信號與系統(tǒng)西安郵電習(xí)題答案_第1頁
信號與系統(tǒng)西安郵電習(xí)題答案_第2頁
信號與系統(tǒng)西安郵電習(xí)題答案_第3頁
信號與系統(tǒng)西安郵電習(xí)題答案_第4頁
信號與系統(tǒng)西安郵電習(xí)題答案_第5頁
已閱讀5頁,還剩135頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

word文檔精品文檔分享第一次1.1畫出以下各個信號的波形 [式中rtt t為斜升函數(shù)]知識要點:此題主要考察階躍函數(shù)和單位階躍序列的性質(zhì),包括t和 k的波形特性以及它們與普通函數(shù)結(jié)合時的波形變化特性。解題方法:首先考慮各信號中普通函數(shù)的波形特點,再考慮與t或 k結(jié)合時的變化情況;假設(shè)ft只是普通信號與階躍信號相乘,那么可利用t或 k的性質(zhì)直接畫出0或k0局部的普通函數(shù)的波形;ft是普通函數(shù)與階躍信號組合成的復(fù)合信號,那么需要考慮普通函數(shù)值域及其對應(yīng)的區(qū)間。(1)ft sintt22解:正弦信號周期T21f t102t-1(2)ftsint解:f0sint0tsint,10正弦信號周期T22word文檔精品文檔分享1 sintword文檔精品文檔分享-2-10-11f t-2-10(3)ftrcost解:ft0cost0,costcost022正弦信號周期T1cost120-112122tttword文檔精品文檔分享1f tword文檔精品文檔分享202tword文檔精品文檔分享(4)fk (2k 1) kword文檔精品文檔分享fk53??1??-2-10123k(5)fk11k1kfk2??1??-4-3-2-1 012345k1.2畫出以下各信號的波形[式中rtt t為斜升函數(shù)]知識要點:此題主要考察階躍函數(shù)和單位階躍序列的性質(zhì),包括t和 k的波形特性以及它們與普通函數(shù)結(jié)合時的波形變化特性。解題方法:首先考慮各信號中普通函數(shù)的波形特點,再考慮與t或 k結(jié)合時的變化情況;假設(shè)ft只是普通信號與階躍信號相乘,那么可利用t或 k的性質(zhì)直接畫出0或k0局部的普通函數(shù)的波形;ft是普通函數(shù)與階躍信號組合成的復(fù)合信號,那么需要考慮普通函數(shù)值域及其對應(yīng)的區(qū)間。(1)f t 3 t 1 5 t 1 2 t2word文檔精品文檔分享f t32-101 2-5ft32-1012-2-5(2)ftrt 1 2tttword文檔精品文檔分享2 t1-1012trt1t1t1word文檔精品文檔分享1-1012-1f t1-1012-1(3)ftsintt1t3解:T22ttword文檔精品文檔分享sint1-10123t-1t 1t31-10123tf t1-10123t-1(4)f kk 2kk5fk65??4??321-4-3-2-1012345k(5)fk2k4k1kword文檔精品文檔分享4 k1 k??1??-4-3-2-1012345kfk1615141312111098765??4??321-4-3-2-1012345k1.3寫出以下圖所示各波形的表達式(1)word文檔精品文檔分享ft21-1012-1tword文檔精品文檔分享ft2t1t1t1t2t2t3解:2t1t12t2t3(2)word文檔精品文檔分享f t10-1 01t解:T2410cost22f t10costt 1t121.4寫出以下圖所示各序列的閉合形式的表示式(a)fk1??-4-3-2-1012345k解:f kk3(b)fk??1??