版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
PAGE
PAGE
179
Chapter10Answers
10.1(a)Thegivensummationmaybewrittenas
,byreplacingzwith.Ifr<,then
Andthefunctionwithinthesummationgrowstowardsinfinitywithincreasingn..Also,thesummationdosenotconverge.
Butifr>,thenthesummationconverges.
(b)Thegivensummationmaybewrittenas
,byreplacingzwith.Ifr>,then
Andthefunctionwithinthesummationgrowstowardsinfinitywithincreasingn,.Also,thesummationdosenotconverge.
Butifr<,thenthesummationconverges.
(c)Thesummationmaybewrittenas.byreplacingzwith.Ifr>,thenthe
functionwithinthesummationgrowstowardsinfinitywithincreasingn,.Also,thesummationdosenotconverge.
Butifr<,thenthesummationconverges.
Thesummationmaybewrittenas
byreplacingzwith.Thefirstsummationconvergesforr>.Thesecondsummationconvergeforr>2.Therefore,thesumofthese
twosummationsconvergesfor1/2<r<2.
10.2Usingeq.910.3).
,
10.18.(a)usingtheanalysisofexample10.18,wemayshowthat
Sinceh(z)=y(z)/x(z),wemaywrite
Takingtheinversez-transformweobtain
(b)H(Z)hasonlytwopoles,thesearebothatz=1/3.Sincethesystemiscausal,theROCofH(Z)willbetheform>1/3.SincetheROCincludestheunitcircle,thesystemisStable.
10.19.(a)Theunilateralz-transformis
(b)Theunilateralz-transformis
Allz
Theunilateralz-transformis
10.20.Applyingtheunilateralz-transformtogivendifferenceequation,wehave
Forthezero-inputresponse,assumethatx[n]=0.Sincewearegiventhaty[-1]=2,
Takingtheinverseunilateralz-transform,
Y[n]=
Forthezero-stateresponsesety[-1]=0.Also,wehave
Therefore,
Weusepartialfractionexpansionfollowedbytheinverseunilateralz-transformtoobtain
(c)Thetotalresponseisthesumofthezero-inputresponse.Thisis
10.21.thepole–zeroplotsareallshowninfigureS10.21.
(a)For,allz.
TheFouriertransformexistsbecausetheROCincludestheunitcircle.
Forx[n]=
X(z)=,allzexpect0.
TheFouriertransformexistsbecausetheROCincludestheunitcircle.
Forx[n]=
TheFouriertransformdoesnotexistbecausetheROCdoesnotincludetheunitcircle
Forx[n]=
Forx[n]=
TheFouriertransformdoesnotexistbecausetheROCdoesnotincludetheunitcircle.
For
TheFouriertransformdoesnotexistbecausetheROCincludestheunitcircle.
(g)Consider
Consider
Thez-transformoftheoverallsequencex[n]=is
TheFouriertransformexistbecausetheROCincludetheunitcircle.
Considerx[n]=
TheFouriertransformexistsbecausetheROCincludestheunitcircle.
1
FigureS10.21
10.22.(a)Usingthez-transformanalysisequation,
Thismaybeexpressas
Thishasfourzeroatz=0and8morezerodistributedonacircleofradius1/2.TheROCistheentirezplane.(AlthoughformaninspectionofexpressionforX(z)itseemsliketheseisapoleat1/2whichcancelswiththispole.)SincetheROCincludestheunitcircle,theFouriertransformexists.
(b)Considerthesequence
Now,
And
Therefore,
Notethatx[n]=n.Therefore,
TheROCis(1/2)<<2.Therefore,theFouriertransformexists.
(c)Writex[n]as
Where
And
Usingthedifferentiationproperty,weget
TheROCis(1/2)<.Therefore,theFouriertransformexists.
(d)Thesequencemaybewrittenas
Now
And
Therefore,
X(z)=+
TheROCis.Therefore,theFouriertransformexists.
10.23(i)Thepartialfractionofthegivenis
SincetheROCis.
.
Performinglong-divisioninordertogetaright-sidedsequence.weobtain
Thismayberewrittenas
Therefore.
.
(ii)Thepartialfractionofthegivenis
SincetheROCis.
. .
Performinglong-divisioninordertogetaleft-sidedsequence.weobtain
Thismayberewrittenas
Therefore.
(iii).Thepartialfractionofthegivenis
SincetheROCis.
