




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
專題07特殊平行四邊形的綜合問題【典型例題】1.(2021·廣東·廣州市第二中學(xué)南沙天元學(xué)校八年級(jí)期末)在正方形ABCD中,點(diǎn)E是CD邊上任意一點(diǎn).連接AE,過點(diǎn)B作BF⊥AE于F.交AD于H.(1)如圖1,過點(diǎn)D作DG⊥AE于G,求證:△AFB≌△DGA;(2)如圖2,點(diǎn)E為CD的中點(diǎn),連接DF,求證:FH+FE=SKIPIF1<0DF;(3)如圖3,AB=1,連接EH,點(diǎn)P為EH的中點(diǎn),在點(diǎn)E從點(diǎn)D運(yùn)動(dòng)到點(diǎn)C的過程中,點(diǎn)P隨之運(yùn)動(dòng),請(qǐng)直接寫出點(diǎn)P運(yùn)動(dòng)的路徑長.【答案】(1)證明見解析(2)證明見解析(3)SKIPIF1<0【解析】【分析】(1)由正方形的性質(zhì)得AB=AD,∠BAD=90°,證明∠BAF=∠ADG,然后由AAS證△AFB≌△DGA即可;(2)如圖2,過點(diǎn)D作DK⊥AE于K,DJ⊥BF交BF的延長線于J,先證△ABH≌△DAE(ASA),得AH=DE,再證△DJH≌△DKE(AAS),得DJ=DK,JH=EK,則四邊形DKFJ是正方形,得FK=FJ=DK=DJ,則DF=SKIPIF1<0,FJ,進(jìn)而得出結(jié)論;(3)如圖3,取AD的中點(diǎn)Q,連接PQ,延長QP交CD于R,過點(diǎn)P作PT⊥CD于T,PK⊥AD于K,設(shè)PT=b,由(2)得△ABH≌△DAE(ASA),則AH=DE,再由直角三角形斜邊上的中線性質(zhì)得PD=PH=PE,然后由等腰三角形的性質(zhì)得DH=2DK=2b,DE=2DT,則AH=DE=1﹣2b,證出PK=QK,最后證點(diǎn)P在線段QR上運(yùn)動(dòng),進(jìn)而由等腰直角三角形的性質(zhì)得QR=SKIPIF1<0DQ=SKIPIF1<0.(1)證明:∵四邊形ABCD是正方形,∴AB=AD,∠BAD=90°∵DG⊥AE,BF⊥AE∴∠AFB=∠DGA=90°∵∠FAB+∠DAG=90°,∠DAG+∠ADG=90°∴∠BAF=∠ADG在△AFB和△DGA中∵SKIPIF1<0∴△AFB≌△DGA(AAS).(2)證明:如圖2,過點(diǎn)D作DK⊥AE于K,DJ⊥BF交BF的延長線于J由題意知∠BAH=∠ADE=90°,AB=AD=CD∵BF⊥AE∴∠AFB=90°∵∠DAE+∠EAB=90°,∠EAB+∠ABH=90°∴∠DAE=∠ABH在△ABH和△DAE中∵SKIPIF1<0∴△ABH≌△DAE(ASA)∴AH=DE∵點(diǎn)E為CD的中點(diǎn)∴DE=EC=SKIPIF1<0CD∴AH=DH∴DE=DH∵DJ⊥BJ,DK⊥AE∴∠J=∠DKE=∠KFJ=90°∴四邊形DKFJ是矩形∴∠JDK=∠ADC=90°∴∠JDH=∠KDE在△DJH和△DKE中∵SKIPIF1<0∴△DJH≌△DKE(AAS)∴DJ=DK,JH=EK∴四邊形DKFJ是正方形∴FK=FJ=DK=DJ∴DF=SKIPIF1<0FJ∴SKIPIF1<0∴FH+FE=FJ﹣HJ+FK+KE=2FJ=SKIPIF1<0DF.(3)解:如圖3,取AD的中點(diǎn)Q,連接PQ,延長QP交CD于R,過點(diǎn)P作PT⊥CD于T,PK⊥AD于K,設(shè)PT=b由(2)得△ABH≌△DAE(ASA)∴AH=DE∵∠EDH=90°,點(diǎn)P為EH的中點(diǎn)∴PD=SKIPIF1<0EH=PH=PE∵PK⊥DH,PT⊥DE∴∠PKD=∠KDT=∠PTD=90°∴四邊形PTDK是矩形∴PT=DK=b,PK=DT∵PH=PD=PE,PK⊥DH,PT⊥DE∴PT是△DEH的中位線∴DH=2DK=2b,DE=2DT∴AH=DE=1﹣2b∴PK=SKIPIF1<0DE=SKIPIF1<0﹣b,QK=DQ﹣DK=SKIPIF1<0﹣b∴PK=QK∵∠PKQ=90°∴△PKQ是等腰直角三角形∴∠KQP=45°∴點(diǎn)P在線段QR上運(yùn)動(dòng),△DQR是等腰直角三角形∴QR=SKIPIF1<0DQ=SKIPIF1<0∴點(diǎn)P的運(yùn)動(dòng)軌跡的長為SKIPIF1<0.【點(diǎn)睛】本題考查了三角形全等,正方形的判定與性質(zhì),直角三角形斜邊的中線,等腰三角形的性質(zhì)等知識(shí).解題的關(guān)鍵在于對(duì)知識(shí)的綜合靈活運(yùn)用.【專題訓(xùn)練】選擇題1.(2021·湖南·師大附中梅溪湖中學(xué)二模)如圖,在菱形ABCD中,點(diǎn)F在線段CD上,連接EF,且∠CBE+∠EFC=180°,DF=2,F(xiàn)C=3.則DB=()A.6 B.SKIPIF1<0 C.5 D.SKIPIF1<0【答案】D【解析】【分析】根據(jù)菱形的性質(zhì)可得BD=2DE,BC=CD=5,從而得到∠CBE=∠CDB,再由∠CBE+∠EFC=180°,可得∠CBE=∠CDB=∠DFE,從而得到△DEF∽△DCB,可得到SKIPIF1<0,解得SKIPIF1<0,即可求解.