版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
圓大題綜合訓(xùn)練1、如圖,AB是⊙O的直徑,AC是弦,直線EF經(jīng)過點C,AD⊥EF于點D,∠DAC=∠BAC.(1)求證:EF是⊙O的切線;(2)求證:AC2=AD?AB;(3)若⊙O的半徑為2,∠ACD=30°,求圖中陰影部分的面積.2、如圖,△ABC內(nèi)接于⊙O,BC是⊙O的直徑,弦AF交BC于點E,延長BC到點D,連接OA,AD,使得∠FAC=∠AOD,∠D=∠BAF.(1)求證:AD是⊙O的切線;(2)若⊙O的半徑為5,CE=2,求EF的長.3.如圖,在△ABC中,∠C=90°,∠BAC的平分線交BC于點D,DE⊥AD,交AB于點E,AE為⊙O的直徑(1)判斷BC與⊙O的位置關(guān)系,并證明你的結(jié)論;(2)求證:△ABD∽△DBE;(3)若cosB=,AE=4,求CD.4.如圖,在△ABC中,AB=AC,AE是∠BAC的平分線,∠ABC的平分線BM交AE于點M,點O在AB上,以點O為圓心,OB的長為半徑的圓經(jīng)過點M,交BC于點G,交AB于點F.(1)求證:AE為⊙O的切線.(2)當(dāng)BC=8,AC=12時,求⊙O的半徑.(3)在(2)的條件下,求線段BG的長.5.如圖,已知在△ABP中,C是BP邊上一點,∠PAC=∠PBA,⊙O是△ABC的外接圓,AD是⊙O的直徑,且交BP于點E.(1)求證:PA是⊙O的切線;(2)過點C作CF⊥AD,垂足為點F,延長CF交AB于點G,若AG?AB=12,求AC的長;(3)在滿足(2)的條件下,若AF:FD=1:2,GF=1,求⊙O的半徑及sin∠ACE的值.6.如圖,AB是⊙O的直徑,AB=6,過點O作OH⊥AB交圓于點H,點C是弧AH上異于A、H的動點,過點C作CD⊥OA,CE⊥OH,垂足分別為D、E,過點C的直線交OA的延長線于點G,且∠GCD=∠CED.(1)求證:GC是⊙O的切線;(2)求DE的長;(3)過點C作CF⊥DE于點F,若∠CED=30°,求CF的長.7、如圖,⊙O是△ABC的外接圓,AE平分∠BAC交⊙O于點E,交BC于點D,過點E作直線l∥BC.(1)判斷直線l與⊙O的位置關(guān)系,并說明理由;(2)若∠ABC的平分線BF交AD于點F,求證:BE=EF;(3)在(2)的條件下,若DE=4,DF=3,求AF的長.8、如圖,在平面直角坐標(biāo)系xOy中,點A在x軸正半軸上,OA=8,以O(shè)A為直徑作⊙M,點C在⊙M上,∠AOC=45°,四邊形ABCO為平行四邊形.(1)求證:BC為⊙M的切線.(2)求點B的坐標(biāo).(3)若D點坐標(biāo)為(3,﹣3),求∠OCD的正弦值.9、如圖,AB為⊙O的直徑,BF切⊙O于點B,AF交⊙O于點D,點C在DF上,BC交⊙O于點E,且∠BAF=2∠CBF,CG⊥BF于點G,連接AE.(1)直接寫出AE與BC的位置關(guān)系;(2)求證:△BCG∽△ACE;(3)若∠F=60°,GF=1,求⊙O的半徑長.10、如圖,AB是⊙O的直徑,C、G是⊙O上兩點,且AC=CG,過點C的直線CD⊥BG于點D,交BA的延長線于點E,連接BC,交OD于點F.(1)求證:CD是⊙O的切線.(2)若,求∠E的度數(shù).(3)連接AD,在(2)的條件下,若CD=,求AD的長.11、如圖,已知⊙O是△ABC的外接圓,AD是⊙O的直徑,且BD=BC,延長AD到E,且有∠EBD=∠CAB.(1)求證:BE是⊙O的切線;(2)若BC=,AC=5,求圓的直徑AD及切線BE的長.12、已知,如圖,AB是⊙O的直徑,點C為⊙O上一點,OF⊥BC于點F,交⊙O于點E,AE與BC交于點H,點D為OE的延長線上一點,且∠ODB=∠AEC.(1)求證:BD是⊙O的切線;(2)求證:CE2=EH?EA;(3)若⊙O的半徑為5,sinA=,求BH的長.13、如圖,在⊙O中,直徑AB垂直弦CD于E,過點A作∠DAF=∠DAB,過點D作AF的垂線,垂足為F,交AB的延長線于點P,連接CO并延長交⊙O于點G,連接EG,已知DE=4,AE=8.