浙江省寧波市慈溪市2022-2023學年高三下學期第六次檢測數學試卷含解析_第1頁
浙江省寧波市慈溪市2022-2023學年高三下學期第六次檢測數學試卷含解析_第2頁
浙江省寧波市慈溪市2022-2023學年高三下學期第六次檢測數學試卷含解析_第3頁
浙江省寧波市慈溪市2022-2023學年高三下學期第六次檢測數學試卷含解析_第4頁
浙江省寧波市慈溪市2022-2023學年高三下學期第六次檢測數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023年高考數學模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線的左右焦點分別為,,以線段為直徑的圓與雙曲線在第二象限的交點為,若直線與圓相切,則雙曲線的漸近線方程是()A. B. C. D.2.運行如圖所示的程序框圖,若輸出的值為300,則判斷框中可以填()A. B. C. D.3.設為虛數單位,則復數在復平面內對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.已知集合,集合,則()A. B. C. D.5.我國古代數學巨著《九章算術》中,有如下問題:“今有女子善織,日自倍,五日織五尺,問日織幾何?”這個問題用今天的白話敘述為:有一位善于織布的女子,每天織的布都是前一天的2倍,已知她5天共織布5尺,問這位女子每天分別織布多少?根據上述問題的已知條件,若該女子共織布尺,則這位女子織布的天數是()A.2 B.3 C.4 D.16.在復平面內,復數(為虛數單位)的共軛復數對應的點位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.已知拋物線:,點為上一點,過點作軸于點,又知點,則的最小值為()A. B. C.3 D.58.已知復數,,則()A. B. C. D.9.已知函數若關于的方程有六個不相等的實數根,則實數的取值范圍為()A. B. C. D.10.設函數,則函數的圖像可能為()A. B. C. D.11.在滿足,的實數對中,使得成立的正整數的最大值為()A.5 B.6 C.7 D.912.已知函數(表示不超過x的最大整數),若有且僅有3個零點,則實數a的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列的前項和且,設,則的值等于_______________.14.在的二項展開式中,只有第5項的二項式系數最大,則該二項展開式中的常數項等于_____.15.已知數列為等差數列,數列為等比數列,滿足,其中,,則的值為_______________.16.某校為了解家長對學校食堂的滿意情況,分別從高一、高二年級隨機抽取了20位家長的滿意度評分,其頻數分布表如下:滿意度評分分組合計高一1366420高二2655220根據評分,將家長的滿意度從低到高分為三個等級:滿意度評分評分70分70評分90評分90分滿意度等級不滿意滿意非常滿意假設兩個年級家長的評價結果相互獨立,根據所給數據,以事件發(fā)生的頻率作為相應事件發(fā)生的概率.現從高一、高二年級各隨機抽取1名家長,記事件:“高一家長的滿意度等級高于高二家長的滿意度等級”,則事件發(fā)生的概率為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)求曲線在點處的切線方程;(2)求函數的極小值;(3)求函數的零點個數.18.(12分)已知函數,其中,為自然對數的底數.(1)當時,證明:對;(2)若函數在上存在極值,求實數的取值范圍。19.(12分)在全面抗擊新冠肺炎疫情這一特殊時期,我市教育局提出“停課不停學”的口號,鼓勵學生線上學習.某校數學教師為了調查高三學生數學成績與線上學習時間之間的相關關系,對高三年級隨機選取45名學生進行跟蹤問卷,其中每周線上學習數學時間不少于5小時的有19人,余下的人中,在檢測考試中數學平均成績不足120分的占,統(tǒng)計成績后得到如下列聯表:分數不少于120分分數不足120分合計線上學習時間不少于5小時419線上學習時間不足5小時合計45(1)請完成上面列聯表;并判斷是否有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”;(2)①按照分層抽樣的方法,在上述樣本中從分數不少于120分和分數不足120分的兩組學生中抽取9名學生,設抽到不足120分且每周線上學習時間不足5小時的人數是,求的分布列(概率用組合數算式表示);②若將頻率視為概率,從全校高三該次檢測數學成績不少于120分的學生中隨機抽取20人,求這些人中每周線上學習時間不少于5小時的人數的期望和方差.(下面的臨界值表供參考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(參考公式其中)20.(12分)已知是等差數列,滿足,,數列滿足,,且是等比數列.(1)求數列和的通項公式;(2)求數列的前項和.21.(12分)已知點為圓:上的動點,為坐標原點,過作直線的垂線(當、重合時,直線約定為軸),垂足為,以為極點,軸的正半軸為極軸建立極坐標系.(1)求點的軌跡的極坐標方程;(2)直線的極坐標方程為,連接并延長交于,求的最大值.22.(10分)(某工廠生產零件A,工人甲生產一件零件A,是一等品、二等品、三等品的概率分別為,工人乙生產一件零件A,是一等品、二等品、三等品的概率分別為.己知生產一件一等品、二等品、三等品零件A給工廠帶來的效益分別為10元、5元、2元.(1)試根據生產一件零件A給工廠帶來的效益的期望值判斷甲乙技術的好壞;(2)為鼓勵工人提高技術,工廠進行技術大賽,最后甲乙兩人進入了決賽.決賽規(guī)則是:每一輪比賽,甲乙各生產一件零件A,如果一方生產的零件A品級優(yōu)干另一方生產的零件,則該方得分1分,另一方得分-1分,如果兩人生產的零件A品級一樣,則兩方都不得分,當一方總分為4分時,比賽結束,該方獲勝.Pi+4(i=4,3,2,…,4)表示甲總分為i時,最終甲獲勝的概率.①寫出P0,P8的值;②求決賽甲獲勝的概率.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

