件進行命題轉換,使問題易于求解.3、C【解析】
設出點的坐標,以為底結合的面積計算出點到直線的距離,利用點到直線的距離公式可得出關于的方程,求出方程的解,即可得出結論.【詳解】設點的坐標為,直線的方程為,即,設點到直線的距離為,則,解得,另一方面,由點到直線的距離公式得,整理得或,,解得或或.綜上,滿足條件的點共有三個.故選:C.【點睛】本題考查三角形面積的計算,涉及點到直線的距離公式的應用,考查運算求解能力,屬于中等題.4、B【解析】
由題意,可設直線的方程為,利用韋達定理判斷第一個結論;將代入拋物線的方程可得,,從而,,進而判斷第二個結論;設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,進而判斷第三個結論.【詳解】解:由題意,可設直線的方程為,代入拋物線的方程,有.設點,的坐標分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據(jù)拋物線的對稱性可知,,兩點關于軸對稱,所以直線軸.所以②正確.如圖,設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以③不正確.故選:B.【點睛】本題主要考查拋物線的定義與幾何性質、直線與拋物線的位置關系等基礎知識,考查運算求解能力、推理論證能力和創(chuàng)新意識,考查數(shù)形結合思想、化歸與轉化思想,屬于難題.5、C【解析】
直線過定點,直線y=kx+1與圓x2+y2=1相交于P、Q兩點,且∠POQ=120°(其中O為原點),可以發(fā)現(xiàn)∠QOx的大小,求得結果.【詳解】如圖,直線過定點(0,1),∵∠POQ=120°∴∠OPQ=30°,?∠1=120°,∠2=60°,∴由對稱性可知k=±.故選C.【點睛】本題考查過定點的直線系問題,以及直線和圓的位置關系,是基礎題.6、B【解析】
將u=lny,v=(x-4)2代入線性回歸方程=-0.5v+2,利用指數(shù)函數(shù)和二次函數(shù)的性質可得最大估計值.【詳解】解:將u=lny,v=(x4)2代入線性回歸方程=0.5v+2得:,即,當時,取到最大值2,因為在上單調遞增,則取到最大值.故選:B.【點睛】本題考查了非線性相關的二次擬合問題,考查復合型指數(shù)函數(shù)的最值,是基礎題,.7、B【解析】
此題畫出正方體模型即可快速判斷m的取值.【詳解】如圖(1)恰好有3個點到平面的距離為;如圖(2)恰好有4個點到平面的距離為;如圖(3)恰好有6個點到平面的距離為.所以本題答案為B.【點睛】本題以空間幾何體為載體考查點,面的位置關系,考查空間想象能力,考查了學生靈活應用知識分析解決問題的能力和知識方法的遷移能力,屬于難題.8、B【解析】試題分析:該幾何體上面是長方體,下面是四棱柱;長方體的體積,四棱柱的底面是梯形,體積為,因此總的體積.考點:三視圖和幾何體的體積.9、D【解析】試題分析:由題意得:若,則;若,則由可知,,故也成立,故選D.考點:平面向量數(shù)量積.【思路點睛】幾何圖形中向量的數(shù)量積問題是近幾年高考的又一熱點,作為一類既能考查向量的線性運算、坐標運算、數(shù)量積及平面幾何知識,又能考查學生的數(shù)形結合能力及轉化與化歸能力的問題,實有其合理之處.解決此類問題的常用方法是:①利用已知條件,結合平面幾何知識及向量數(shù)量積的基本概念直接求解(較易);②將條件通過向量的線性運算進行轉化,再利用①求解(較難);③建系,借助向量的坐標運算,此法對解含垂直關系的問題往往有很好效果.10、A【解析】
由虛數(shù)單位i的運算性質可得,則答案可求.【詳解】解:∵,∴,,則化為,∴z的虛部為.故選:A.【點睛】本題考查了虛數(shù)單位i的運算性質、復數(shù)的概念,屬于基礎題.11、A【解析】
詳解:由題意知,題干中所給的是榫頭,是凸出的幾何體,求得是卯眼的俯視圖,卯眼是凹進去的,即俯視圖中應有一不可見的長方形,且俯視圖應為對稱圖形故俯視圖為故選A.點睛:本題主要考查空間幾何體的三視圖,考查學生的空間想象能力,屬于基礎題。12、C【解析】
求得點坐標,由此求得直線的方程,聯(lián)立直線的方程和拋物線的方程,求得點坐標,進而求得【詳解】拋物線焦點為,令,,解得,不妨設,則直線的方程為,由,解得,所以.故選:C【點睛】本小題主要考查拋物線的弦長的求法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、52【解析】
設從第2天開始,每天比前一天多織尺布,由等差數(shù)列前項和公式求出,由此利用等差數(shù)列通項公式能求出.【詳解】設從第2天開始,每天比前一天多織d尺布,
則,
解得,即每天增加的數(shù)量為,
,故答案為,52.【點睛】本題主要考查等差數(shù)列的通項公式、等差數(shù)列的求和公式,意在考查利用所學知識解決問題的能力,屬于中檔題.14、【解析】
基本事件總數(shù),恰好有2人申請小區(qū)房源包含的基本事件個數(shù),由此能求出該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率.【詳解】解:某市公租房源位于、、三個小區(qū),每位申請人只能申請其中一個小區(qū)的房子,申請其中任意一個小區(qū)的房子是等可能的,該市的任意5位申請人中,基本事件總數(shù),該市的任意5位申請人中,恰好有2人申請小區(qū)房源包含的基本事件個數(shù):,該市的任意5位申請人中,恰好有2人申請小區(qū)房源的概率是.故答案為:.【點睛】本題考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,屬于中檔題.15、【解析】