(1)求證:DF是⊙O的切線;(2)求證:OC2=OE?OP;(3)求線段EG的長.14、如圖,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分線.以O(shè)為圓心,OC為半徑作⊙O.(1)求證:AB是⊙O的切線.(2)已知AO交⊙O于點E,延長AO交⊙O于點D,tanD=,求的值.(3)在(2)的條件下,設(shè)⊙O的半徑為3,求AB的長.15、如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的圓O與AD、AC分別交于點E、F,且∠ACB=∠DCE.(1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;(2)若tan∠ACB=,BC=2,求⊙O的半徑.16、如圖,在Rt△ABC中,∠ABC=90°,以CB為半徑作⊙C,交AC于點D,交AC的延長線于點E,連接BD,BE.(1)求證:△ABD∽△AEB;(2)當(dāng)=時,求tanE;(3)在(2)的條件下,作∠BAC的平分線,與BE交于點F,若AF=2,求⊙C的半徑.17、如圖,已知△ABC內(nèi)接于⊙O,且AB=AC,直徑AD交BC于點E,F(xiàn)是OE上的一點,使CF∥BD.(1)求證:BE=CE;(2)試判斷四邊形BFCD的形狀,并說明理由;(3)若BC=8,AD=10,求CD的長.18、如圖,△ABC為⊙O的內(nèi)接三角形,P為BC延長線上一點,∠PAC=∠B,AD為⊙O的直徑,過C作CG⊥AD交AD于E,交AB于F,交⊙O于G.(1)判斷直線PA與⊙O的位置關(guān)系,并說明理由;(2)求證:AG2=AF?AB;(3)若⊙O的直徑為10,AC=2,AB=4,求△AFG的面積.答案1、(1)證明:連接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠DAC=∠BAC,∴∠OCA=∠DAC,∴OC∥AD,∵AD⊥EF,∴OC⊥EF,∵OC為半徑,∴EF是⊙O的切線.(2)證明:連接BC,∵AB為⊙O直徑,AD⊥EF,∴∠BCA=∠ADC=90°,∵∠DAC=∠BAC,∴△ACB∽△ADC,∴=,∴AC2=AD?AB.(3)解:∵∠ACD=30°,∠OCD=90°,∴∠OCA=60°,∵OC=OA,∴△OAC是等邊三角形,∴AC=OA=OC=2,∠AOC=60°,∵在Rt△ACD中,AD=AC=×2=1,由勾股定理得:DC=,∴陰影部分的面積是S=S梯形OCDA﹣S扇形OCA=×(2+1)×﹣=﹣π.2、解:(1)∵BC是⊙O的直徑,∴∠BAF+∠FAC=90°,∵∠D=∠BAF,∠AOD=∠FAC,∴∠D+∠AOD=90°,∴∠OAD=90°,∴AD是⊙O的切線;(2)連接BF,∴∠FAC=∠AOD,∴△ACE∽△OCA,∴,∴,∴AC=AE=,∵∠CAE=∠CBF,∴△ACE∽△BFE,∴,∴=,∴EF=.3、(1)結(jié)論:BC與⊙O相切.證明:如圖連接OD.∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠CAB,∴∠CAD=∠DAB,∴∠CAD=∠ADO,∴AC∥OD,∵AC⊥BC,∴OD⊥BC.∴BC是⊙O的切線.(2)∵BC是⊙O切線,∴∠ODB=90°,∴∠BDE+∠ODE=90°,∵AE是直徑,∴∠ADE=90°,∴∠DAE+∠AED=90°,∵OD=OE,∴∠ODE=∠OED,∴∠BDE=∠DAB,∵∠B=∠B,∴△ABD∽△DBE.(3)在Rt△ODB中,∵cosB==,設(shè)BD=2k,OB=3k,∵OD2+BD2=OB2,∴4+8k2=9k2,∴k=2,∴BO=6,BD=4,∵DO∥AC,∴=,∴=,∴CD=.4、(1)證明:連接OM.