Performinglong-divisioninordertogetaright-sidedsequence.weobtain
Thismayberewrittenas
.
Therefore.
(iv)Thepartialfractionofthegivenis
SincetheROCis
Performinglong-divisioninordertogetaleft-sidedsequence.weobtain
Thismayberewrittenas
.
Therefore.
.
(v)Thepartialfractionofthegivenis
.
(vi)Wemaysimilarlyshowthatinthiscase,
.
10.24(a)Wemaywriteas
.
Therefore
.
Ifisabsolutelysummable,thentheROCofhastoincludetheunitcircle
Therefore,theROCis.Itfollowthat
.
(b)Carryingoutlongdivisionon,weget
.
Usingtheanalysisequation(10.3),weget
(c)Wemaywriteas
.
Thepartialfractionofis
.
Sinceisabsolutesummable,theROCmustbeinordertoincludetheunitcircle.Itfollowthat
10.25.(a)Thepartialfractionequationofis
.
Sinceisabsolutesummable,theROCmustbeinordertoincludetheunitcircle.Itfollowthat
.
(b)mayberewrittenas
.
Usingpartialfractionexpansion,wemayrewritethisas
.
Ifisright-side,thentheROCforthissignalis.Usingthisfact,wemay
Findtheinversez-transformofthetermwithinsquarebracketabovetobe.Notethat.Therefore,Thisgives
Notingthat.wemayrewritethisas
Thisistheanswerthatweobtainlyinpart(a).
10.26(a)Formpart(b)ofthepreviousproblem,
.
(b)Formpart(b)ofthepreviousproblem,
.
(c)Ifisleft-side,thentheROCforthissignalis.Usingthisfact,wemay.Findtheinversez-transformofthetermwithinsquarebracketabovetobe.Notethat.Therefore,Thisgives
.
10.27Weperformlong-divisiononsoastoobtainaright-sedersequence.Thisgivesus
Therefore,comparingthiswitheq.(10.3)weget
Andforn<-3
10.28(a)Usingeq(10.3),weget
(b)ThereforeX(z)haszeroslyingonacircleofradius0.95(asshownisFigureS10.28)and6polesatz=0
1
6
Re
FigureS10.28
(c)ThemagnitudeFouriertransformisasshowninFigureS10.28
10.29TheplotsareasshowninFigureS10.29
0
0
-
0
0
0
FigureS10.29
10.30Fromthegiveninformation,wehave
And
Usingthetimeshiftingproperty,weget
Usingthetimereversalandproperties,weget
Now,usingtheconvolutionproperty,weget
Therefore
10.31FromClue1,weknowthatisreal.Thereforethepolesandzerosofhavetooccurinconjugatepairs,SinceClue4tellsusthathasapoleat.wecanconcludethatmusthaveantherpoleat.Nowsincehas
Nomorepoles,wehavetoassumethathas2orlesszeros.Ifhasthan2zeros,thenmusthavepolesatinfinity,SinceClue3tellusthathas2zerosattheorigin,weknowthatmustbeofthefrom
Sinceisright-sided,theROCmustbe.
10.32.(a)Wearegiventhatandtherefore
Now.y[n]maybeevaluatedtobe
Simplifying
(b)UsingTable10.2weget
H(z)=|z|>|a|
And
X(z)=Allz,
Therefore
Y(z)=X(z)H(z)=
TheROCis|z|>|a|,Consider
P(z)=
WithROC|z|>|a|,ThepartialfractionexpansionofP(z)is
P(z)=
Therefore,
P[n]=
Now,notethat
Y(z)=P(z),
Therefore,
Thismaybewrittenas
Thisisthesameastheresultofpart(a).
10.33.(a)Takingthez-transformofbothsidesofthegivedifferenceequationandsimplifying,
Weget
ThepolesofH(z)areat(1/4)Sinceh[n]iscausal,theROChastobe
(b)Wehave
Therefore,
TheROCofY(z)willbetheintersectionoftheROCsofX(z)andH(z).ThisimpliesthattheROCofY(z)is|z|>1/2.ThepartialfractionexpansionofY(z)is
UsingTable10.2weget
10.34.(a)Takingthez-transformlfbothsidesofthegivedifferenceequationandsimplifying,weget
FigureS10.34
ThepolesofH(z)areatz=H(z)hasazeroatz=0.Thepole-zeroplotforH(z)isasshowninFigureS10.34.sinceh[n]iscausal,ROCforH(z)hastobe|z|>
(b)ThepartialfractionexpansionofH(z)is
Therefore,
(c).NowassumingthattheROCisweget
10.35.Takingthez-transformofbothsidesofthegivendifferenceequationandsimplifying.Weget
ThepartialfractionexpansionofH(z)is
IftheROCis|z|>2,then
IftheROCis1/2<|z|<2,then
IftheROCis|z|<1/2,then
Foreach,wenowneedtoshowthatify[n]=inthedifferenceequation,thenx[n]=.Considersubstitutingintothedifferenceequation.Thisyields
Then,
=0,forn<-1,
=2/3-2/3=0,
=0,forn>0.
