信號與系統(tǒng)奧本海姆英文版課后答案chapter10_第1頁
信號與系統(tǒng)奧本海姆英文版課后答案chapter10_第2頁
信號與系統(tǒng)奧本海姆英文版課后答案chapter10_第3頁
信號與系統(tǒng)奧本海姆英文版課后答案chapter10_第4頁
信號與系統(tǒng)奧本海姆英文版課后答案chapter10_第5頁
已閱讀5頁,還剩19頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

PAGE

PAGE

179

Chapter10Answers

10.1(a)Thegivensummationmaybewrittenas

,byreplacingzwith.Ifr<,then

Andthefunctionwithinthesummationgrowstowardsinfinitywithincreasingn..Also,thesummationdosenotconverge.

Butifr>,thenthesummationconverges.

(b)Thegivensummationmaybewrittenas

,byreplacingzwith.Ifr>,then

Andthefunctionwithinthesummationgrowstowardsinfinitywithincreasingn,.Also,thesummationdosenotconverge.

Butifr<,thenthesummationconverges.

(c)Thesummationmaybewrittenas.byreplacingzwith.Ifr>,thenthe

functionwithinthesummationgrowstowardsinfinitywithincreasingn,.Also,thesummationdosenotconverge.

Butifr<,thenthesummationconverges.

Thesummationmaybewrittenas

byreplacingzwith.Thefirstsummationconvergesforr>.Thesecondsummationconvergeforr>2.Therefore,thesumofthese

twosummationsconvergesfor1/2<r<2.

10.2Usingeq.910.3).

,

10.18.(a)usingtheanalysisofexample10.18,wemayshowthat

Sinceh(z)=y(z)/x(z),wemaywrite

Takingtheinversez-transformweobtain

(b)H(Z)hasonlytwopoles,thesearebothatz=1/3.Sincethesystemiscausal,theROCofH(Z)willbetheform>1/3.SincetheROCincludestheunitcircle,thesystemisStable.

10.19.(a)Theunilateralz-transformis

(b)Theunilateralz-transformis

Allz

Theunilateralz-transformis

10.20.Applyingtheunilateralz-transformtogivendifferenceequation,wehave

Forthezero-inputresponse,assumethatx[n]=0.Sincewearegiventhaty[-1]=2,

Takingtheinverseunilateralz-transform,

Y[n]=

Forthezero-stateresponsesety[-1]=0.Also,wehave

Therefore,

Weusepartialfractionexpansionfollowedbytheinverseunilateralz-transformtoobtain

(c)Thetotalresponseisthesumofthezero-inputresponse.Thisis

10.21.thepole–zeroplotsareallshowninfigureS10.21.

(a)For,allz.

TheFouriertransformexistsbecausetheROCincludestheunitcircle.

Forx[n]=

X(z)=,allzexpect0.

TheFouriertransformexistsbecausetheROCincludestheunitcircle.

Forx[n]=

TheFouriertransformdoesnotexistbecausetheROCdoesnotincludetheunitcircle

Forx[n]=

Forx[n]=

TheFouriertransformdoesnotexistbecausetheROCdoesnotincludetheunitcircle.

For

TheFouriertransformdoesnotexistbecausetheROCincludestheunitcircle.

(g)Consider

Consider

Thez-transformoftheoverallsequencex[n]=is

TheFouriertransformexistbecausetheROCincludetheunitcircle.

Considerx[n]=

TheFouriertransformexistsbecausetheROCincludestheunitcircle.

1

FigureS10.21

10.22.(a)Usingthez-transformanalysisequation,

Thismaybeexpressas

Thishasfourzeroatz=0and8morezerodistributedonacircleofradius1/2.TheROCistheentirezplane.(AlthoughformaninspectionofexpressionforX(z)itseemsliketheseisapoleat1/2whichcancelswiththispole.)SincetheROCincludestheunitcircle,theFouriertransformexists.

(b)Considerthesequence

Now,

And

Therefore,

Notethatx[n]=n.Therefore,

TheROCis(1/2)<<2.Therefore,theFouriertransformexists.

(c)Writex[n]as

Where

And

Usingthedifferentiationproperty,weget

TheROCis(1/2)<.Therefore,theFouriertransformexists.