∵AC=AB,AE平分∠BAC,∴AE⊥BC,CE=BE=BC=4,∵OB=OM,∴∠OBM=∠OMB,∵BM平分∠ABC,∴∠OBM=∠CBM,∴∠OMB=∠CBM,∴OM∥BC又∵AE⊥BC,∴AE⊥OM,∴AE是⊙O的切線;(2)設(shè)⊙O的半徑為R,∵OM∥BE,∴△OMA∽△BEA,∴=即=,解得R=3,∴⊙O的半徑為3;(3)過點O作OH⊥BG于點H,則BG=2BH,∵∠OME=∠MEH=∠EHO=90°,∴四邊形OMEH是矩形,∴HE=OM=3,∴BH=1,∴BG=2BH=2.5、(1)證明:連接CD,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠CAD+∠ADC=90°,又∵∠PAC=∠PBA,∠ADC=∠PBA,∴∠PAC=∠ADC,∴∠CAD+∠PAC=90°,∴PA⊥OA,而AD是⊙O的直徑,∴PA是⊙O的切線;(2)解:由(1)知,PA⊥AD,又∵CF⊥AD,∴CF∥PA,∴∠GCA=∠PAC,又∵∠PAC=∠PBA,∴∠GCA=∠PBA,而∠CAG=∠BAC,∴△CAG∽△BAC,∴=,即AC2=AG?AB,∵AG?AB=12,∴AC2=12,∴AC=2;(3)解:設(shè)AF=x,∵AF:FD=1:2,∴FD=2x,∴AD=AF+FD=3x,在Rt△ACD中,∵CF⊥AD,∴AC2=AF?AD,即3x2=12,解得;x=2,∴AF=2,AD=6,∴⊙O半徑為3,在Rt△AFG中,∵AF=2,GF=1,根據(jù)勾股定理得:AG===,由(2)知,AG?AB=12,∴AB==,連接BD,∵AD是⊙O的直徑,∴∠ABD=90°,在Rt△ABD中,∵sin∠ADB=,AD=6,∴sin∠ADB=,∵∠ACE=∠ACB=∠ADB,∴sin∠ACE=.6、(1)證明:連接OC,交DE于M,如圖所示:∵OH⊥AB,CD⊥OA,CE⊥OH,∴∠DOE=∠OEC=∠ODC=90°,∴四邊形ODCE是矩形,∴∠DCE=90°,DE=OC,MC=MD,∴∠CED+∠MDC=90°,∠MDC=∠MCD,∵∠GCD=∠CED,∴∠GCD+∠MCD=90°,即GC⊥OC,∴GC是⊙O的切線;(2)解:由(1)得:DE=OC=AB=3;(3)解:∵∠DCE=90°,∠CED=30°,∴CE=DE?cos∠CED=3×=,∴CF=CE=.7、解:(1)直線l與⊙O相切.理由:如圖1所示:連接OE.∵AE平分∠BAC,∴∠BAE=∠CAE.∴.∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直線l與⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB.∴BE=EF.(3)由(2)得BE=EF=DE+DF=7.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB.∴,即,解得;AE=.∴AF=AE﹣EF=﹣7=.8、(1)證明:連接CM,∵OM=CM,∠AOC=45°,∴∠AOC=∠OCM=45°,∴∠CMA=45°+45°=90°,∵四邊形ABCO是平行四邊形,∴BC∥OA,∴∠BCM=180°﹣90°=90°,∴MC⊥BC,∵M(jìn)C是半徑,∴BC是⊙M的切線;(2)解:∵OA=8,∴OM=4,∴MC=OM=4,∴B的橫坐標(biāo)是4+8=12,即B的坐標(biāo)是(12,4);(3)解:連接AD,過D作DN⊥OA于N,∵D(3,﹣3),∴ON=3,DN=3,∴DO===6,∵OA=8,由圓周角定理得:∠OAD=∠OCD,即sin∠OCD=sin∠OAD==.9、解:(1)如圖1,∵AB是⊙O的直徑,∴∠AEB=90°.∴AE⊥BC.(2)如圖1,∵BF與⊙O相切,∴∠ABF=90°.∴∠CBF=90°﹣∠ABE=∠BAE.∵∠BAF=2∠CBF.∴∠BAF=2∠BAE.∴∠BAE=∠CAE.∴∠CBF=∠CAE.∵CG⊥BF,AE⊥BC,∴∠CGB=∠AEC=90°.∵∠CBF=∠CAE,∠CGB=∠AEC,∴△BCG∽△ACE.