Itfollowsthat=.itcansimilarlybeandsatisfythedifferenceequation.
10.36.Takingthez-transformofbothsideofthegivendifferenceequationandsimplifying,weget
ThepartialfractionexpansionofH(z)is
SinceH(z)correspondstoastablesystem,theROChasrobe(1/3)<|z|<3.Therefore,
10.37.(a)Theblock-diagrammayberedrawnasshowinpart(a)ofthefigurebelow.ThismaybetreatedasacascadeofthetwosystemsshownwithinthedottedlinesinFigureS10.37.Thesetowsystemsmaybeinterchangedasshowninpart(b)ofthefigureFigureS10.37withoutchangingthesystemfunctionoftheoverallsystem.Fromthefigurebelow,itisclearthat
SystemI
SystemII
y[n]
-1/3
2/9
9/8
x[n]
x[n]
y[n-1]
y[n-1]
9/8
-1/3
2/9
x[n-1]
FigureS10.37
y[n]
(b)Takingthez-transformoftheabovedifferenceequationandsimplifying,weget
H(z)haspolesatz=1/3andz=-2/3.Sincethesystemiscausal.TheROChastobe|z|>2/3.TheROCincludestheunitcircleandhencethesystemisstable.
10.38.(a)
(b)
Usingtheresultsofpart(a)and(d),wemayredrawtheblock-diagramasshowninFigureS10.38.
y[n]
x[n]
-1/2
1/4
-2
1/4
x[n]
y[n]
-2/3
-z/4
1/8
-1/2
x[n]
y[n]
5/3
-14/3
4
-1/2
1/4
FigureS10.38
(d)Usingtheapproachshownintheexamplesinthetextbookwemaydrawtheblock-diagramofandasshowninthedottedboxesinthefigurebelow.H(z)isthecascadeofthesetwosystems.
(e)Usingtheapproachshowintheexamplesshowninthetextbook,wemaydrawtheblock-diagramof,andasshowninthedottedboxesinthefigurebelow.H(z)istheparallelcombinationof,,.
10.39.(a)Thedirectformblockdiagrammaybedrawnasshowninpart(a-i)ofFigureS10.39bynotingthat
Thecascadeblock-diagramisasshowninpart(a-ii)ofFigureS10.39.
A
B
C
D
x[n]
y[n]
r
x[n]
y[n]
FigureS10.39
Part(a):A=5/3,B=11/36.C=15/54,D=1/36
Part(b):A=3/2,B=-1.C=5/4,D=-1/2
Part(b):A=2,B=-z/4.C=3/4,D=-1/8
Part(a):=1,=-1/4,r=2/3,=-1/9
Part(a):=1,=-1/2,r=1/2=-1
Part(a):=1,=-1/2,r=1,=-1/4
Notethat
Therefore,maybedrawnasacascadeoffoursystemsforwhichthecoefficientmultipliersareallreal.
(b)Thedirectformblockdiagrammaybedrawnasshowninpart(b-i)ofFigureS10.39bynotingthat
Thecascadeblock-diagramisasshowninpart(b-ii)ofFigureS10.39.
Nowthat
Therefore,cannotbedrawnascascadeoffoursystemsforwhichthecoefficientmultipliersareallreal.
(c)Thedirectformblockdiagrammaybedrawnasshowninpart(c-i)oftheFigureS10.39bynotingthat
Thecascadeblock-diagramisasshowninpart(c-ii)oftheFigureS10.39.
Notethat
Therefore,cannotbedrawnasacascadeoffoursystemsforwhichthecoefficient
Multipliersareallreal.
10.40.Thedefinitionoftheunilateralz-transformis
sincex[n]=[n-5]iszerointherange0n,x(z)=0.