【詳解】解:在菱形ABCD中,BD=2DE,BC=CD=DF+FC=2+3=5,∴∠CBE=∠CDB,∵∠CBE+∠EFC=180°,∠DFE+∠EFC=180°,∴∠CBE=∠DFE,∴∠CBE=∠CDB=∠DFE,∵∠CDB=∠EDF,∴△DEF∽△DCB,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,解得:SKIPIF1<0,∴SKIPIF1<0.故選:D【點(diǎn)睛】本題主要考查了相似三角形的判定和性質(zhì),菱形的性質(zhì),熟練掌握相似三角形的判定和性質(zhì)定理,菱形的性質(zhì)定理是解題的關(guān)鍵.2.(廣西壯族自治區(qū)玉林市2021-2022學(xué)年九年級(jí)上學(xué)期期末數(shù)學(xué)試題)如圖,在SKIPIF1<0中,點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn),則下列四個(gè)判斷中錯(cuò)誤的是()A.四邊形SKIPIF1<0是平行四邊形B.若SKIPIF1<0,則四邊形SKIPIF1<0不一定是矩形C.若四邊形SKIPIF1<0是菱形,則SKIPIF1<0是等腰三角形D.若四邊形SKIPIF1<0是正方形,則SKIPIF1<0是等腰直角三角形【答案】B【解析】【分析】利用正方形的性質(zhì),矩形的判定,菱形的性質(zhì),平行四邊形的判定,等腰直角三角形的判定進(jìn)行依次推理,可求解.【詳解】解:SKIPIF1<0點(diǎn)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0分別是SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的中點(diǎn),SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是平行四邊形,故SKIPIF1<0正確;若SKIPIF1<0,SKIPIF1<0四邊形SKIPIF1<0是矩形,故SKIPIF1<0錯(cuò)誤;若四邊形SKIPIF1<0是菱形,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是等腰三角形,故SKIPIF1<0正確,若四邊形SKIPIF1<0是正方形,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是等腰直角三角形,故SKIPIF1<0正確,故選:SKIPIF1<0.【點(diǎn)睛】本題考查了正方形的性質(zhì),矩形的判定,菱形的性質(zhì),平行四邊形的判定,等腰直角三角形的判定,熟練運(yùn)用這些性質(zhì)是解本題的關(guān)鍵.3.(2022·重慶南開中學(xué)八年級(jí)開學(xué)考試)如圖所示,在長方形SKIPIF1<0中,SKIPIF1<0,在線段SKIPIF1<0上取一點(diǎn)SKIPIF1<0,連接SKIPIF1<0、SKIPIF1<0,將SKIPIF1<0沿SKIPIF1<0翻折,點(diǎn)SKIPIF1<0落在點(diǎn)SKIPIF1<0處,線段SKIPIF1<0交SKIPIF1<0于點(diǎn)SKIPIF1<0.將SKIPIF1<0沿SKIPIF1<0翻折,點(diǎn)SKIPIF1<0的對(duì)應(yīng)點(diǎn)SKIPIF1<0恰好落在線段SKIPIF1<0上,且點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn),則線段SKIPIF1<0的長為()A.3 B.SKIPIF1<0 C.4 D.SKIPIF1<0【答案】A【解析】【分析】設(shè)SKIPIF1<0長為SKIPIF1<0,根據(jù)圖形沿著某條邊折疊所得的兩個(gè)圖形全等,得出ASKIPIF1<0=AB=CD=SKIPIF1<0D,SKIPIF1<0,利用AAS再證SKIPIF1<0,F(xiàn)即是AD的中點(diǎn),已知SKIPIF1<0再根據(jù)邊之間的長度關(guān)系列出等式SKIPIF1<0,解方程即可.【詳解】解:設(shè)SKIPIF1<0F長為SKIPIF1<0,∵SKIPIF1<0沿SKIPIF1<0翻折,點(diǎn)SKIPIF1<0落在SKIPIF1<0處,SKIPIF1<0沿SKIPIF1<0翻折,使點(diǎn)SKIPIF1<0的對(duì)應(yīng)點(diǎn)SKIPIF1<0落在線段SKIPIF1<0上,∴ASKIPIF1<0=AB=CD=SKIPIF1<0D,SKIPIF1<0,在△AB′F和△DC′F中SKIPIF1<0,∴SKIPIF1<0(AAS),∴SKIPIF1<0=SKIPIF1<0,AF=DF,∴SKIPIF1<0,∵點(diǎn)SKIPIF1<0為SKIPIF1<0的中點(diǎn),∴SKIPIF1<0,∴SKIPIF1<0,得SKIPIF1<0,經(jīng)檢驗(yàn)SKIPIF1<0是方程的解,并符合題意,∴SKIPIF1<0.故選:A.【點(diǎn)睛】本題考查圖形折疊問題,矩形性質(zhì),三角形全等判定與性質(zhì),勾股定理等知識(shí),掌握以上知識(shí)是解題關(guān)鍵.4.