(d)Thesequencemaybewrittenas

Now

And

Therefore,

X(z)=+

TheROCis.Therefore,theFouriertransformexists.

10.23(i)Thepartialfractionofthegivenis

SincetheROCis.

.

Performinglong-divisioninordertogetaright-sidedsequence.weobtain

Thismayberewrittenas

Therefore.

.

(ii)Thepartialfractionofthegivenis

SincetheROCis.

. .

Performinglong-divisioninordertogetaleft-sidedsequence.weobtain

Thismayberewrittenas

Therefore.

(iii).Thepartialfractionofthegivenis

SincetheROCis.

Performinglong-divisioninordertogetaright-sidedsequence.weobtain

Thismayberewrittenas

.

Therefore.

(iv)Thepartialfractionofthegivenis

SincetheROCis

Performinglong-divisioninordertogetaleft-sidedsequence.weobtain

Thismayberewrittenas

.

Therefore.

.

(v)Thepartialfractionofthegivenis

.

(vi)Wemaysimilarlyshowthatinthiscase,

.

10.24(a)Wemaywriteas

.

Therefore

.

Ifisabsolutelysummable,thentheROCofhastoincludetheunitcircle

Therefore,theROCis.Itfollowthat

.

(b)Carryingoutlongdivisionon,weget

.

Usingtheanalysisequation(10.3),weget

(c)Wemaywriteas

.

Thepartialfractionofis

.

Sinceisabsolutesummable,theROCmustbeinordertoincludetheunitcircle.Itfollowthat

10.25.(a)Thepartialfractionequationofis

.

Sinceisabsolutesummable,theROCmustbeinordertoincludetheunitcircle.Itfollowthat

.

(b)mayberewrittenas

.

Usingpartialfractionexpansion,wemayrewritethisas

.

Ifisright-side,thentheROCforthissignalis.Usingthisfact,wemay

Findtheinversez-transformofthetermwithinsquarebracketabovetobe.Notethat.Therefore,Thisgives

Notingthat.wemayrewritethisas

Thisistheanswerthatweobtainlyinpart(a).

10.26(a)Formpart(b)ofthepreviousproblem,

.

(b)Formpart(b)ofthepreviousproblem,

.

(c)Ifisleft-side,thentheROCforthissignalis.Usingthisfact,wemay.Findtheinversez-transformofthetermwithinsquarebracketabovetobe.Notethat.Therefore,Thisgives

.

10.27Weperformlong-divisiononsoastoobtainaright-sedersequence.Thisgivesus

Therefore,comparingthiswitheq.(10.3)weget

Andforn<-3

10.28(a)Usingeq(10.3),weget

(b)ThereforeX(z)haszeroslyingonacircleofradius0.95(asshownisFigureS10.28)and6polesatz=0

1

6

Re

FigureS10.28

(c)ThemagnitudeFouriertransformisasshowninFigureS10.28

10.29TheplotsareasshowninFigureS10.29

0

0

-

0

0

0

FigureS10.29

10.30Fromthegiveninformation,wehave

And

Usingthetimeshiftingproperty,weget

Usingthetimereversalandproperties,weget

Now,usingtheconvolutionproperty,weget

Therefore

10.31FromClue1,weknowthatisreal.Thereforethepolesandzerosofhavetooccurinconjugatepairs,SinceClue4tellsusthathasapoleat.wecanconcludethatmusthaveantherpoleat.Nowsincehas

Nomorepoles,wehavetoassumethathas2orlesszeros.Ifhasthan2zeros,thenmusthavepolesatinfinity,SinceClue3tellusthathas2zerosattheorigin,weknowthatmustbeofthefrom

Sinceisright-sided,theROCmustbe.

10.32.(a)Wearegiventhatandtherefore

Now.y[n]maybeevaluatedtobe

Simplifying

(b)UsingTable10.2weget

H(z)=|z|>|a|

And

X(z)=Allz,

Therefore

Y(z)=X(z)H(z)=

TheROCis|z|>|a|,Consider

P(z)=

WithROC|z|>|a|,ThepartialfractionexpansionofP(z)is

P(z)=

Therefore,

P[n]=

Now,notethat

Y(z)=P(z),

Therefore,

Thismaybewrittenas

Thisisthesameastheresultofpart(a).

