廣東省顏錫祺中學(xué)2022-2023學(xué)年高三二診模擬考試數(shù)學(xué)試卷含解析_第1頁(yè)
廣東省顏錫祺中學(xué)2022-2023學(xué)年高三二診模擬考試數(shù)學(xué)試卷含解析_第2頁(yè)
廣東省顏錫祺中學(xué)2022-2023學(xué)年高三二診模擬考試數(shù)學(xué)試卷含解析_第3頁(yè)
廣東省顏錫祺中學(xué)2022-2023學(xué)年高三二診模擬考試數(shù)學(xué)試卷含解析_第4頁(yè)
廣東省顏錫祺中學(xué)2022-2023學(xué)年高三二診模擬考試數(shù)學(xué)試卷含解析_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年高考數(shù)學(xué)模擬試卷請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等比數(shù)列的前項(xiàng)和為,若,且公比為2,則與的關(guān)系正確的是()A. B.C. D.2.對(duì)于任意,函數(shù)滿足,且當(dāng)時(shí),函數(shù).若,則大小關(guān)系是()A. B. C. D.3.某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是()注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的C.互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)90后比80前多D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多4.已知命題:,,則為()A., B.,C., D.,5.已知,滿足約束條件,則的最大值為A. B. C. D.6.已知數(shù)列滿足,則()A. B. C. D.7.已知的面積是,,,則()A.5 B.或1 C.5或1 D.8.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.9.已知數(shù)列的前n項(xiàng)和為,,且對(duì)于任意,滿足,則()A. B. C. D.10.定義在上函數(shù)滿足,且對(duì)任意的不相等的實(shí)數(shù)有成立,若關(guān)于x的不等式在上恒成立,則實(shí)數(shù)m的取值范圍是()A. B. C. D.11.函數(shù)的圖象大致為()A. B.C. D.12.已知平行于軸的直線分別交曲線于兩點(diǎn),則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列的前項(xiàng)滿足,則______.14.將底面直徑為4,高為的圓錐形石塊打磨成一個(gè)圓柱,則該圓柱的側(cè)面積的最大值為__________.15.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積是______.16.若函數(shù)滿足:①是偶函數(shù);②的圖象關(guān)于點(diǎn)對(duì)稱.則同時(shí)滿足①②的,的一組值可以分別是__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:的焦點(diǎn)為,過上一點(diǎn)()作兩條傾斜角互補(bǔ)的直線分別與交于,兩點(diǎn),(1)證明:直線的斜率是-1;(2)若,,成等比數(shù)列,求直線的方程.18.(12分)從拋物線C:()外一點(diǎn)作該拋物線的兩條切線PA、PB(切點(diǎn)分別為A、B),分別與x軸相交于C、D,若AB與y軸相交于點(diǎn)Q,點(diǎn)在拋物線C上,且(F為拋物線的焦點(diǎn)).(1)求拋物線C的方程;(2)①求證:四邊形是平行四邊形.②四邊形能否為矩形?若能,求出點(diǎn)Q的坐標(biāo);若不能,請(qǐng)說明理由.19.(12分)在平面直角坐標(biāo)系中,已知橢圓的中心為坐標(biāo)原點(diǎn)焦點(diǎn)在軸上,右頂點(diǎn)到右焦點(diǎn)的距離與它到右準(zhǔn)線的距離之比為.(1)求橢圓的標(biāo)準(zhǔn)方程;(2)若是橢圓上關(guān)于軸對(duì)稱的任意兩點(diǎn),設(shè),連接交橢圓于另一點(diǎn).求證:直線過定點(diǎn)并求出點(diǎn)的坐標(biāo);(3)在(2)的條件下,過點(diǎn)的直線交橢圓于兩點(diǎn),求的取值范圍.20.(12分)如圖,已知正方形所在平面與梯形所在平面垂直,BM∥AN,,,.(1)證明:平面;(2)求點(diǎn)N到平面CDM的距離.21.(12分)已知函數(shù)(),不等式的解集為.(1)求的值;(2)若,,,且,求的最大值.22.(10分)已知關(guān)于的不等式解集為().(1)求正數(shù)的值;(2)設(shè),且,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