(3)連接BD,如圖2所示.∵∠DAE=∠DBE,∠DAE=∠CBF,∴∠DBE=∠CBF.∵AB是⊙O的直徑,∴∠ADB=90°.∴BD⊥AF.∵∠DBC=∠CBF,BD⊥AF,CG⊥BF,∴CD=CG.∵∠F=60°,GF=1,∠CGF=90°,∴tan∠F==CG=tan60°=∵CG=,∴CD=.∵∠AFB=60°,∠ABF=90°,∴∠BAF=30°.∵∠ADB=90°,∠BAF=30°,∴AB=2BD.∵∠BAE=∠CAE,∠AEB=∠AEC,∴∠ABE=∠ACE.∴AB=AC.設(shè)⊙O的半徑為r,則AC=AB=2r,BD=r.∵∠ADB=90°,∴AD=r.∴DC=AC﹣AD=2r﹣r=(2﹣)r=.∴r=2+3.∴⊙O的半徑長為2+3.10、(1)證明:如圖1,連接OC,AC,CG,∵AC=CG,∴,∴∠ABC=∠CBG,∵OC=OB,∴∠OCB=∠OBC,∴∠OCB=∠CBG,∴OC∥BG,∵CD⊥BG,∴OC⊥CD,∴CD是⊙O的切線;(2)解:∵OC∥BD,∴△OCF∽△BDF,△EOC∽△EBD,∴,∴,∵OA=OB,∴AE=OA=OB,∴OC=OE,∵∠ECO=90°,∴∠E=30°;(3)解:如圖2,過A作AH⊥DE于H,∵∠E=30°∴∠EBD=60°,∴∠CBD=EBD=30°,∵CD=,∴BD=3,DE=3,BE=6,∴AE=BE=2,∴AH=1,∴EH=,∴DH=2,在Rt△DAH中,AD===.11、解:如圖,連接OB,∵BD=BC,∴∠CAB=∠BAD,∵∠EBD=∠CAB,∴∠BAD=∠EBD,∵AD是⊙O的直徑,∴∠ABD=90°,OA=BO,∴∠BAD=∠ABO,∴∠EBD=∠ABO,∴∠OBE=∠EBD+∠OBD=∠ABD+∠OBD=∠ABD=90°,∵點B在⊙O上,∴BE是⊙O的切線,(2)如圖2,設(shè)圓的半徑為R,連接CD,∵AD為⊙O的直徑,∴∠ACD=90°,∵BC=BD,∴OB⊥CD,∴OB∥AC,∵OA=OD,∴OF=AC=,∵四邊形ACBD是圓內(nèi)接四邊形,∴∠BDE=∠ACB,∵∠DBE=∠ACB,∴△DBE∽△CAB,∴,∴,∴DE=,∵∠OBE=∠OFD=90°,∴DF∥BE,∴=,∴,∵R>0,∴R=3,∴AD=2R=6,在Rt△ODF中,OF=,OD=R=3,∴DF==∵,∴BE===12、(1)證明:∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切線;(2)證明:連接AC,如圖1所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH?EA;(3)解:連接BE,如圖2所示:∵AB是⊙O的直徑,∴∠AEB=90°,∵⊙O的半徑為5,sin∠BAE=,∴AB=10,BE=AB?sin∠BAE=10×=6,∴EA===8,∵,∴BE=CE=6,∵CE2=EH?EA,∴EH==,在Rt△BEH中,BH===.13、(1)證明:連接OD,如圖1所示:∵OA=OD,∴∠DAB=∠ADO,∵∠DAF=∠DAB,∴∠ADO=∠DAF,∴OD∥AF,又∵DF⊥AF,∴DF⊥OD,∴DF是⊙O的切線;(2)證明:由(1)得:DF⊥OD,∴∠ODF=90°,∵AB⊥CD,∴由射影定理得:OD2=OE?OP,∵OC=OD,∴OC2=OE?OP;(3)解:連接DG,如圖2所示:∵AB⊥CD,∴DE=CE=4,∴CD=DE+CE=8,設(shè)OD=OA=x,則OE=8﹣x,在Rt△ODE中,由勾股定理得:OE2+DE2=OD2,即(8﹣x)2+42=x2,解得:x=5,∴CG=2OA=10,∵CG是⊙O的直徑,∴∠CDG=90°,∴DG===6,∴EG===2.14、14、(1)如圖,過點O作OF⊥AB于點F,∵AO平分∠CAB,OC⊥AC,OF⊥AB,∴OC=OF,∴AB是⊙O的切線;(2)如圖,連接CE,∵ED是⊙O的直徑,∴∠ECD=90°,∴∠ECO+∠OCD=90°,∵∠ACB=90°,∴∠ACE+∠ECO=90°,∴∠