TheunilateralofLaplacetransformofx[n]=[n-5]
Is
TheunilateralofLaplacetransformofx[n]=is
,>1
(d)TheunilateralofLaplacetransformofis
,>1/2.
(e)Sincex[n]=(-1/3)u[-n-2]iszerointherange,x(z)=0.
(f)TheunilateralofLaplacetransformofis
,Allz.
(g)TheunilateralofLaplacetransformofis
,Allz.
(h)TheunilateralofLaplacetransformofis
>1/2.
10.41.fromthegiveninformation,
>1/2.
And
>1/4.
UsingTable10.2andthetimeshiftpropertyweget
,>1/2.
And
>1/4.
Wehave
.
TheROCis|z|>(1/2).ThepartialfractionexpansionofG(z)is
.
UsingTable10.2andthetimeshiftproperty,weget
.
Wehave
TheROCofQ(z)is|z|>(1/2).Thepartialfractionexpansionofy(z)is
Therefore,
Clearly,q[n]g[n]forn>0.
(a)Takingtheunilateralz-transformofbothsidesofthegivendifferenceequation.weget
Settingx(z)=0,weget
Theinverseunilateralz-transformgivesthezero-inputresponse
Now,sinceitisgiventhatwehave
|z|>1/2.
Settingy[-1]tobezero,weget
Therefore,
Thepartialfractionexpansionofis
Theinverseunilateralz-transformofbothsidesofthegivendifferenceequation,weget
Setting,weget
IM
Re
Y(z)=0.
Theinverseunilateralz-transformgivesthezero-inputresponse
Now,sinceitisgiventhatwehave
|z|>1.
Settingy[-1]tobezero,weget
FigureS10.46
Therefore,
Theinverseunilateralz-transformgivesthezero-stateresponse
Takingtheunilateralz-transformofbothsidesofthegivendifferenceequation,weget
Setting,weget
10.46.Takingthez-transformofbothsidesofthedifferenceequationrelatingx[n]ands[n]andsimplifying,weget
Thesystemhasan8thorderpoleatz=0and8zerosdistributedaroundacircleofradius.ThisisshowinFigureS10.46.TheROCiseverywhereonthez-planeexceptatz=0.
(b)Wehave
Therefore,
TherearetwopossibleROCsfor:or.IftheROCis,thentheROCdosenotincludetheunitcircle.Thisinturnimpliesthatthesystemwouldbeunstableandanti-causal.IftheROCis,thentheROCincludestheunitcircle.Thisinturnimpliesthatthesystemwouldbestableandcausal.
Wehave
.
WeneedtochoosetheROCtobeinordertogetsstablesystem.Nowconsider
WithROC.Takingtheinversez-transform,weget
.
Now,notethat
.
FromTable10.1weknowthat
0,otherwise
10.47.(a)FromClue1,wehaveH(-2)=0.FromClue2,weknowthatwhen
Wehave
.
Therefore,
Substitutingz=-2intheaboveequationandnothingthatN(-2)=0,weget
.
(b)Theresponsetothesignalx[n]=1=.Therefore,
.
10.48.fromthepole-zerodiagram,wemanywrite
And
WhereAandBareconstants.nownotethat
Usingtheproperty10.53ofthez-transform(seeTable10.1),weget
Wemayrewritethisas
Where.Notethatsincebothandarecausal.Wemayassumethatg[n]=0forn<0.Therefore.
u[n].
Now,clue3slaostatesthat.Therefore.
Or
Therefore,
g[n]=(-)u[n].
10.49.(a)Wemaywritetheleftsideofeq.(p10.49-1)as
(r)=r()
Sincer;thesequence(r)decayswithincreasingn.i.e.,asn->
(r)->0.Therefore,(r)(r)forn.Substitutingthisin
eq.,weget
r()r
Therefore,A=(r/r)=(r/r).
(b)TheaboveinequalityshowsthatifX(z)hasthefiniteboundBfor|z|=r;thenX(z)hasthefinitebound(r/r)Bfor|z|=r.Thus,X(z)convergesfor|z|=r.andProperty4ofSection10.2follows.
(c)Consideraleft-sidedsequencex[n]suchthat
x[n]=0,n>N
andforwhich
=
Thenweneedtoshowthatifr,
|x[n]|rP(s10.49-2)
WhenPisapositiveconstant.