(2021·廣東·東莞市石龍第二中學(xué)模擬預(yù)測)如圖,CB=CA,∠ACB=90°,點(diǎn)D在邊BC上(與B、C不重合),四邊形ADEF為正方形,過點(diǎn)F作FG⊥CA,交CA的延長線于點(diǎn)G,連接FB,交DE于點(diǎn)Q,給出以下結(jié)論:①AC=FG;②S△FAB:S四邊形CBFG=1:2;③∠ABC=∠ABF;④AD2=FQ?AC,其中正確的是()A.①② B.①③④ C.①②③ D.①②③④【答案】D【解析】【分析】由正方形的性質(zhì)得出∠FAD=90°,AD=AF=EF,證出∠CAD=∠AFG,由AAS證明△FGA≌△ACD,得出AC=FG,①正確;證明四邊形CBFG是矩形,得出S△FAB=SKIPIF1<0FB?FG=SKIPIF1<0S四邊形CBFG,②正確;由等腰直角三角形的性質(zhì)和矩形的性質(zhì)得出∠ABC=∠ABFSKIPIF1<0,③正確;證出△ACD∽△FEQ,得出對(duì)應(yīng)邊成比例,得出AD?FE=AD2=FQ?AC,④正確.【詳解】解:∵四邊形ADEF為正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴SKIPIF1<0,∴∠CAD=∠AFG,在△FGA和△ACD中,SKIPIF1<0,∴△FGA≌△ACD(AAS),∴AC=FG,故①正確;∵BC=AC,∴FG=BC,∵SKIPIF1<0,F(xiàn)G⊥CA,∴SKIPIF1<0,∴四邊形CBFG是矩形,∴CBF=90°,SKIPIF1<0,故②正確;∵CA=CB,SKIPIF1<0,∴SKIPIF1<0,故③正確;∵SKIPIF1<0,∴△ACD∽△FEQ,∴AC:AD=FE:FQ,∴AD?FE=AD2=FQ?AC,故④正確;∴正確的有①②③④.故選:D.【點(diǎn)睛】本題考查正方形的性質(zhì),矩形的判定和性質(zhì),三角形全等的判定和性質(zhì),三角形相似的判定和性質(zhì)等知識(shí).利用數(shù)形結(jié)合的思想是解答本題的關(guān)鍵.二、填空題5.(四川省成都市高新區(qū)2021-2022學(xué)年九年級(jí)上學(xué)期期末數(shù)學(xué)試題)如圖,四邊形ABCD是邊長為SKIPIF1<0cm的菱形,其中對(duì)角線BD的長為2cm,則菱形ABCD的面積為_____cm2.【答案】4【解析】【分析】首先根據(jù)菱形的性質(zhì)可得BO=DO,AC⊥DB,AO=CO,然后再根據(jù)勾股定理計(jì)算出AO長,進(jìn)而得到答案.【詳解】解:∵四邊形ABCD是菱形,∴BO=DO,AC⊥DB,AO=CO,∵BD=2cm,∴BO=1cm,∵AB=SKIPIF1<0cm,∴AO=SKIPIF1<0=SKIPIF1<0=2(cm),∴AC=2AO=4cm.∴S菱形ABCD=SKIPIF1<0(cm2).故答案為:4.【點(diǎn)睛】本題考查了菱形的性質(zhì)以及勾股定理;解題的關(guān)鍵是熟悉菱形的面積公式和直角三角形三邊之間的關(guān)系.6.(2021·廣東南?!ざ?如圖,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知BF=6cm,且tan∠BAF=SKIPIF1<0,則折痕AE長是________.【答案】SKIPIF1<0【解析】【分析】由折疊的性質(zhì)得AF=AD,EF=DE,由矩形的性質(zhì)得AF=AD=BC,DC=AB,∠B=∠C=∠D=90°,再由SKIPIF1<0解得AB的值,由勾股定理得AF,知AD,CF的值,設(shè)EF=DE=xcm,則CE=AB﹣DE=(8﹣x)cm,然后在Rt△EFC中,由勾股定理求出x的值,在Rt△ADE中,由勾股定理得SKIPIF1<0,計(jì)算求解即可.【詳解】解:由折疊的性質(zhì)得:AF=AD,EF=DE∵四邊形ABCD為矩形∴AF=AD=BC,DC=AB,∠B=∠C=∠D=90°∵SKIPIF1<0∴SKIPIF1<0由勾股定理得SKIPIF1<0(cm)∴AD=BC=10(cm)∴CF=BC﹣BF=4(cm)設(shè)EF=DE=xcm,則CE=(8﹣x)cm在Rt△EFC中,由勾股定理得x2=42+(8﹣x)2解得:x=5∴DE=5cm在Rt△ADE中,由勾股定理得SKIPIF1<0(cm)故答案為:SKIPIF1<0cm.【點(diǎn)睛】本題考查了矩形的性質(zhì),折疊的性質(zhì),勾股定理,正切.解題的關(guān)鍵在于找出線段的數(shù)量關(guān)系,多次運(yùn)用勾股定理求解.7.(2021·廣東·佛山市三水區(qū)三水中學(xué)附屬初中二模)如圖,Rt△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)P為AB邊上任一點(diǎn),過P分別作PE⊥AC于E,PF⊥BC于F,則線段EF的最小值是_________________.【答案】SKIPIF1<0【解析】【分析】證四邊形PECF是矩形,根據(jù)矩形的性質(zhì)得出EF=CP,根據(jù)垂線段最短得出CP⊥AB時(shí),CP最短,然后根據(jù)三角形的面積公式求出此時(shí)CP值即可.