ACE=∠OCD,∵OC=OD,∴∠OCD=∠ODC,∴∠ACE=∠ODC,∵∠CAE=∠CAE,∴△ACE∽△ADC,∴,∵tan∠D=,∴=,∴=;(3)由(2)可知:=,∴設(shè)AE=x,AC=2x,∵△ACE∽△ADC,∴,∴AC2=AE?AD,∴(2x)2=x(x+6),解得:x=2或x=0(不合題意,舍去),∴AE=2,AC=4,由(1)可知:AC=AF=4,∠OFB=∠ACB=90°,∵∠B=∠B,∴△OFB∽△ACB,∴=,設(shè)BF=a,∴BC=,∴BO=BC﹣OC=﹣3,在Rt△BOF中,BO2=OF2+BF2,∴(﹣3)2=32+a2,∴解得:a=或a=0(不合題意,舍去),∴AB=AF+BF=.15、解:(1)直線CE與⊙O相切.…(1分)理由如下:∵四邊形ABCD是矩形,∴BC∥AD,∠ACB=∠DAC;又∵∠ACB=∠DCE,∴∠DAC=∠DCE;連接OE,則∠DAC=∠AEO=∠DCE;∵∠DCE+∠DEC=90°∴∠AE0+∠DEC=90°∴∠OEC=90°,即OE⊥CE.又OE是⊙O的半徑,∴直線CE與⊙O相切.…(5分)(2)∵tan∠ACB==,BC=2,∴AB=BC?tan∠ACB=,∴AC=;又∵∠ACB=∠DCE,∴tan∠DCE=tan∠ACB=,∴DE=DC?tan∠DCE=1;方法一:在Rt△CDE中,CE==,連接OE,設(shè)⊙O的半徑為r,則在Rt△COE中,CO2=OE2+CE2,即=r2+3解得:r=方法二:AE=AD﹣DE=1,過點O作OM⊥AE于點M,則AM=AE=在Rt△AMO中,OA==÷=…(9分)16、解:(1)∵∠ABC=90°,∴∠ABD=90°﹣∠DBC,由題意知:DE是直徑,∴∠DBE=90°,∴∠E=90°﹣∠BDE,∵BC=CD,∴∠DBC=∠BDE,∴∠ABD=∠E,∵∠A=∠A,∴△ABD∽△AEB;(2)∵AB:BC=4:3,∴設(shè)AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC﹣CD=5﹣3=2,由(1)可知:△ABD∽△AEB,∴==,∴AB2=AD?AE,∴42=2AE,∴AE=8,在Rt△DBE中tanE====;(3)過點F作FM⊥AE于點M,∵AB:BC=4:3,∴設(shè)AB=4x,BC=3x,∴由(2)可知;AE=8x,AD=2x,∴DE=AE﹣AD=6x,∵AF平分∠BAC,∴=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年黑龍江貨車資格從業(yè)資格證考試答案
- 2025年德州道路貨運駕駛員從業(yè)資格考試題庫
- 博物館建設(shè)設(shè)備樁機(jī)租賃協(xié)議
- 招投標(biāo)法規(guī)在大數(shù)據(jù)行業(yè)的實施
- 南寧市房屋租賃合同:電競館租賃
- 燃?xì)夤緭岆U車輛管理
- 保安隊長聘用合同樣本模板
- 塑料制品危險品儲存指南
- 藝術(shù)品交易服務(wù)合同簽訂注意事項
- 古建筑磚石修復(fù)合同
- 三體讀書分享
- 2024年南平實業(yè)集團(tuán)有限公司招聘筆試參考題庫附帶答案詳解
- 咖啡學(xué)概論智慧樹知到期末考試答案2024年
- (高清版)DZT 0217-2020 石油天然氣儲量估算規(guī)范
- 深圳港口介紹
- 2024年執(zhí)業(yè)醫(yī)師考試-中醫(yī)執(zhí)業(yè)助理醫(yī)師筆試歷年真題薈萃含答案
- 2024年工貿(mào)行業(yè)安全知識考試題庫500題(含答案)
- 2024版國開電大法學(xué)本科《合同法》歷年期末考試案例分析題題庫
- 產(chǎn)婦產(chǎn)后心理障礙的原因分析及心理護(hù)理措施
- T-SHNA 0004-2023 有創(chuàng)動脈血壓監(jiān)測方法
- 提高學(xué)生學(xué)習(xí)策略的教學(xué)方法
評論
0/150
提交評論