10.33.(a)Takingthez-transformofbothsidesofthegivedifferenceequationandsimplifying,

Weget

ThepolesofH(z)areat(1/4)Sinceh[n]iscausal,theROChastobe

(b)Wehave

Therefore,

TheROCofY(z)willbetheintersectionoftheROCsofX(z)andH(z).ThisimpliesthattheROCofY(z)is|z|>1/2.ThepartialfractionexpansionofY(z)is

UsingTable10.2weget

10.34.(a)Takingthez-transformlfbothsidesofthegivedifferenceequationandsimplifying,weget

FigureS10.34

ThepolesofH(z)areatz=H(z)hasazeroatz=0.Thepole-zeroplotforH(z)isasshowninFigureS10.34.sinceh[n]iscausal,ROCforH(z)hastobe|z|>

(b)ThepartialfractionexpansionofH(z)is

Therefore,

(c).NowassumingthattheROCisweget

10.35.Takingthez-transformofbothsidesofthegivendifferenceequationandsimplifying.Weget

ThepartialfractionexpansionofH(z)is

IftheROCis|z|>2,then

IftheROCis1/2<|z|<2,then

IftheROCis|z|<1/2,then

Foreach,wenowneedtoshowthatify[n]=inthedifferenceequation,thenx[n]=.Considersubstitutingintothedifferenceequation.Thisyields

Then,

=0,forn<-1,

=2/3-2/3=0,

=0,forn>0.

Itfollowsthat=.itcansimilarlybeandsatisfythedifferenceequation.

10.36.Takingthez-transformofbothsideofthegivendifferenceequationandsimplifying,weget

ThepartialfractionexpansionofH(z)is

SinceH(z)correspondstoastablesystem,theROChasrobe(1/3)<|z|<3.Therefore,

10.37.(a)Theblock-diagrammayberedrawnasshowinpart(a)ofthefigurebelow.ThismaybetreatedasacascadeofthetwosystemsshownwithinthedottedlinesinFigureS10.37.Thesetowsystemsmaybeinterchangedasshowninpart(b)ofthefigureFigureS10.37withoutchangingthesystemfunctionoftheoverallsystem.Fromthefigurebelow,itisclearthat

SystemI

SystemII

y[n]

-1/3

2/9

9/8

x[n]

x[n]

y[n-1]

y[n-1]

9/8

-1/3

2/9

x[n-1]

FigureS10.37

y[n]

(b)Takingthez-transformoftheabovedifferenceequationandsimplifying,weget

H(z)haspolesatz=1/3andz=-2/3.Sincethesystemiscausal.TheROChastobe|z|>2/3.TheROCincludestheunitcircleandhencethesystemisstable.

10.38.(a)

(b)

Usingtheresultsofpart(a)and(d),wemayredrawtheblock-diagramasshowninFigureS10.38.

y[n]

x[n]

-1/2

1/4

-2

1/4

x[n]

y[n]

-2/3

-z/4

1/8

-1/2

x[n]

y[n]

5/3

-14/3

4

-1/2

1/4

FigureS10.38

(d)Usingtheapproachshownintheexamplesinthetextbookwemaydrawtheblock-diagramofandasshowninthedottedboxesinthefigurebelow.H(z)isthecascadeofthesetwosystems.

(e)Usingtheapproachshowintheexamplesshowninthetextbook,wemaydrawtheblock-diagramof,andasshowninthedottedboxesinthefigurebelow.H(z)istheparallelcombinationof,,.

10.39.(a)Thedirectformblockdiagrammaybedrawnasshowninpart(a-i)ofFigureS10.39bynotingthat

Thecascadeblock-diagramisasshowninpart(a-ii)ofFigureS10.39.

A

B

C

D

x[n]

y[n]

r

x[n]

y[n]

FigureS10.39

Part(a):A=5/3,B=11/36.C=15/54,D=1/36

Part(b):A=3/2,B=-1.C=5/4,D=-1/2

Part(b):A=2,B=-z/4.C=3/4,D=-1/8

Part(a):=1,=-1/4,r=2/3,=-1/9

Part(a):=1,=-1/2,r=1/2=-1

Part(a):=1,=-1/2,r=1,=-1/4

Notethat

Therefore,maybedrawnasacascadeoffoursystemsforwhichthecoefficientmultipliersareallreal.