【詳解】解:連接CP,∵∠ACB=90°,AC=3,BC=4,由勾股定理得:AB=5,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠ACB=90°,∴四邊形EPFC是矩形,∴EF=CP,當(dāng)CP⊥AB時(shí),CP最小,即EF最小,根據(jù)三角形面積公式得:SKIPIF1<0AC×BC=SKIPIF1<0AB×CP,∴CP=SKIPIF1<0,故答案為:SKIPIF1<0.【點(diǎn)睛】本題考查了勾股定理,三角形的面積,矩形的判定與性質(zhì),垂線段最短等知識(shí)點(diǎn);能求出EF最短時(shí)P點(diǎn)的位置是解此題的關(guān)鍵.8.(2021·廣東東莞·二模)如圖,已知正方形ABCD邊長為3,點(diǎn)E在AB邊上且BE=1,P、Q分別是邊BC,CD的動(dòng)點(diǎn)(均不與頂點(diǎn)重合),當(dāng)四邊形AEPQ的周長最小時(shí),四邊形AEPQ的面積是______.【答案】SKIPIF1<0##SKIPIF1<0##SKIPIF1<0【解析】【分析】根據(jù)最短路徑的求法,先確定點(diǎn)E關(guān)于BC的對(duì)稱點(diǎn)E′,再確定點(diǎn)A關(guān)于DC的對(duì)稱點(diǎn)A′,連接A′E′即可得出P,Q的位置;再根據(jù)相似得出相應(yīng)的線段長從而可求得四邊形AEPQ的面積.【詳解】解:如圖所示:作E關(guān)于BC的對(duì)稱點(diǎn)E′,點(diǎn)A關(guān)于DC的對(duì)稱點(diǎn)A′,此時(shí)四邊形AEPQ的周長最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中點(diǎn),∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0∴SKIPIF1<0∴DQ=SKIPIF1<0AE′=2,∵BP∥AA′,∴△BE′P∽△AE′A′,∴SKIPIF1<0=SKIPIF1<0,即SKIPIF1<0=SKIPIF1<0,BP=SKIPIF1<0,S四邊形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣S△BEP=SKIPIF1<0=SKIPIF1<0=SKIPIF1<0.故答案為:SKIPIF1<0【點(diǎn)睛】此題考查軸對(duì)稱、相似三角形的判定及性質(zhì)、平行線的性質(zhì)等知識(shí),利用軸對(duì)稱作出輔助線確定得出P、Q的位置是解題關(guān)鍵.三、解答題9.(2021·廣東·一模)如圖,在矩形ABCD中,AD<2AB,點(diǎn)E是AD的中點(diǎn),連接BE,將△ABE沿BE折疊后得到△GBE,延長BG交DC于點(diǎn)F,連接EF.(1)求證:△EGF≌△EDF;(2)若點(diǎn)F是CD的中點(diǎn),BC=8,求CD的長.【答案】(1)見解析(2)4SKIPIF1<0【解析】【分析】(1)由翻折和矩形的性質(zhì)可知∠EGF=∠D=90°,EG=ED,可通過HL證明Rt△EGF≌Rt△EDF;(2)根據(jù)點(diǎn)F是CD的中點(diǎn)知:CF=SKIPIF1<0CD,BF=SKIPIF1<0,在Rt△BCF中,利用勾股定理即可列出方程.(1)證明:∵將△ABE沿BE折疊后得到△GBE,∴∠BGE=∠A,AE=GE,∵四邊形ABCD是矩形,∴∠A=∠D=90°,∴∠EGF=∠D=90°,∵點(diǎn)E是AD的中點(diǎn),∴EA=ED,∴EG=ED,在Rt△EGF與Rt△EDF中,SKIPIF1<0∴Rt△EGF≌Rt△EDF(HL).(2)由(1)知Rt△EGF≌Rt△EDF,∴GF=DF,∵點(diǎn)F是CD的中點(diǎn),∴GF=DF=CF=SKIPIF1<0,在矩形ABCD中,∠C=90°,AB=CD,又由折疊可知AB=GB,∴GB=CD,∴BF=GB+GF=SKIPIF1<0,在Rt△BCF中,由勾股定理得:∴SKIPIF1<0,∵CD>0,∴CD=SKIPIF1<0.【點(diǎn)睛】本題主要考查了矩形的性質(zhì),全等三角形的判定與性質(zhì),勾股定理等知識(shí),明確翻折前后對(duì)應(yīng)邊相等是解題的關(guān)鍵.10.(2022·湖南·長沙市湘一立信實(shí)驗(yàn)學(xué)校八年級(jí)期末)如圖,平行四邊形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,AB⊥AC,AB=3,BC=5,點(diǎn)P從點(diǎn)A出發(fā),沿AD以每秒1個(gè)單位的速度向終點(diǎn)D運(yùn)動(dòng).連接PO并延長交BC于點(diǎn)Q.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.(1)則CQ的長度為(用含t的式子表示);(2)當(dāng)四邊形ABQP是平行四邊形時(shí),求t的值;(3)當(dāng)點(diǎn)O在線段AP的垂直平分線上時(shí),求t的值.