先設直線與圓相切于點,根據題意,得到,再由,根據勾股定理求出,從而可得漸近線方程.【詳解】設直線與圓相切于點,因為是以圓的直徑為斜邊的圓內接三角形,所以,又因為圓與直線的切點為,所以,又,所以,因此,因此有,所以,因此漸近線的方程為.故選B【點睛】本題主要考查雙曲線的漸近線方程,熟記雙曲線的簡單性質即可,屬于??碱}型.2、B【解析】

由,則輸出為300,即可得出判斷框的答案【詳解】由,則輸出的值為300,,故判斷框中應填?故選:.【點睛】本題考查了程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的結論,是基礎題.3、A【解析】

利用復數的除法運算化簡,求得對應的坐標,由此判斷對應點所在象限.【詳解】,對應的點的坐標為,位于第一象限.故選:A.【點睛】本小題主要考查復數除法運算,考查復數對應點所在象限,屬于基礎題.4、C【解析】

求出集合的等價條件,利用交集的定義進行求解即可.【詳解】解:∵,,∴,故選:C.【點睛】本題主要考查了對數的定義域與指數不等式的求解以及集合的基本運算,屬于基礎題.5、B【解析】

將問題轉化為等比數列問題,最終變?yōu)榍蠼獾缺葦盗谢玖康膯栴}.【詳解】根據實際問題可以轉化為等比數列問題,在等比數列中,公比,前項和為,,,求的值.因為,解得,,解得.故選B.【點睛】本題考查等比數列的實際應用,難度較易.熟悉等比數列中基本量的計算,對于解決實際問題很有幫助.6、D【解析】

將復數化簡得,,即可得到對應的點為,即可得出結果.【詳解】,對應的點位于第四象限.故選:.【點睛】本題考查復數的四則運算,考查共軛復數和復數與平面內點的對應,難度容易.7、C【解析】

由,再運用三點共線時和最小,即可求解.【詳解】.故選:C【點睛】本題考查拋物線的定義,合理轉化是本題的關鍵,注意拋物線的性質的靈活運用,屬于中檔題.8、B【解析】分析:利用的恒等式,將分子、分母同時乘以,化簡整理得詳解:,故選B點睛:復數問題是高考數學中的??紗栴},屬于得分題,主要考查的方面有:復數的分類、復數的幾何意義、復數的模、共軛復數以及復數的乘除運算,在運算時注意符號的正、負問題.9、B【解析】