在等比數(shù)列中,由即可表示之間的關(guān)系.【詳解】由題可知,等比數(shù)列中,且公比為2,故故選:C【點(diǎn)睛】本題考查等比數(shù)列求和公式的應(yīng)用,屬于基礎(chǔ)題.2、A【解析】

由已知可得的單調(diào)性,再由可得對(duì)稱性,可求出在單調(diào)性,即可求出結(jié)論.【詳解】對(duì)于任意,函數(shù)滿足,因?yàn)楹瘮?shù)關(guān)于點(diǎn)對(duì)稱,當(dāng)時(shí),是單調(diào)增函數(shù),所以在定義域上是單調(diào)增函數(shù).因?yàn)椋裕?故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較函數(shù)值的大小,解題的關(guān)鍵要掌握函數(shù)對(duì)稱性的代數(shù)形式,屬于中檔題..3、D【解析】

根據(jù)兩個(gè)圖形的數(shù)據(jù)進(jìn)行觀察比較,即可判斷各選項(xiàng)的真假.【詳解】在A中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖得到互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占56%,所以是正確的;在B中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖得到:,互聯(lián)網(wǎng)行業(yè)從業(yè)技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的,所以是正確的;在C中,由整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分別餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分別條形圖得到:,互聯(lián)網(wǎng)行業(yè)從事運(yùn)營(yíng)崗位的人數(shù)90后比80后多,所以是正確的;在D中,互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后所占比例為,所以不能判斷互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多.故選:D.【點(diǎn)睛】本題主要考查了命題的真假判定,以及統(tǒng)計(jì)圖表中餅狀圖和條形圖的性質(zhì)等基礎(chǔ)知識(shí)的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4、C【解析】

根據(jù)全稱量詞命題的否定是存在量詞命題,即得答案.【詳解】全稱量詞命題的否定是存在量詞命題,且命題:,,.故選:.【點(diǎn)睛】本題考查含有一個(gè)量詞的命題的否定,屬于基礎(chǔ)題.5、D【解析】

作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.【詳解】作出不等式組表示的平面區(qū)域如下圖中陰影部分所示,等價(jià)于,作直線,向上平移,易知當(dāng)直線經(jīng)過點(diǎn)時(shí)最大,所以,故選D.【點(diǎn)睛】本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合的數(shù)學(xué)思想是解決此類問題的基本方法.6、C【解析】

利用的前項(xiàng)和求出數(shù)列的通項(xiàng)公式,可計(jì)算出,然后利用裂項(xiàng)法可求出的值.【詳解】.當(dāng)時(shí),;當(dāng)時(shí),由,可得,兩式相減,可得,故,因?yàn)橐策m合上式,所以.依題意,,故.故選:C.【點(diǎn)睛】本題考查利用求,同時(shí)也考查了裂項(xiàng)求和法,考查計(jì)算能力,屬于中等題.7、B【解析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.8、B【解析】

三視圖對(duì)應(yīng)的幾何體為如圖所示的幾何體,利用割補(bǔ)法可求其體積.【詳解】根據(jù)三視圖可得原幾何體如圖所示,它是一個(gè)圓柱截去上面一塊幾何體,把該幾何體補(bǔ)成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.【點(diǎn)睛】本題考查三視圖以及不規(guī)則幾何體的體積,復(fù)原幾何體時(shí)注意三視圖中的點(diǎn)線關(guān)系與幾何體中的點(diǎn)、線、面的對(duì)應(yīng)關(guān)系,另外,不規(guī)則幾何體的體積可用割補(bǔ)法來求其體積,本題屬于基礎(chǔ)題.9、D【解析】

利用數(shù)列的遞推關(guān)系式判斷求解數(shù)列的通項(xiàng)公式,然后求解數(shù)列的和,判斷選項(xiàng)的正誤即可.【詳解】當(dāng)時(shí),.所以數(shù)列從第2項(xiàng)起為等差數(shù)列,,所以,,.,,.故選:.【點(diǎn)睛】本題考查數(shù)列的遞推關(guān)系式的應(yīng)用、數(shù)列求和以及數(shù)列的通項(xiàng)公式的求法,考查轉(zhuǎn)化思想以及計(jì)算能力,是中檔題.10、B【解析】