【答案】(1)5﹣t;(2)當(dāng)tSKIPIF1<0SKIPIF1<0秒時(shí),四邊形ABQP是平行四邊形;(3)SKIPIF1<0【解析】【分析】(1)利用平行四邊形的性質(zhì)可證△APO≌△CQO,則AP=CQ,再利用SKIPIF1<0即可得出答案;(2)由平行四邊形性質(zhì)可知AP∥BQ,當(dāng)AP=BQ時(shí),四邊形ABQP是平行四邊形,建立一個(gè)關(guān)于t的方程,解方程即可求出t的值;(3)在Rt△ABC中,由勾股定理求出AC的長度,進(jìn)而求出AO的長度,然后利用SKIPIF1<0的面積求出EF的長度,進(jìn)而求出OE的長度,而AE可以用含t的代數(shù)式表示出來,最后在SKIPIF1<0中利用勾股定理即可求值.(1)∵四邊形ABCD是平行四邊形,∴OA=OC,AD∥BC,∴∠PAO=∠QCO,∵∠AOP=∠COQ,∴△APO≌△CQO(ASA),∴AP=CQ=t,∵BC=5,∴BQ=BC-CQ=5﹣t;故答案為:5﹣t;(2)∵AP∥BQ,當(dāng)AP=BQ時(shí),四邊形ABQP是平行四邊形,即t=5﹣t,t=SKIPIF1<0,∴當(dāng)t為SKIPIF1<0秒時(shí),四邊形ABQP是平行四邊形;(3)t=SKIPIF1<0,如圖,在Rt△ABC中,∵AB=3,BC=5,∴AC=SKIPIF1<0∴AO=CO=SKIPIF1<0AC=2,SKIPIF1<0SKIPIF1<0∴3×4=5×EF,∴SKIPIF1<0,∴SKIPIF1<0,∵OE是AP的垂直平分線,∴AE=SKIPIF1<0AP=SKIPIF1<0t,∠AEO=90°,由勾股定理得:AE2+OE2=AO2,SKIPIF1<0SKIPIF1<0或SKIPIF1<0(舍去)∴當(dāng)SKIPIF1<0秒時(shí),點(diǎn)O在線段AP的垂直平分線上.【點(diǎn)睛】本題主要考查了平行四邊形的判定及性質(zhì)以及動(dòng)點(diǎn)問題,掌握平行四邊形的判定及性質(zhì),以及勾股定理是解題的關(guān)鍵.11.(2022·云南省昆明市第二中學(xué)九年級(jí)期末)如圖,在矩形SKIPIF1<0中,對(duì)角線SKIPIF1<0的垂直平分線與邊SKIPIF1<0、SKIPIF1<0分別交于點(diǎn)SKIPIF1<0、SKIPIF1<0,連結(jié)SKIPIF1<0、SKIPIF1<0.(1)試判斷四邊形SKIPIF1<0的形狀,并說明理由;(2)若SKIPIF1<0,SKIPIF1<0,求SKIPIF1<0的長;(3)連結(jié)SKIPIF1<0,若SKIPIF1<0,求SKIPIF1<0的值.【答案】(1)四邊形SKIPIF1<0是菱形.理由見解析(2)SKIPIF1<0(3)SKIPIF1<0【解析】【分析】(1)由矩形的性質(zhì)及線段垂直平分線的性質(zhì),可證得SKIPIF1<0,從而得AE=CF,即可證得四邊形AFCE是平行四邊形,進(jìn)而可得四邊形AFCE是菱形;(2)設(shè)SKIPIF1<0,SKIPIF1<0,由四邊形AECF是菱形及勾股定理可求得m,從而可得BC的長,由勾股定理可求得AC的長,從而可得OC的長,再由勾股定理求得OF的長,最后求得EF的長;(3)設(shè)SKIPIF1<0,SKIPIF1<0,由矩形的性質(zhì)及BE⊥CE,易得SKIPIF1<0,由相似三角形的性質(zhì)可得關(guān)于a、b的方程,即可求得SKIPIF1<0的值,從而求得結(jié)果.(1)四邊形SKIPIF1<0是菱形.理由如下:∵四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0是SKIPIF1<0的垂直平分線,∴SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∴四邊形SKIPIF1<0是平行四邊形,又∵SKIPIF1<0,∴四邊形SKIPIF1<0是菱形;(2)∵SKIPIF1<0,∴設(shè)SKIPIF1<0,SKIPIF1<0,∵四邊形SKIPIF1<0是菱形,∴SKIPIF1<0,EF=2OE=2OF,SKIPIF1<0,AC⊥EF,在SKIPIF1<0中,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,在Rt△OCF中,由勾股定理得:∴SKIPIF1<0,∴SKIPIF1<0.(3)設(shè)SKIPIF1<0,SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.∵四邊形SKIPIF1<0是矩形,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0或SKIPIF1<0(舍去),∴SKIPIF1<0.【點(diǎn)睛】本題考查了矩形的性質(zhì),菱形的判定與性質(zhì),全等三角形的判定與性質(zhì),相似三角形的判定與性質(zhì),勾股定理,解方程等知識(shí),熟練運(yùn)用這些知識(shí)是解決問題的關(guān)鍵.根據(jù)問題的特點(diǎn)設(shè)元是本題的特點(diǎn).12.(2022·成都市龍泉驛區(qū)四川師范大學(xué)東區(qū)上東學(xué)校九年級(jí)期末)如圖,在矩形ABCD中,AB=6cm,BC=8cm.