(b)Thedirectformblockdiagrammaybedrawnasshowninpart(b-i)ofFigureS10.39bynotingthat

Thecascadeblock-diagramisasshowninpart(b-ii)ofFigureS10.39.

Nowthat

Therefore,cannotbedrawnascascadeoffoursystemsforwhichthecoefficientmultipliersareallreal.

(c)Thedirectformblockdiagrammaybedrawnasshowninpart(c-i)oftheFigureS10.39bynotingthat

Thecascadeblock-diagramisasshowninpart(c-ii)oftheFigureS10.39.

Notethat

Therefore,cannotbedrawnasacascadeoffoursystemsforwhichthecoefficient

Multipliersareallreal.

10.40.Thedefinitionoftheunilateralz-transformis

sincex[n]=[n-5]iszerointherange0n,x(z)=0.

TheunilateralofLaplacetransformofx[n]=[n-5]

Is

TheunilateralofLaplacetransformofx[n]=is

,>1

(d)TheunilateralofLaplacetransformofis

,>1/2.

(e)Sincex[n]=(-1/3)u[-n-2]iszerointherange,x(z)=0.

(f)TheunilateralofLaplacetransformofis

,Allz.

(g)TheunilateralofLaplacetransformofis

,Allz.

(h)TheunilateralofLaplacetransformofis

>1/2.

10.41.fromthegiveninformation,

>1/2.

And

>1/4.

UsingTable10.2andthetimeshiftpropertyweget

,>1/2.

And

>1/4.

Wehave

.

TheROCis|z|>(1/2).ThepartialfractionexpansionofG(z)is

.

UsingTable10.2andthetimeshiftproperty,weget

.

Wehave

TheROCofQ(z)is|z|>(1/2).Thepartialfractionexpansionofy(z)is

Therefore,

Clearly,q[n]g[n]forn>0.

(a)Takingtheunilateralz-transformofbothsidesofthegivendifferenceequation.weget

Settingx(z)=0,weget

Theinverseunilateralz-transformgivesthezero-inputresponse

Now,sinceitisgiventhatwehave

|z|>1/2.

Settingy[-1]tobezero,weget

Therefore,

Thepartialfractionexpansionofis

Theinverseunilateralz-transformofbothsidesofthegivendifferenceequation,weget

Setting,weget

IM

Re

Y(z)=0.

Theinverseunilateralz-transformgivesthezero-inputresponse

Now,sinceitisgiventhatwehave

|z|>1.

Settingy[-1]tobezero,weget

FigureS10.46

Therefore,

Theinverseunilateralz-transformgivesthezero-stateresponse

Takingtheunilateralz-transformofbothsidesofthegivendifferenceequation,weget

Setting,weget

10.46.Takingthez-transformofbothsidesofthedifferenceequationrelatingx[n]ands[n]andsimplifying,weget

Thesystemhasan8thorderpoleatz=0and8zerosdistributedaroundacircleofradius.ThisisshowinFigureS10.46.TheROCiseverywhereonthez-planeexceptatz=0.

(b)Wehave

Therefore,

TherearetwopossibleROCsfor:or.IftheROCis,thentheROCdosenotincludetheunitcircle.Thisinturnimpliesthatthesystemwouldbeunstableandanti-causal.IftheROCis,thentheROCincludestheunitcircle.Thisinturnimpliesthatthesystemwouldbestableandcausal.

Wehave

.

WeneedtochoosetheROCtobeinordertogetsstablesystem.Nowconsider

WithROC.Takingtheinversez-transform,weget

.

Now,notethat

.

FromTable10.1weknowthat

0,otherwise

10.47.(a)FromClue1,wehaveH(-2)=0.FromClue2,weknowthatwhen

Wehave

.

Therefore,

Substitutingz=-2intheaboveequationandnothingthatN(-2)=0,weget

.

(b)Theresponsetothesignalx[n]=1=.Therefore,

.