結(jié)合題意可知是偶函數(shù),且在單調(diào)遞減,化簡(jiǎn)題目所給式子,建立不等式,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性關(guān)系,構(gòu)造新函數(shù),計(jì)算最值,即可.【詳解】結(jié)合題意可知為偶函數(shù),且在單調(diào)遞減,故可以轉(zhuǎn)換為對(duì)應(yīng)于恒成立,即即對(duì)恒成立即對(duì)恒成立令,則上遞增,在上遞減,所以令,在上遞減所以.故,故選B.【點(diǎn)睛】本道題考查了函數(shù)的基本性質(zhì)和導(dǎo)函數(shù)與原函數(shù)單調(diào)性關(guān)系,計(jì)算范圍,可以轉(zhuǎn)化為函數(shù),結(jié)合導(dǎo)函數(shù),計(jì)算最值,即可得出答案.11、A【解析】

確定函數(shù)在定義域內(nèi)的單調(diào)性,計(jì)算時(shí)的函數(shù)值可排除三個(gè)選項(xiàng).【詳解】時(shí),函數(shù)為減函數(shù),排除B,時(shí),函數(shù)也是減函數(shù),排除D,又時(shí),,排除C,只有A可滿足.故選:A.【點(diǎn)睛】本題考查由函數(shù)解析式選擇函數(shù)圖象,可通過解析式研究函數(shù)的性質(zhì),如奇偶性、單調(diào)性、對(duì)稱性等等排除,可通過特殊的函數(shù)值,函數(shù)值的正負(fù),函數(shù)值的變化趨勢(shì)排除,最后剩下的一個(gè)即為正確選項(xiàng).12、A【解析】

設(shè)直線為,用表示出,,求出,令,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點(diǎn)睛】本題考查導(dǎo)數(shù)知識(shí)的運(yùn)用:求單調(diào)區(qū)間和極值、最值,考查化簡(jiǎn)整理的運(yùn)算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由已知寫出用代替的等式,兩式相減后可得結(jié)論,同時(shí)要注意的求解方法.【詳解】∵①,∴時(shí),②,①-②得,∴,又,∴().故答案為:.【點(diǎn)睛】本題考查求數(shù)列通項(xiàng)公式,由已知條件.類比已知求的解題方法求解.14、【解析】

由題意欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,將側(cè)面積表示成關(guān)于的函數(shù),再利用一元二次函數(shù)的性質(zhì)求最值.【詳解】欲使圓柱側(cè)面積最大,需使圓柱內(nèi)接于圓錐.設(shè)圓柱的高為h,底面半徑為r,則,所以.∴,當(dāng)時(shí),的最大值為.故答案為:.【點(diǎn)睛】本題考查圓柱的側(cè)面積的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想、,考查空間想象能力和運(yùn)算求解能力,求解時(shí)注意將問題轉(zhuǎn)化為函數(shù)的最值問題.15、【解析】

先由三視圖在長(zhǎng)方體中將其還原成直觀圖,再利用球的直徑是長(zhǎng)方體體對(duì)角線即可解決.【詳解】由三視圖知該幾何體是一個(gè)三棱錐,如圖所示長(zhǎng)方體對(duì)角線長(zhǎng)為,所以三棱錐外接球半徑為,故所求外接球的表面積.故答案為:.【點(diǎn)睛】本題考查幾何體三視圖以及幾何體外接球的表面積,考查學(xué)生空間想象能力以及基本計(jì)算能力,是一道基礎(chǔ)題.16、,【解析】

根據(jù)是偶函數(shù)和的圖象關(guān)于點(diǎn)對(duì)稱,即可求出滿足條件的和.【詳解】由是偶函數(shù)及,可取,則,由的圖象關(guān)于點(diǎn)對(duì)稱,得,,即,,可取.故,的一組值可以分別是,.故答案為:,.【點(diǎn)睛】本題主要考查了正弦型三角函數(shù)的性質(zhì),屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】

(1)設(shè),,由已知,得,代入中即可;(2)利用拋物線的定義將轉(zhuǎn)化為,再利用韋達(dá)定理計(jì)算.【詳解】(1)在拋物線上,∴,設(shè),,由題可知,,∴,∴,∴,∴,∴(2)由(1)問可設(shè)::,則,,,∴,∴,即(*),將直線與拋物線聯(lián)立,可得:,所以,代入(*)式,可得滿足,∴:.【點(diǎn)睛】本題考查直線與拋物線的位置關(guān)系的應(yīng)用,在處理直線與拋物線位置關(guān)系的問題時(shí),通常要涉及韋達(dá)定理來求解,本題查學(xué)生的運(yùn)算求解能力,是一道中檔題.18、(1);(2)①證明見解析;②能,.【解析】