如果點(diǎn)E由點(diǎn)B出發(fā)沿BC方向向點(diǎn)C勻速運(yùn)動(dòng),同時(shí)點(diǎn)F由點(diǎn)D出發(fā)沿DA方向向點(diǎn)A勻速運(yùn)動(dòng),它們的速度分別為2cm和1cm,F(xiàn)Q⊥BC,分別交AC、BC于點(diǎn)P和點(diǎn)Q,連接EF、EP(s)(0<t<4).(1)t為何值時(shí)四邊形ABEF是矩形?四邊形ABEF能否為正方形?并說明理由.(2)連接DQ,若四邊形EQDF為平行四邊形,求t的值.(3)運(yùn)動(dòng)時(shí)間t為何值時(shí),EF⊥AC?【答案】(1)t=SKIPIF1<0時(shí),四邊形ABEF是矩形;四邊形ABEF不能為正方形,理由見解析.(2)t值為2;(3)運(yùn)動(dòng)時(shí)間t為SKIPIF1<0s時(shí),EF⊥AC.【解析】【分析】(1)由四邊形ABEF是矩形,可得:AF=BE,然后分別用含有t的式子表示A與BE即可求t的值;若四邊形ABEF為正方形,則AB=BE=AF,即可判斷;(2)由四邊形EQDF為平行四邊形,可得:DF=EQ,然后分別用含有t的式子表示DF與EQ即可求t的值;(3)先確定出AC=10,進(jìn)而得出∠ACB的余弦值,利用三角函數(shù)得出CP,CG,即可得出PG,再判斷出△PFG∽△EFQ,建立方程即可得出結(jié)論,(1)解:在矩形ABCD中,AB=6cm,BC=8cm,∵點(diǎn)E由點(diǎn)B出發(fā)沿BC方向向點(diǎn)C勻速運(yùn)動(dòng),同時(shí)點(diǎn)F由點(diǎn)D出發(fā)沿DA方向向點(diǎn)A勻速運(yùn)動(dòng),它們的速度分別為2cm/s和1cm/s,∴t秒后,BE=2t,AF=AD-DF=8-t,∵四邊形ABEF是矩形,∴BE=AF,即2t=8-t,解得t=SKIPIF1<0,故t=SKIPIF1<0時(shí),四邊形ABEF是矩形;四邊形ABEF不能為正方形.理由:當(dāng)t=SKIPIF1<0時(shí),BE=AF=SKIPIF1<0,故四邊形ABEF不能為正方形.(2)解:在矩形ABCD中,AB=6cm,BC=8cm,∴AB=CD=6cm,AD=BC=8cm,∠BAD=∠ADC=∠DCB=∠B=90°,由勾股定理得:AC=10,∵FQ⊥BC,∴∠FQC=90°,∴四邊形CDFQ是矩形,∴DF=QC,DC=FQ=6cm,t秒后,BE=2t,DF=QC=t,∴EQ=BC?BE?QC=8?3t,∵四邊形EQDF為平行四邊形,∴FD=EQ,即:8?3t=t,解得:t=2,故t值為2;(3)解:在矩形ABCD中,AB=6cm,BC=8cm,根據(jù)勾股定理得,AC=10cm,∵∠B=∠D=∠BCD=90°,F(xiàn)Q⊥BC于Q,∴四邊形CDFQ是矩形,∴CQ=DF,由運(yùn)動(dòng)知,BE=2t,DF=t,∴CQ=t,CE=BC?BE=8?2t,AF=8?t,∴EQ=CE?CQ=8?3t,在Rt△ABC中,cos∠ACB=SKIPIF1<0,在Rt△CPQ中,cos∠ACB=SKIPIF1<0,∴CP=SKIPIF1<0t,∵EF⊥AC,∴∠CGE=90°=∠ABC,∴∠ACB+∠FEQ=90°,∵∠ACB+∠BAC=90°,∴∠FEQ=∠BAC,∴△ABC∽△EQF.∴SKIPIF1<0,即SKIPIF1<0,∴EQ=SKIPIF1<0,∴8?3t=SKIPIF1<0,解得:t=SKIPIF1<0s,故運(yùn)動(dòng)時(shí)間t為SKIPIF1<0s時(shí),EF⊥AC.【點(diǎn)睛】此題是四邊形的綜合題,主要考查了矩形的性質(zhì),平行四邊形的性質(zhì),動(dòng)點(diǎn)問題,相似三角形的判定與性質(zhì),綜合性較強(qiáng),難度適中.13.(2021·廣東南?!ざ?如圖1,已知正方形ABCD,AB=4,以頂點(diǎn)B為直角頂點(diǎn)的等腰Rt△BEF繞點(diǎn)B旋轉(zhuǎn),BE=BF=SKIPIF1<0,連接AE,CF.(1)求證:△ABE≌△CBF.(2)如圖2,連接DE,當(dāng)DE=BE時(shí),求S△BCF的值.(S△BCF表示△BCF的面積)(3)如圖3,當(dāng)Rt△BEF旋轉(zhuǎn)到正方形ABCD外部,且線段AE與錢段CF存在交點(diǎn)G時(shí),若M是CD的中點(diǎn),P是線段DG上的一個(gè)動(dòng)點(diǎn),當(dāng)滿足SKIPIF1<0MP+PG的值最小時(shí),求MP的值.【答案】(1)見解析(2)2或6(3)SKIPIF1<0【解析】【分析】(1)由“SAS”可證△ABE≌△CBF;(2)由“SSS”可證△ADE≌△ABE,可得∠DAE=∠BAE=45°,可證AH=EH,由勾股定理可求BE的長,即可求解;(3)先確定點(diǎn)P的位置,過點(diǎn)B作BQ⊥CF于Q,由勾股定理可求CE的長,由平行線分線段成比例可求解.