-2-1012345678k解:f kk 3k8(課堂已講)1.5判別以下各序列是否為周期性的,如果是,確定其周期fkcos2k5word文檔精品文檔分享解:2word文檔精品文檔分享5word文檔精品文檔分享252525周期序列(2)fksin3kcos2k4436解:13,2248,m取3,N18;413322,2233,N23;322N24(3)fk3cosk2sin2k解:11,2212,故非周期;12,2224,N24;22故非周期1.6信號的波形如以下圖所示,畫出以下各函數(shù)的波形ft42-113tword文檔精品文檔分享(1)f2 t 2 tword文檔精品文檔分享f t 242word文檔精品文檔分享-3-11f t 242tword文檔精品文檔分享-113tt 21-11 2tft2t242-11 2tword文檔精品文檔分享(2)f12tword文檔精品文檔分享f t 142-2 -11 2f t 142-2 -11 2f 2t 142ttword文檔精品文檔分享-2 -11 2tdf t(3)dtword文檔精品文檔分享ft42-1013tdftdt2-1013t-2-41.7序列的圖形如下圖,畫出以下各序列的圖形fk3??2??1-4-3-2-10123456k(1)f k 2kk4word文檔精品文檔分享fk23??2??1-2-1012345678kkk43??2??1-2-1012345678kfk2kk43??2??1-2-1012345678k(2)f k 2k1word文檔精品文檔分享f k23??2??1-5-4-3-2-1012345kfk23??2??1-5-4-3-2-1012345kk13??2??1-5-4-3-2-1012345kfk2k13??2??1-5-4-3-2-1012345k1.8信號f22t的波形圖如下所示,試畫出ft和tfd的波形f 2 2t1012t(-1)word文檔精品文檔分享解:word文檔精品文檔分享f2t21012t(-1)f 2t21-2-1012t(-1)f t 21-4-3-2-1012t(-2)f t1-4-3-2-1012tword文檔精品文檔分享(-2)word文檔精品文檔分享f t1-4-3-2-1012tword文檔精品文檔分享(-2)t1fdword文檔精品文檔分享-4-3-2-1012t-2由圖可知:fttt22t2,那么當(dāng)ttfdtt2d2t2;0時,(2)tdttt22t2]df[當(dāng)0t2時,tt22d1dt2tfdt[222]dt1d2當(dāng)t2時,2201d220(課堂已講)1.9信號的波形如下圖,分別畫出ft和dft的波形dtword文檔精品文檔分享f 32t21-16-12-8-40481216解:f2t321-16-12-8-40481216ft321-16-12-8-40481216ft321-16-12-8-40481216ft21-16-12-8-40481216dft1/42dt1-16-12-8-40-1/4481216ttttttword文檔精品文檔分享第二次1.10計算以下各題att01tt0,ftatt01ft0tt0aaaaa(1)sinttt1dt20解:ftsinttt1dt020sinttdtsintt1dt02sintt00(2)e2t[t2t]dt解:fte2t[t2t]dt[e2tt2e2tt]dt[t2e2tt0t2t]dt[t2t2t]dt044(3)t2sintt3dt4解:t2sintt3dt4t2sintt342sin334sin34292tword文檔精品文檔分享(4)2 xxdxword文檔精品文檔分享解:txxdx2txxdx2txdxtxdx22tt66t2t22t4dt(5)3解:word文檔精品文檔分享6t2t636t2tdt63t266t0263666t2t366t2t222t4dt26t22t4dt63t21t2dt22dtword文檔精品文檔分享628(6)t22)2d(0解:ftt22)2d(0t22)[(2)]d(0t22)2d(0t22|t2,t2(42)(t2)6(t2)(7)5t342tdt5解:word文檔精品文檔分享5t342tdt55t32t4dt515t3t2dt5215t3t2dt251t3t2212(8)t2d03解:tword文檔精品文檔分享0t2d3word文檔精品文檔分享32d0t2d30320,t06t(課堂已講)1.11設(shè)系統(tǒng)的初始狀態(tài)為x0,鼓勵為f,各系統(tǒng)的全響應(yīng)y與鼓勵和初始狀態(tài)的關(guān)系如下,試分析各系統(tǒng)是否是線性的。