令,則,由圖象分析可知在上有兩個不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個不同交點,要使關于的方程有六個不相等的實數根,則有兩個不同的根,設由根的分布可知,,解得.故選:B.【點睛】本題考查復合方程根的個數問題,涉及到一元二次方程根的分布,考查學生轉化與化歸和數形結合的思想,是一道中檔題.10、B【解析】

根據函數為偶函數排除,再計算排除得到答案.【詳解】定義域為:,函數為偶函數,排除,排除故選【點睛】本題考查了函數圖像,通過函數的單調性,奇偶性,特殊值排除選項是常用的技巧.11、A【解析】

由題可知:,且可得,構造函數求導,通過導函數求出的單調性,結合圖像得出,即得出,從而得出的最大值.【詳解】因為,則,即整理得,令,設,則,令,則,令,則,故在上單調遞增,在上單調遞減,則,因為,,由題可知:時,則,所以,所以,當無限接近時,滿足條件,所以,所以要使得故當時,可有,故,即,所以:最大值為5.故選:A.【點睛】本題主要考查利用導數求函數單調性、極值和最值,以及運用構造函數法和放縮法,同時考查轉化思想和解題能力.12、A【解析】

根據[x]的定義先作出函數f(x)的圖象,利用函數與方程的關系轉化為f(x)與g(x)=ax有三個不同的交點,利用數形結合進行求解即可.【詳解】當時,,當時,,當時,,當時,,若有且僅有3個零點,則等價為有且僅有3個根,即與有三個不同的交點,作出函數和的圖象如圖,當a=1時,與有無數多個交點,當直線經過點時,即,時,與有兩個交點,當直線經過點時,即時,與有三個交點,要使與有三個不同的交點,則直線處在過和之間,即,故選:A.【點睛】利用函數零點的情況求參數值或取值范圍的方法(1)直接法:直接根據題設條件構建關于參數的不等式,再通過解不等式確定參數的范圍;(2)分離參數法:先將參數分離,轉化成求函數的值域(最值)問題加以解決;(3)數形結合法:先對解析式變形,在同一平面直角坐標系中,畫出函數的圖象,然后數形結合求解.二、填空題:本題共4小題,每小題5分,共20分。13、7【解析】

根據題意,當時,,可得,進而得數列為等比數列,再計算可得,進而可得結論.【詳解】由題意,當時,,又,解得,當時,由,所以,,即,故數列是以為首項,為公比的等比數列,故,又,,所以,.故答案為:.【點睛】本題考查了數列遞推關系、函數求值,考查了推理能力與計算能力,計算得是解決本題的關鍵,屬于中檔題.14、1【解析】

由題意可得,再利用二項展開式的通項公式,求得二項展開式常數項的值.【詳解】的二項展開式的中,只有第5項的二項式系數最大,,通項公式為,令,求得,可得二項展開式常數項等于,故答案為1.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.15、【解析】

根據題意,判斷出,根據等比數列的性質可得,再令數列中的,,,根據等差數列的性質,列出等式,求出和的值即可.【詳解】解:由,其中,,可得,則,令,,可得.①又令數列中的,,,根據等差數列的性質,可得,所以.②根據①②得出,.所以.故答案為.【點睛】本題主要考查等差數列、等比數列的性質,屬于基礎題.16、0.42【解析】

高一家長的滿意度等級高于高二家長的滿意度等級有三種情況,分別求出三種情況的概率,再利用加法公式即可.【詳解】由已知,高一家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高二家長滿意等級為不滿意的概率為,滿意的概率為,非常滿意的概率為,高一家長的滿意度等級高于高二家長的滿意度等級有三種情況:1.高一家長滿意,高二家長不滿意,其概率為;2.高一家長非常滿意,高二家長不滿意,其概率為;3.高一家長非常滿意,高二家長滿意,其概率為.由加法公式,知事件發(fā)生的概率為.故答案為:【點睛】本題考查獨立事件的概率,涉及到概率的加法公式,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)極小值;(3)函數的零點個數為.【解析】