(1)證明:∵四邊形ABCD是正方形,∴AB=BC,∠ABC=90°,∵∠EBF=90°=∠ABC,∴∠ABE=∠CBF,又∵BE=BF,AB=BC,在△ABE和△CBF中,SKIPIF1<0,∴△ABE≌△CBF(SAS);(2)解:如圖2,過點(diǎn)E作EH⊥AB于H,∵△ABE≌△CBF,∴S△ABE=S△CBF,∵AD=AB,AE=AE,DE=BE,∴△ADE≌△ABE(SSS),∴∠DAE=∠BAE=45°,∵EH⊥AB,∴∠EAB=∠AEH=45°,∴AH=EH,∵BE2=BH2+EH2,∴10=EH2+(4﹣EH)2,∴EH=1或3,當(dāng)EH=1時(shí)∴S△ABE=S△BCF=SKIPIF1<0AB×EH=SKIPIF1<0×4×1=2,當(dāng)EH=3時(shí)∴S△ABE=S△BCF=SKIPIF1<0AB×EH=SKIPIF1<0×4×3=6,∴S△BCF的值是2或6;(3)解:如圖3,過點(diǎn)P作PK⊥AE于K,由(1)同理可得△ABE≌△CBF,∴∠EAB=∠BCF,∵∠BAE+∠CAE+∠ACB=90°,∴∠BCF+∠CAE+∠ACB=90°,∴∠AGC=90°,∵∠AGC=∠ADC=90°,∴點(diǎn)A,點(diǎn)G,點(diǎn)C,點(diǎn)D四點(diǎn)共圓,∴∠ACD=∠AGD=45°,∵PK⊥AG,∴∠PGK=∠GPK=45°,∴PK=GK=SKIPIF1<0PG,∴MP+SKIPIF1<0PG=MP+PK,∴當(dāng)點(diǎn)M,點(diǎn)P,點(diǎn)K三點(diǎn)共線時(shí),且點(diǎn)E,點(diǎn)G重合時(shí),MP+SKIPIF1<0PG值最小,即SKIPIF1<0MP+PG最小,如圖4,過點(diǎn)B作BQ⊥CF于Q,∵BE=BF=SKIPIF1<0,∠EBF=90°,BQ⊥EF,∴EF=2SKIPIF1<0,BQ=EQ=FQ=SKIPIF1<0,∵CQ=SKIPIF1<0,∴CE=CQ﹣EQ=SKIPIF1<0,∵M(jìn)K⊥AE,CE⊥AE,∴MK∥CE,∴SKIPIF1<0,又∵M(jìn)是CD的中點(diǎn),∴DC=2DM,∴MP=SKIPIF1<0CE=SKIPIF1<0.【點(diǎn)睛】本題主要考查勾股定理、全等三角形的性質(zhì)與判定、正方形的性質(zhì)及圓的基本性質(zhì),熟練掌握勾股定理、全等三角形的性質(zhì)與判定、正方形的性質(zhì)及圓的基本性質(zhì)是解題的關(guān)鍵.14.(2021·廣西·南寧二中九年級(jí)開學(xué)考試)(1)感知:如圖①,在正方形ABCD中,E為邊AB上一點(diǎn)(點(diǎn)E不與點(diǎn)AB重合),連接DE,過點(diǎn)A作SKIPIF1<0,交BC于點(diǎn)F,證明:SKIPIF1<0.(2)探究:如圖②,在正方形ABCD中,E,F(xiàn)分別為邊AB,CD上的點(diǎn)(點(diǎn)E,F(xiàn)不與正方形的頂點(diǎn)重合),連接EF,作EF的垂線分別交邊AD,BC于點(diǎn)G,H,垂足為O.若E為AB中點(diǎn),SKIPIF1<0,SKIPIF1<0,求GH的長.(3)應(yīng)用:如圖③,在正方形ABCD中,點(diǎn)E,F(xiàn)分別在BC,CD上,SKIPIF1<0,BF,AE相交于點(diǎn)G.若SKIPIF1<0,圖中陰影部分的面積與正方形ABCD的面積之比為2:3,則SKIPIF1<0的面積為______,SKIPIF1<0的周長為______.【答案】(1)見解析;(2)SKIPIF1<0;(3)SKIPIF1<0,SKIPIF1<0【解析】【分析】感知:由正方形的性質(zhì)得出AD=AB,∠DAE=∠ABF=90°,證得∠ADE=∠BAF,由ASA證得△DAE≌△ABF(ASA),即可得出結(jié)論;探究:分別過點(diǎn)A、D作SKIPIF1<0,分別交BC、AB于點(diǎn)N、M,由正方形的性質(zhì)得出SKIPIF1<0,AB=CD,∠DAB=∠B=90°,推出四邊形DMEF是平行四邊形,ME=DF=1,DM=EF,證出DM⊥GH,同理,四邊形AGHN是平行四邊形,GH=AN,AN⊥DM,證得∠ADM=∠BAN,由ASA證得△ADM≌△BAN,得出DM=AN,推出DM=GH,由E為AB中點(diǎn),得出AE=SKIPIF1<0AB=2,則AM=AE﹣ME=1,由勾股定理得出DM=SKIPIF1<0,即可得出結(jié)果;應(yīng)用:S正方形ABCD=9,由陰影部分的面積與正方形ABCD的面積之比為2:3,得出陰影部分的面積為6,空白部分的面積為3,由SAS證得△ABE≌△BCF,得出∠BEA=∠BFC,S△ABG=S四邊形CEGF,則S△ABG=SKIPIF1<0,∠FBC+∠BEA=90°,則∠BGE=90°,∠AGB=90°,設(shè)AG=a,BG=b,則SKIPIF1<0,2ab=6,由勾股定理得出a2+b2=AB2=32,a2+2ab+b2=15,即(a+b)2=15,得出a+b=SKIPIF1<0,即可得出結(jié)果.【詳解】證明:∵四邊形ABCD是正方形,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0≌SKIPIF1<0(ASA),∴SKIPIF1<0.探究:解:分別過點(diǎn)A、D作SKIPIF1<0,SKIPIF1<0,分別交BC、AB于點(diǎn)N、M,如圖②所示:∵四邊形ABCD是正方形,∴SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,∴四邊形DMEF是平行四邊形,∴SKIPIF1<0,SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,同理,四邊形AGHN是平行四邊形,∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0,在SKIPIF1<0和SKIPIF1<0中,SKIPIF1<0,∴SKIPIF1<0≌SKIPIF1<0(ASA),∴SKIPIF1<0,∴SKIPIF1<0,∵E為AB中點(diǎn),∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0.