根據(jù)線性系統(tǒng)的定義,依次判斷系統(tǒng)是否具有分解特性、零輸入線性、零狀態(tài)線性T1f12f21Tf12Tf2。(1)yte2tx0txdxcosxf0解:yzite2tx0tyzstcosxfxdx0ytyzityzst滿足可分解性1yzi1t1e2tx101yzi2t2e2tx201yzi1t2yzi2t1e2tx102e2tx20e2t1x102x20線性word文檔精品文檔分享1yzs1ttcosxf1xdx102yzs2ttcosxf2xdx201yzs1t2yzs2ttcosxf1xdxtcosxf2xdxtcosx1f1x2f2xdx10200線性(2)yk0.5k1fk1fk2x0解:yzitk10.5x0yzskfk1fk2ykyzikyzsk滿足可分解性1yzi1kk1x1010.52yzi2k0.5k102x21yzi1k2yzi2k0.5k10k1x20k102x201x120.50.51x1線性1yzs1k1f1k11f1k22yzs2k2f2k12f2k21yzs1k2yzs2k1f1k11f1k22f2k12f2k21f1k12f2k11f1k22f2k2非線性系統(tǒng)非線性(課堂已講)1.12以下微分或差分方程所描述的系統(tǒng),是線性的還是非線性的?是時變的還是不變的?(1)yt3yt2ytft2ft解:常系數(shù)、線性、微分方程故為,線性時不變系統(tǒng)(2)2ykk 1yk 1f k1解:變系數(shù)、線性、差分方程故為,線性時變系統(tǒng)1.13設(shè)鼓勵為f,以下等式是各系統(tǒng)的零狀態(tài)響應(yīng)yzs,判斷各系統(tǒng)是否是word文檔精品文檔分享線性的、時不變的、因果的、穩(wěn)定的?(1)yzstft1解:yzs1tf1t1,yzs2tf2t1,yzs1tyzs2tf1t1f2t1f1tf2t1,非線性yzsttdfttd1,時不變當(dāng)tt0,有ft0,那么yzstft,非因果11假設(shè)ft,那么yzst,穩(wěn)定(2)yzstf2t解:1yzs1t1f12t2yzs2t2f22t1yzs1t2yzs2t1f12t2f22t,線性yzsttdf2ttdf2ttd假設(shè)延遲輸入為fttd,那么系統(tǒng)輸出為f2ttdf2ttdf2ttd,時變假設(shè)tt0,有ft0假設(shè)yzstf2t0,那么2tt0t2t0,非因果假設(shè)ft,那么yzstf2t,穩(wěn)定。yzskfk1fk解:1yzs1t1f1k11f1k2yzs2t2f2k12f2k1yzs1t2yzs2t1f1k11f1k2f2k12f2k1f1k12f2k11f1k2f2k非線性T0,fkkdfkkd1fkkdyzskkd,時不變word文檔精品文檔分享假設(shè)kk0,有fk0,yzskfk1fk0,因果假設(shè)fk,那么yzskfk1fk,穩(wěn)定。(4)yzskf1kk解:Tf1f11kk,Tf2f21kkTf1Tf2f11kf21k2kTf1f2f11kf21kk,非線性T0,fkkdf1kkdkkdyzskkdf1kkdkkd,時變假設(shè)kk0,有fk0,那么yzskf1kk0,1kk0,k1k0,且k0,非因果假設(shè)fk,那么yzskf1kk,穩(wěn)定1.14某LTI系統(tǒng)在一樣初始條件下,當(dāng)鼓勵為e1t時,系統(tǒng)的完全響應(yīng)為y1t2ete3tt,當(dāng)鼓勵為0.5e1t時,該系統(tǒng)的完全響應(yīng)為ytet2e3tt。試用時域分析法求初始條件變?yōu)樵瓉淼膬杀抖膭顬?2e1t1時該系統(tǒng)的完全響應(yīng)y3t。知識要點:此題主要考察LTI連續(xù)系統(tǒng)的齊次性和可加性以及可分解特性T1f12f21Tf12Tf2。解題方法:利用零輸入響應(yīng)的齊次性和可加性,零狀態(tài)響應(yīng)的齊次性和可加性以及系統(tǒng)的可分解特性求解。