Wemaywritetheleftsideofeq.(s10.49-2
|x[n]|r=|x[n]|(r)=(s10.49-3)
Since;thesequence(r)decayswithdecreasingn,i.e.,as
n->(r)->0.Therefore,(r)(r)for.n
.Substitutingthisineq(s10.49-3).Weget
|x[n]|r=|x[n]|(r)
Therefore,P=(r/r)=(r/r)
TheaboveinequalityshowthatifX(z)hasifX(z)hasthefiniteboundBfor|z|=r.thenX[z]hasthefinitebound(r/r)Bfor|z|=rr.Thus,X(z)convergesfor|z|=rrandProperty5ofSection10.2follows.
10.50.(a)Fromthegivenpole-zeroplot,weget
H(z)=A,
WhereAissomeconstant.Therefore
H(e)=A
And
|H(e)|=H(e)H=|A|[][]
Therefore
|H(e)|=|A|=|A|.
Thisimpliesthat|H(e)=|A|=constant.
(b)Weget|v|=1+a-2acos().
(c)Weget
|v|=1+-=[a+1+2acos]=|v|
10.51.(a)Weknowthatforarealsequencex[n],x[n]=x.Letusfirstfindthez-transformofxintermsofX[z],thez-transformofx[n].Wehave
Y(z)=y[n]z=xz
=[x[n](z)]=[X(z)].
Nowsincex[n]=x,wehaveZ{x[n]}=z{x}whichinturnimpelsthatX(z)=X(z).
(b)IfX(z)hasopoleatz=z.then1/X(z)=0.Fromtheresultofthepreviouspart,
Weknowthat=0.
Conjugatingbothsides,weget1/=0.thisimpliesthatX(z)hasapoleatz.
IfX(z)hasazeroatz=z.thenX(z)=0.Fromtheresultofthepreviouspart,
Weknowthat
=0.
Conjugatingbothsides,wegetX(z)=0.ThisimpliesthatX(z)hasazeroatz.
(c)(1)Thez-transformofgivensequenceis
X(z)=,|z|>1/2
Clearly,X(z)hasapoleatz=1/2andazeroatz=0andthepropertyofpart(b)holds.
(2)Thez-transformofthegivensequenceis
X(z)=
X(z)hastwozeroatz=1/2andzzeroatz=0andthepropertyofpart(b)stillholds
(d)Now,frompart(b)ofproblem10.43weknowthatifx[n]andX(z)hasapoleatz,thenX(z)hasapoleat(1/z)=
Ifx[n]isrealandX(z)hasapoleatz,thenfrompart(b)weknowthatX(z)musthaveapoleatz=.,thenX(z)musthaveapoleat.
Asimilarargumentmaybeconstructedforzeros.
10.52.Wehave
=
=
=.
Usinganargumentsimilartotheoneusedonpart(b)ofproblem10.43.wemayarguethatifhasapole(orzero)atz=,thenwhichhasapole(orzero)atz=1/z.
10.53.Letusassumethatx[n]isasequencewithz-transformX(z)whichhastheROC.
(a)(1)Thez-transformofthesequencey[n]=[n-n]is
Y(z)=
=
Substitutingm=n-nintheaboveequation,weget
Y(z)====
=X(z).
Clearly,Y(z)convergeswhereX(z)convergesexceptfortheadditionordeletionofz=0
becauseoftheterm.Therefore,theROCis.exceptforthepossibleadditionofz=0intheROC.
(2)Thez-transformerthesequencey[n]=is
Y(z)=
=
=
=X()
SinceX(z)convergesfor,Y(z)convergesfor,Therefore,
theROCofY(z)is.
(b)(1)FromProblem10.51(a);weknowthatthez-transformofthesequencey[n]=isY(z)=.TheROCofY(z)isthesameastheROCofX(z).
(2)SupposethattheROCofx[n]is,Fromsubpart(2)ofpart(a).thez-transformofis
Y(z)=X()
WithROC.Therefore.
10.54.(a)Letx[n]=0forn>0.Then,
=
=x[0]+x[-1]z+x[-2]z+…….
Therefore
.
(b)Letx[n]=0forn<0.Then,
=
=x[0]+x[-1]z+x[-2]z+…….
Therefore,
=x[1].
10.55.(a)Fromtheinitialvaluetheorem,wehave
X(z)=x[0]non-zeroandfinite.
Therefore,asz->,X(z)tendstoafinitenon-zerovalue.ThisimpliesthatX(z)hasneitherpoleszerosatinfinity.