10.48.fromthepole-zerodiagram,wemanywrite

And

WhereAandBareconstants.nownotethat

Usingtheproperty10.53ofthez-transform(seeTable10.1),weget

Wemayrewritethisas

Where.Notethatsincebothandarecausal.Wemayassumethatg[n]=0forn<0.Therefore.

u[n].

Now,clue3slaostatesthat.Therefore.

Or

Therefore,

g[n]=(-)u[n].

10.49.(a)Wemaywritetheleftsideofeq.(p10.49-1)as

(r)=r()

Sincer;thesequence(r)decayswithincreasingn.i.e.,asn->

(r)->0.Therefore,(r)(r)forn.Substitutingthisin

eq.,weget

r()r

Therefore,A=(r/r)=(r/r).

(b)TheaboveinequalityshowsthatifX(z)hasthefiniteboundBfor|z|=r;thenX(z)hasthefinitebound(r/r)Bfor|z|=r.Thus,X(z)convergesfor|z|=r.andProperty4ofSection10.2follows.

(c)Consideraleft-sidedsequencex[n]suchthat

x[n]=0,n>N

andforwhich

=

Thenweneedtoshowthatifr,

|x[n]|rP(s10.49-2)

WhenPisapositiveconstant.

Wemaywritetheleftsideofeq.(s10.49-2

|x[n]|r=|x[n]|(r)=(s10.49-3)

Since;thesequence(r)decayswithdecreasingn,i.e.,as

n->(r)->0.Therefore,(r)(r)for.n

.Substitutingthisineq(s10.49-3).Weget

|x[n]|r=|x[n]|(r)

Therefore,P=(r/r)=(r/r)

TheaboveinequalityshowthatifX(z)hasifX(z)hasthefiniteboundBfor|z|=r.thenX[z]hasthefinitebound(r/r)Bfor|z|=rr.Thus,X(z)convergesfor|z|=rrandProperty5ofSection10.2follows.

10.50.(a)Fromthegivenpole-zeroplot,weget

H(z)=A,

WhereAissomeconstant.Therefore

H(e)=A

And

|H(e)|=H(e)H=|A|[][]

Therefore

|H(e)|=|A|=|A|.

Thisimpliesthat|H(e)=|A|=constant.

(b)Weget|v|=1+a-2acos().

(c)Weget

|v|=1+-=[a+1+2acos]=|v|

10.51.(a)Weknowthatforarealsequencex[n],x[n]=x.Letusfirstfindthez-transformofxintermsofX[z],thez-transformofx[n].Wehave

Y(z)=y[n]z=xz

=[x[n](z)]=[X(z)].

Nowsincex[n]=x,wehaveZ{x[n]}=z{x}whichinturnimpelsthatX(z)=X(z).

(b)IfX(z)hasopoleatz=z.then1/X(z)=0.Fromtheresultofthepreviouspart,

Weknowthat=0.

Conjugatingbothsides,weget1/=0.thisimpliesthatX(z)hasapoleatz.

IfX(z)hasazeroatz=z.thenX(z)=0.Fromtheresultofthepreviouspart,

Weknowthat

=0.

Conjugatingbothsides,wegetX(z)=0.ThisimpliesthatX(z)hasazeroatz.

(c)(1)Thez-transformofgivensequenceis

X(z)=,|z|>1/2

Clearly,X(z)hasapoleatz=1/2andazeroatz=0andthepropertyofpart(b)holds.

(2)Thez-transformofthegivensequenceis

X(z)=

X(z)hastwozeroatz=1/2andzzeroatz=0andthepropertyofpart(b)stillholds

(d)Now,frompart(b)ofproblem10.43weknowthatifx[n]andX(z)hasapoleatz,thenX(z)hasapoleat(1/z)=

Ifx[n]isrealandX(z)hasapoleatz,thenfrompart(b)weknowthatX(z)musthaveapoleatz=.,thenX(z)musthaveapoleat.

Asimilarargumentmaybeconstructedforzeros.

10.52.Wehave

=

=

=.

Usinganargumentsimilartotheoneusedonpart(b)ofproblem10.43.wemayarguethatifhasapole(orzero)atz=,thenwhichhasapole(orzero)atz=1/z.

10.53.Letusassumethatx[n]isasequencewithz-transformX(z)whichhastheROC.