解:word文檔精品文檔分享{x0}yzitword文檔精品文檔分享LTIword文檔精品文檔分享e1tyzstword文檔精品文檔分享LTIword文檔精品文檔分享1/2e1t1/2yzstword文檔精品文檔分享LTIword文檔精品文檔分享2e1t12yzst1word文檔精品文檔分享LTIword文檔精品文檔分享yzityzsty1t2ete3ttword文檔精品文檔分享yzit12yzsty2tet2e3ttword文檔精品文檔分享yzit3e3tt,yzst2et2e3tty3t2yzit2yzst16e3tt4et14e3t1t11.15某一階LTI離散系統(tǒng),其初始狀態(tài)為x0,當(dāng)鼓勵為fk時,其全響應(yīng)為y1k2k;假設(shè)初始狀態(tài)不變,當(dāng)鼓勵為fk時,其全響應(yīng)為y2k2k1k;假設(shè)初始狀態(tài)為2x0,當(dāng)鼓勵為3fk時,求其全響0.5應(yīng)。解:yzikyzsk2kyzikyzsk2kk0.51yzik0.5k1k2yzsk3kk20.5word文檔精品文檔分享yk2yzikk2 0.5k20.5110.523yzsk331k0.5kk22193kk0.52kkword文檔精品文檔分享第三次2.1描述連續(xù)系統(tǒng)的微分方程和初始狀態(tài)為yt5yt6ytft,y02,y02,試求其零輸入響應(yīng)。解:求出齊次方程的齊次解,代入初始狀態(tài)求解2方程的特征方程為560,特征根為12,23,微分方程的齊次解為yhtC1e2tC2e3t又鼓勵為0yzi0yzi0y02,yzi0yzi0y02,即yzi0C1C22C14yzi02C13C22C22yzit4e2t2e3t,t02.2描述系統(tǒng)的微分方程和初始狀態(tài)如下,試求其0值y0和y0。解:利用微分方程兩端各奇異函數(shù)項的系數(shù)相平衡的方法,判斷是否發(fā)生躍變,并從00積分,求得0時刻的初始值(1)yt3yt2yt2ft,y01,y01,ftt解:當(dāng)ftt時,方程右端不含有沖激項,那么yt及其各階導(dǎo)數(shù)不發(fā)生躍變,那么y0y01y0y01(2)yt4yt3ytftft,y03,y04,ftt解:當(dāng)ftt時,代入方程得yt4yt3yttt令ytatbtctr0t,r0t中不含t及其各階導(dǎo)(2)ytatbtr1t,r1tcttr0xdx,不含t及其各階導(dǎo)(1)ytatr2t,r2tbttr1xdx,不含t及其各階導(dǎo)atbtctr0t4at4bt4r1t3at3r2tttword文檔精品文檔分享at(b4a)t(c4b3a)tr0t4r1t3r2ttt所以a1,b4,c14代入(1)式中,并從0~00yt0t40t0積分:000r1t,0所以y0y00404,故y0y01代入(2)式中,并從0~00yt0t0t0t0積分:00414r0t000所以y0y00014,故y0y0414100tdt0,0tdt0tdt1。注意:其中000,02.3描述系統(tǒng)的方程為yt4yt3yt2ft,求其沖激響應(yīng)和階躍響應(yīng)。知識要點:此題主要考利用方程兩端奇異函數(shù)系數(shù)相平衡的方法來判斷yt是否發(fā)生躍變;g(t)th()d。解題方法:選取新變量y1t,使y1tnyi滿足方程aitft,設(shè)其沖激響應(yīng)i0為h1tmjth()d;系統(tǒng)的沖激響應(yīng)為htbjh1j0t,在帶入公式g(t),求出階躍響應(yīng)式。解法1:選新變量y1t,那么y1t4y1t3y1tft當(dāng)ftt時,h1t4h1t3h1tth100,h101,h10h100,特征方程為:2430,11,23,h1t(c1etc2e3t)t,h10c1c20,h10c13c21,c11,c21(1et1e3t)t,ht22h1t2h1t(ete3t)t。