應(yīng)用:解:∵AB=3,∴S正方形ABCD=3×3=9,∵陰影部分的面積與正方形ABCD的面積之比為2:3,∴陰影部分的面積為:SKIPIF1<0×9=6,∴空白部分的面積為:9﹣6=3,在△ABE和△BCF中,SKIPIF1<0,∴△ABE≌△BCF(SAS),∴∠BEA=∠BFC,S△ABG=S四邊形CEGF,∴S△ABG=SKIPIF1<0×3=SKIPIF1<0,∠FBC+∠BEA=90°,∴∠BGE=90°,∴∠AGB=90°,設(shè)AG=a,BG=b,則SKIPIF1<0ab=SKIPIF1<0,∴2ab=6,∵a2+b2=AB2=32,∴a2+2ab+b2=32+6=15,即(a+b)2=15,而SKIPIF1<0∴a+b=SKIPIF1<0,即BG+AG=SKIPIF1<0,∴△ABG的周長為SKIPIF1<0+3,故答案為:SKIPIF1<0,SKIPIF1<0.【點(diǎn)睛】本題考查了正方形的性質(zhì)、平行四邊形的判定與性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、三角形面積與正方形面積的計(jì)算等知識(shí),熟練掌握正方形的性質(zhì),通過作輔助線構(gòu)建平行四邊形是解題的關(guān)鍵.15.(2022·重慶大渡口·九年級(jí)階段練習(xí))如圖,四邊形ABCD是菱形,其中SKIPIF1<0,點(diǎn)E在對(duì)角線AC上,點(diǎn)F在射線CB上運(yùn)動(dòng),連接EF,作SKIPIF1<0,交DC延長線于點(diǎn)G.(1)試判斷SKIPIF1<0的形狀,并說明理由;(2)圖中SKIPIF1<0,SKIPIF1<0.①當(dāng)SKIPIF1<0時(shí),以點(diǎn)B為原點(diǎn),射線BC為正半軸建立平面直角坐標(biāo)系.平面內(nèi)是否存在一點(diǎn)M,使得以點(diǎn)M、E、F、G為頂點(diǎn)的四邊形與菱形ABCD相似?若存在,求出點(diǎn)M的坐標(biāo),若不存在,說明理由;②記點(diǎn)F關(guān)于直線AB的軸對(duì)稱點(diǎn)為點(diǎn)N.若點(diǎn)N落在SKIPIF1<0的內(nèi)部(不含邊界),求CF的取值范圍.【答案】(1)SKIPIF1<0是等邊三角形,理由見解析(2)①SKIPIF1<0或SKIPIF1<0或SKIPIF1<0;②SKIPIF1<0【解析】【分析】(1)過點(diǎn)E作SKIPIF1<0,交FC于M,根據(jù)菱形的性質(zhì)得SKIPIF1<0,故SKIPIF1<0,推出SKIPIF1<0,由SKIPIF1<0得SKIPIF1<0,故SKIPIF1<0是等邊三角形,根據(jù)ASA證明SKIPIF1<0,由全等三角形的性質(zhì)得SKIPIF1<0,即可得出答案;(2)①首先求出點(diǎn)E的坐標(biāo),求出CD的函數(shù)解析式,根據(jù)SKIPIF1<0求出點(diǎn)G的坐標(biāo),從而求出點(diǎn)M的坐標(biāo);②找出點(diǎn)N落在DC上的位置,求出CF的長度,當(dāng)N落在DE上時(shí),求出CF的長度,從而確定CF的范圍.(1)SKIPIF1<0
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 桌椅轉(zhuǎn)讓托管合同范本
- 學(xué)習(xí)雷鋒好榜樣
- 202520監(jiān)控系統(tǒng)設(shè)備購銷合同范本
- 2025合同解除與訴訟時(shí)效
- 2025園林景觀建設(shè)合同范本
- 畢業(yè)答辯新擬態(tài)風(fēng)模板
- 幼師舞蹈基礎(chǔ)知到課后答案智慧樹章節(jié)測試答案2025年春東明縣職業(yè)中等專業(yè)學(xué)校
- 2025年上海市存量住房買賣經(jīng)紀(jì)服務(wù)合同
- 路橋勞動(dòng)合同范本
- 建材聘用店長合同范本
- 中藥房中藥斗譜編排規(guī)則和斗譜圖
- TY/T 1105-2023群眾體育賽事活動(dòng)安全評(píng)估技術(shù)導(dǎo)則
- 半自動(dòng)打包機(jī)維修手冊(cè)
- 侵權(quán)責(zé)任法各章課件
- 注冊(cè)建造師考前培訓(xùn)項(xiàng)目管理丁士昭
- 職業(yè)健康職業(yè)衛(wèi)生檢查和處理記錄
- 談判:如何在博弈中獲得更多
- 深化安全風(fēng)險(xiǎn)管理的“四維度量”
- 隧道地表注漿施工技術(shù)交底
- GB/T 8905-2012六氟化硫電氣設(shè)備中氣體管理和檢測導(dǎo)則
- GB/T 39430-2020高可靠性齒輪毛坯技術(shù)要求
評(píng)論
0/150
提交評(píng)論