(b)Arationalz-transformismadeupoffactorsoftheform1/(z-a)and(z-b).Notethatthefactor1/(z-b)hasapoleatz=aandazeroatz=.Alsonotethatthefactor(z-b)hasazeroatz=.Fromtheresultofpart(a),weknowthatacausalsequencehasnopoleorzeroatinfinity.Therefore,allzerosatinfinitycontributedbyfactorsoftheform1/(z-a).Consequently,thenumberofzerosinthefinitez-planemustequalthenumberofpolesinthefinitez-plane.
10.56.(a)Thez-transformofis
=
=]
=
=
(b)Usingthetimeshiftingproperty(10.5.2),weget
Where(z)isthez-transformof.Substitutingintheresultofpart(a),weget
Nothingthatthez-transformofmaybewrittenas
=;
Wemayrewritetheresultofpart(b)as
.
10.57.(a)isapolynomialoforderin.isapolynomialoforderin.Therefore,isapolynomialoforderin.thisimpliesthatM=.
(b)Bynothingthaty[0]isthecoefficientofterminY(z).y[1]isthecoefficientofterminY(z),andy[2]isthecoefficientofterminY(z).weget
y[0]=,
y[1]=,
y[3]=.
(c)wenotethepatternthatemergeformpart(b).Thek-thpointinthesequencey[n]isthecoefficientofinY(z),ThetermofY(z)isformedbythefollowingsum:(theproductofthetermofwiththetermof)+(theproductofthetermofwiththetermof)+(theproductofthetermofwiththetermof)+…….+(theproductofthetermofwiththetermof).
Therefore,
y[k]=
Since[m]=0form>andm<0,wemayrewritethisas
.
10.58Consideracausalandstablewithsystemfunction.Letitsinversesystemhavethefunction.Thepolesofarethezerosofandthezerosofarethepolesof.
Fortocorrespondtobeacasualandstablesystem,allitspolesmustbewithintheunitcircle.Similarly,fortocorrespondtobeacasualandstablesystem,allitspolesmustbewithintheunitcircle.Sincethepolesofarethezerosof,thepreviousstatementimpliesthatthezerosofmustbewithintheunitcircle.Therefore,allpolesandzerosofaminimum-phasesystemmustbewithintheunitcircle.
10.59(a)FromFigureS10.59,wehave
==>=
Also
willbe
Finally,
Sincecorrespondstoacausalfilter,theROCwillbe|z|>|k|/3.
(b)Forthesystemtobestable,theROCofmustincludetheunitcircle.Thisispossibleonlyif|k|/3<1.Thisisimpliesthat|k|hastobelessthan3.
(c)Ifk=1,then
=
Theresponsetox[n]=willbeoftheform
y[n]=x[n]H(2/3)=.
10.60.Theunilateralz-transformofy[n]=x[n+1]is
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 大學開學典禮
- 愚人節(jié)活動策劃書(匯編15篇)
- 家用電器安全教育
- 高三化學一輪復習+專項強化訓練-化學與環(huán)境保護
- 應屆生面試自我介紹范文集合15篇
- 婚宴新娘致辭(資料15篇)
- 初級會計經濟法基礎-2025初級會計《經濟法基礎》模擬試卷242
- 2024年中國數(shù)字資產信貸融資行業(yè)市場發(fā)展趨勢預測報告-智研咨詢重磅發(fā)布
- 基于無約束優(yōu)化的路側雷視聯(lián)合外參標定方法研究
- 金融行業(yè)人事招聘工作
- 2024-2025學年廣東省深圳市南山區(qū)監(jiān)測數(shù)學三年級第一學期期末學業(yè)水平測試試題含解析
- 2024年衛(wèi)生專業(yè)技術資格考試衛(wèi)生檢驗技術(初級(師)211)相關專業(yè)知識試題及答案指導
- 江蘇省南京鼓樓區(qū)2024年中考聯(lián)考英語試題含答案
- 15篇文章包含英語四級所有詞匯
- 王陽明心學完整版本
- 四年級上冊豎式計算300題及答案
- 課題研究實施方案 范例及課題研究方法及技術路線圖模板
- 牙髓炎中牙髓干細胞與神經支配的相互作用
- 【2022屆高考英語讀后續(xù)寫】主題升華積累講義及高級句型積累
- 西方法律思想史ppt
- 世界古代史-對接選擇性必修 高考歷史一輪復習
評論
0/150
提交評論