(a)(1)Thez-transformofthesequencey[n]=[n-n]is

Y(z)=

=

Substitutingm=n-nintheaboveequation,weget

Y(z)====

=X(z).

Clearly,Y(z)convergeswhereX(z)convergesexceptfortheadditionordeletionofz=0

becauseoftheterm.Therefore,theROCis.exceptforthepossibleadditionofz=0intheROC.

(2)Thez-transformerthesequencey[n]=is

Y(z)=

=

=

=X()

SinceX(z)convergesfor,Y(z)convergesfor,Therefore,

theROCofY(z)is.

(b)(1)FromProblem10.51(a);weknowthatthez-transformofthesequencey[n]=isY(z)=.TheROCofY(z)isthesameastheROCofX(z).

(2)SupposethattheROCofx[n]is,Fromsubpart(2)ofpart(a).thez-transformofis

Y(z)=X()

WithROC.Therefore.

10.54.(a)Letx[n]=0forn>0.Then,

=

=x[0]+x[-1]z+x[-2]z+…….

Therefore

.

(b)Letx[n]=0forn<0.Then,

=

=x[0]+x[-1]z+x[-2]z+…….

Therefore,

=x[1].

10.55.(a)Fromtheinitialvaluetheorem,wehave

X(z)=x[0]non-zeroandfinite.

Therefore,asz->,X(z)tendstoafinitenon-zerovalue.ThisimpliesthatX(z)hasneitherpoleszerosatinfinity.

(b)Arationalz-transformismadeupoffactorsoftheform1/(z-a)and(z-b).Notethatthefactor1/(z-b)hasapoleatz=aandazeroatz=.Alsonotethatthefactor(z-b)hasazeroatz=.Fromtheresultofpart(a),weknowthatacausalsequencehasnopoleorzeroatinfinity.Therefore,allzerosatinfinitycontributedbyfactorsoftheform1/(z-a).Consequently,thenumberofzerosinthefinitez-planemustequalthenumberofpolesinthefinitez-plane.

10.56.(a)Thez-transformofis

=

=]

=

=

(b)Usingthetimeshiftingproperty(10.5.2),weget

Where(z)isthez-transformof.Substitutingintheresultofpart(a),weget

Nothingthatthez-transformofmaybewrittenas

=;

Wemayrewritetheresultofpart(b)as

.

10.57.(a)isapolynomialoforderin.isapolynomialoforderin.Therefore,isapolynomialoforderin.thisimpliesthatM=.

(b)Bynothingthaty[0]isthecoefficientofterminY(z).y[1]isthecoefficientofterminY(z),andy[2]isthecoefficientofterminY(z).weget

y[0]=,

y[1]=,

y[3]=.

(c)wenotethepatternthatemergeformpart(b).Thek-thpointinthesequencey[n]isthecoefficientofinY(z),ThetermofY(z)isformedbythefollowingsum:(theproductofthetermofwiththetermof)+(theproductofthetermofwiththetermof)+(theproductofthetermofwiththetermof)+…….+(theproductofthetermofwiththetermof).

Therefore,

y[k]=

Since[m]=0form>andm<0,wemayrewritethisas

.

10.58Consideracausalandstablewithsystemfunction.Letitsinversesystemhavethefunction.Thepolesofarethezerosofandthezerosofarethepolesof.

Fortocorrespondtobeacasualandstablesystem,allitspolesmustbewithintheunitcircle.Similarly,fortocorrespondtobeacasualandstablesystem,allitspolesmustbewithintheunitcircle.Sincethepolesofarethezerosof,thepreviousstatementimpliesthatthezerosofmustbewithintheunitcircle.Therefore,allpolesandzerosofaminimum-phasesystemmustbewithintheunitcircle.

10.59(a)FromFigureS10.59,wehave

==>=

Also

willbe

Finally,

Sincecorrespondstoacausalfilter,theROCwillbe|z|>|k|/3.

(b)Forthesystemtobestable,theROCofmustincludetheunitcircle.Thisispossibleonlyif|k|/3<1.Thisisimpliesthat|k|hastobelessthan3.

(c)Ifk=1,then

=

Theresponsetox[n]=willbeoftheform

y[n]=x[n]H(2/3)=.

10.60.Theunilateralz-transformofy[n]=x[n+1]is

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論