解:兩式作差,得,經過檢驗得出數(shù)列的通項公式,進而求得的通項公式,裂項相消求和即可.【詳解】解:兩式作差,得化簡得,檢驗:當n=1時,,所以數(shù)列是以2為首項,2為公比的等比數(shù)列;,,令故填:.【點睛】本題考查求數(shù)列的通項公式,裂項相消求數(shù)列的前n項和,解題過程中需要注意n的范圍以及對特殊項的討論,側重考查運算能力.16、【解析】
根據(jù)球的表面積求得球的半徑,設球心到四棱錐底面的距離為,求得四棱錐的表達式,利用基本不等式求得體積的最大值.【詳解】由已知可得球的半徑,設球心到四棱錐底面的距離為,棱錐的高為,底面邊長為,的體積,當且僅當時等號成立.故答案為:【點睛】本小題主要考查球的表面積有關計算,考查球的內接四棱錐體積的最值的求法,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)由正弦定理將,轉化,即,由余弦定理求得,再由平方關系得再求解.(2)由,得,結合再求解.【詳解】(1)由正弦定理,得,即,則,而,又,解得,故.(2)因為,則,因為,故,故,解得,故,則.【點睛】本題考查正弦定理、余弦定理、三角形的面積公式,考查運算求解能力以及化歸與轉化思想,屬于中檔題.18、(1)極小值為,極大值為.(2)【解析】
(1)根據(jù)斜線的斜率即可求得參數(shù),再對函數(shù)求導,即可求得函數(shù)的極值;(2)根據(jù)題意,對目標式進行變形,構造函數(shù),根據(jù)是單調減函數(shù),分離參數(shù),求函數(shù)的最值即可求得結果.【詳解】(1)函數(shù)的定義域為,,,,可知,,解得,,可知在,時,,函數(shù)單調遞增,在時,,函數(shù)單調遞減,可知函數(shù)的極小值為,極大值為.(2)可以變形為,可得,可知函數(shù)在上單調遞減,,可得,設,,可知函數(shù)在單調遞減,,可知,可知參數(shù)的取值范圍為.【點睛】本題考查由切線的斜率求參數(shù)的值,以及對具體函數(shù)極值的求解,涉及構造函數(shù)法,以及利用導數(shù)求函數(shù)的值域;第二問的難點在于對目標式的變形,屬綜合性中檔題.19、(1);(2).【解析】
若補充②③根據(jù)已知可得平面,從而有,結合,可得平面,故有,而,得到,②③成立與①②相同,①③成立,可得,所以任意補充兩個條件,結果都一樣,以①②作為條件分析;(1)設,可得,進而求出梯形的面積,可求出,即可求出結論;(2),以為坐標原點,建立空間坐標系,求出坐標,由(1)得為平面的法向量,根據(jù)空間向量的線面角公式即可求解.【詳解】第一種情況:若將①,②作為已知條件,解答如下:(1)設平面為平面.∵,∴平面,而平面平面,∴,又為中點.設,則.在三角形中,,由知平面,∴,∴梯形的面積,,,平面,,,∴,故,.(2)如圖,分別以所在直線為軸建立空間直角坐標系,設,則,由(1)得為平面的一個法向量,因為,所以直線與平面所成角的正弦值為.第二種情況:若將①,③作為已知條件,則由知平面,,又,所以平面,,又,故為中點,即,解答如上不變.第三種情況:若將②,③作為已知條件,由及第二種情況知,又,易知,解答仍如上不變.【點睛】本題考查空間點、線、面位置關系,以及體積、直線與平面所成的角,考查計算求解能力,屬于中檔題.20、(1)(2)【解析】
(1)用分類討論思想去掉絕對值符號后可解不等式;(2)由(1)得的最小值為4,則由,代換后用基本不等式可得最小值.【詳解】解:(1)討論:當時,,即,此時無解;當時,;當時,.所求不等式的解集為(2)分析知,函數(shù)的最小值為4,當且僅當時等號成立.的最小值為4.【點睛】本題考查解絕對
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 塑料制品高速公路合同管理辦法
- 生態(tài)園戶外洗手間施工合同
- 文化藝術中心建設協(xié)議
- 職業(yè)聯(lián)賽彩繪施工合同
- 托兒所環(huán)境衛(wèi)生合同
- 機場跑道樁基施工協(xié)議
- 油品銷售委托合同三篇
- 縣中醫(yī)院工作總結范文
- 中學教師繼續(xù)教育工作計劃
- 寫給公司感謝信集合七篇
- 人教版(2023) 選擇性必修第一冊 Unit 2 Looking into the Future Assessing Your Progress教案
- 腦血管意外的護理常規(guī)課件
- 迎新春送吉祥義務寫春聯(lián)活動方案
- 新教材北師大版數(shù)學一年級上冊教學反思全冊
- 駕駛員安全駕駛知識培訓與評估
- 食品安全事故流行病學調查表格
- 住宅排氣管道系統(tǒng)工程技術標準
- 標識標牌售后服務方案
- 人教版高中地理必修一全冊測試題(16份含答案)
- 基于單片機數(shù)字秒表的設計
- 基于LabVIEW的溫濕度監(jiān)測系統(tǒng)
評論
0/150
提交評論