(1)求出和的值,利用點斜式可得出所求切線的方程;(2)利用導數分析函數的單調性,進而可得出該函數的極小值;(3)由當時,以及,結合函數在區(qū)間上的單調性可得出函數的零點個數.【詳解】(1)因為,所以.所以,.所以曲線在點處的切線為;(2)因為,令,得或.列表如下:0極大值極小值所以,函數的單調遞增區(qū)間為和,單調遞減區(qū)間為,所以,當時,函數有極小值;(3)當時,,且.由(2)可知,函數在上單調遞增,所以函數的零點個數為.【點睛】本題考查利用導數求函數的切線方程、極值以及利用導數研究函數的零點問題,考查分析問題和解決問題的能力,屬于中等題.18、(1)見證明;(2)【解析】

(1)利用導數說明函數的單調性,進而求得函數的最小值,得到要證明的結論;(2)問題轉化為導函數在區(qū)間上有解,法一:對a分類討論,分別研究a的不同取值下,導函數的單調性及值域,從而得到結論.法二:構造函數,利用函數的導數判斷函數的單調性求得函數的值域,再利用零點存在定理說明函數存在極值.【詳解】(1)當時,,于是,.又因為,當時,且.故當時,,即.所以,函數為上的增函數,于是,.因此,對,;(2)方法一:由題意在上存在極值,則在上存在零點,①當時,為上的增函數,注意到,,所以,存在唯一實數,使得成立.于是,當時,,為上的減函數;當時,,為上的增函數;所以為函數的極小值點;②當時,在上成立,所以在上單調遞增,所以在上沒有極值;③當時,在上成立,所以在上單調遞減,所以在上沒有極值,綜上所述,使在上存在極值的的取值范圍是.方法二:由題意,函數在上存在極值,則在上存在零點.即在上存在零點.設,,則由單調性的性質可得為上的減函數.即的值域為,所以,當實數時,在上存在零點.下面證明,當時,函數在上存在極值.事實上,當時,為上的增函數,注意到,,所以,存在唯一實數,使得成立.于是,當時,,為上的減函數;當時,,為上的增函數;即為函數的極小值點.綜上所述,當時,函數在上存在極值.【點睛】本題考查利用導數研究函數的最值,涉及函數的單調性,導數的應用,函數的最值的求法,考查構造法的應用,是一道綜合題.19、(1)填表見解析;有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”(2)①詳見解析②期望;方差【解析】

(1)完成列聯表,代入數據即可判斷;(2)利用分層抽樣可得的取值,進而得到概率,列出分布列;根據分析知,計算出期望與方差.【詳解】(1)分數不少于120分分數不足120分合計線上學習時間不少于5小時15419線上學習時間不足5小時101626合計252045有99%的把握認為“高三學生的數學成績與學生線上學習時間有關”.(2)①由分層抽樣知,需要從不足120分的學生中抽取人,的可能取值為0,1,2,3,4,,,,,所以,的分布列:②從全校不少于120分的學生中隨機抽取1人,此人每周上線時間不少于5小時的概率為,設從全校不少于120分的學生中隨機抽取20人,這些人中每周線上學習時間不少于5小時的人數為,則,故,.【點睛】本題考查了獨立性檢驗與離散型隨機變量的分布列、數學期望與方差的計算問題,屬于基礎題.20、(1),;(2)【解析】試題分析:(1)利用等差數列,等比數列的通項公式先求得公差和公比,即得到結論;(2)利用分組求和法,由等差數列及等比數列的前n項和公式即可求得數列前n項和.試題解析:(Ⅰ)設等差數列{an}的公差為d,由題意得d===1.∴an=a1+(n﹣1)d=1n設等比數列{bn﹣an}的公比為q,則q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論