(1)根據(jù)拋物線的定義,求出,即可求拋物線C的方程;(2)①設(shè),,寫出切線的方程,解方程組求出點(diǎn)的坐標(biāo).設(shè)點(diǎn),直線AB的方程,代入拋物線方程,利用韋達(dá)定理得到點(diǎn)的坐標(biāo),寫出點(diǎn)的坐標(biāo),,可得線段相互平分,即證四邊形是平行四邊形;②若四邊形為矩形,則,求出,即得點(diǎn)Q的坐標(biāo).【詳解】(1)因?yàn)椋?,即拋物線C的方程是.(2)①證明:由得,.設(shè),,則直線PA的方程為(ⅰ),則直線PB的方程為(ⅱ),由(?。┖停áⅲ┙獾茫?,,所以.設(shè)點(diǎn),則直線AB的方程為.由得,則,,所以,所以線段PQ被x軸平分,即被線段CD平分.在①中,令解得,所以,同理得,所以線段CD的中點(diǎn)坐標(biāo)為,即,又因?yàn)橹本€PQ的方程為,所以線段CD的中點(diǎn)在直線PQ上,即線段CD被線段PQ平分.因此,四邊形是平行四邊形.②由①知,四邊形是平行四邊形.若四邊形是矩形,則,即,解得,故當(dāng)點(diǎn)Q為,即為拋物線的焦點(diǎn)時(shí),四邊形是矩形.【點(diǎn)睛】本題考查拋物線的方程,考查直線和拋物線的位置關(guān)系,屬于難題.19、(1);(2)證明詳見解析,;(3).【解析】

(1)根據(jù)題意列出關(guān)于的等式求解即可.(2)先根據(jù)對(duì)稱性,直線過的定點(diǎn)一定在軸上,再設(shè)直線的方程為,聯(lián)立直線與橢圓的方程,進(jìn)而求得的方程,并代入,化簡(jiǎn)分析即可.(3)先分析過點(diǎn)的直線斜率不存在時(shí)的值,再分析存在時(shí),設(shè)直線的方程為,聯(lián)立直線與橢圓的方程,得出韋達(dá)定理再代入求解出關(guān)于的解析式,再求解范圍即可.【詳解】解:設(shè)橢圓的標(biāo)準(zhǔn)方程焦距為,由題意得,由,可得則,所以橢圓的標(biāo)準(zhǔn)方程為;證明:根據(jù)對(duì)稱性,直線過的定點(diǎn)一定在軸上,由題意可知直線的斜率存在,設(shè)直線的方程為,聯(lián)立,消去得到,設(shè)點(diǎn),則.所以,所以的方程為,令得,將,代入上式并整理,,整理得,所以,直線與軸相交于定點(diǎn).當(dāng)過點(diǎn)的直線的斜率不存在時(shí),直線的方程為,此時(shí),當(dāng)過點(diǎn)的直線斜率存在時(shí),設(shè)直線的方程為,且在橢圓上,聯(lián)立方程組,消去,整理得,則.所以所以,所以,由得,綜上可得,的取值范圍是.【點(diǎn)睛】本題主要考查了橢圓的基本量求解以及定值和范圍的問題,需要分析直線的斜率是否存在的情況,再聯(lián)立直線與橢圓的方程,根據(jù)韋達(dá)定理以及所求的解析式,結(jié)合參數(shù)的范圍進(jìn)行求解.屬于難題.20、(1)證明見解析(2)【解析】

(1)因?yàn)檎叫蜛BCD所在平面與梯形ABMN所在平面垂直,平面平面,,所以平面ABMN,因?yàn)槠矫鍭BMN,平面ABMN,所以,,因?yàn)?,所以,因?yàn)?,所以,所以,因?yàn)樵谥苯翘菪蜛BMN中,,所以,所以,所以,因?yàn)?,所以平面.?)如圖,取BM的中點(diǎn)E,則,又BM∥AN,所以四邊形ABEN是平行四邊形,所以NE∥AB,又AB∥CD,所以

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論