22解法2:當(dāng)ftt時,系統(tǒng)的零狀態(tài)響應(yīng)yzstht,ht4ht3ht2th0h00設(shè)htatr0t,從~t積分(1)word文檔精品文檔分享htr1t(2)htr2t,r0t,r1t,r2t不含t及其各階導(dǎo)數(shù),那么atr0t4r1t3r2t2t,a2,對(1)從000~0積分,h0h02tdtr0tdt2,h02,00對(2)從00~0積分,h0h0r1tdt0,h00,0當(dāng)t0時,ht4ht3ht0,11,23,htc1etc2e3t,t0h0c1c20,h0c13c22,c11,c21,ht(ete3t)t,gtthdt(ete3t)tdtt(ete3t)dt0[et1]1[e3t1],t0(1e3t32)ett332.4信號f1t和f2t的波形如以下圖所示,設(shè)ftf1tf2t,求f5。f1t21f2t1-2-1012t-2-1012t解:ftf1tf2tf2tf1tf2f1tdf5f2f15d0word文檔精品文檔分享f21-2-1012f1521-2-10123456(上課已講)2.5各函數(shù)波形如下圖,圖(a)、〔b)、〔c)、(d)中均為單位沖激函數(shù),試求以下卷積,并畫出波形圖。word文檔精品文檔分享f1t1-2 -1012(a)tf2t1-2-1012(b)tword文檔精品文檔分享f3tf4tword文檔精品文檔分享(1)-1 01(c)t(1)02 3 4t(d)(-1)word文檔精品文檔分享知識要點:此題主要考察卷積的根本性質(zhì):結(jié)合律、分配律、時移性質(zhì)。解題方法:利用卷積的根本性質(zhì),代入公式求解。(1)f1tf2t解:word文檔精品文檔分享f1tf2tf1t[t2t2]f1t2f1t21rt22rt21rt221rt22rt21rt2222221rt211rt21rtrt4rt4rt2222rtrt2rt211rt42rt42f1tf2t1-4-2024t(2)f1tf2tf2t解:f1tf2tf2tf1t[t2t2][t2t2]f1t[t4ttt4]f1t[t42tt4]f1t42f1tf1t41rt42rt41rt42rt22rtrt22211rt42rt4rt42221rt6rt41rt2rt22rtrt21rt2222rt41rt621rt6rt43rt22rt3rt2rt41rt62222word文檔精品文檔分享f1t f2tf2t21-6-4-20246t(3)f1t[2f4tf3t3]解:f1t[2f4tf3t3]f1t[2t22t32t4t31t31f1t[2t22t32t4t2t4f1t[t22t3t4]f1t22f1t3f1t41rtrt21rt4rt12rt3rt51rt2222rt416rt12111rt12rt3rt5rtrt2rt4rt62222word文檔精品文檔分享2f4tf3t 3(1)(1)01 2 3 4 5 6(-2)f1t2f4tf3t310123456-1-2f1t2f4tf3t311/20123456-12.6求以下函數(shù)的卷積積分f1tf2t。知識要點:此題主要考察f1(t)f2(t)f1()f2(t)d。解題方法:對于簡單函數(shù)積分,直接代入積分定義公式求解。(1)f1tet t,f2tt解:tttword文檔精品文檔分享f1tf2tetttetdtdte0ett0[et(1)]t(1et)t(2)f1te2tt,f2te3tt解:f1tf2te2tte3tte2e3ttde3ttt0ede3tet0te3tet1te2te3tt(3)f1tt1,f2tt4解:f1tf2tt1t4tt1tt4ttt1t4ttt3t3t3(4)f1ttt,f2ttt4解:f1tf2ttt[tt4]tttttt41t2ttttt421t2t1t2tt4221t2t1(t4)2t422word文檔精品文檔分享(5)f1te2t解:t 2,f2tt3word文檔精品文檔分享f1tf2tee2t2ttt2t32tt3word文檔精品文檔分享t[[e2e2td21e221e2t22tdt3t2t3tt2]t32(1e4)]t2t32word文檔精品文檔分享[1e41e2(t3)]t3222(1e41e2t6)t122word文檔精品文檔分享第四次2.7d2ytdytdft某系統(tǒng)的數(shù)學(xué)模型為dt23dt2ytdt2ft,求系統(tǒng)的沖激響應(yīng)ht;假設(shè)輸入信號為fte3tt,求系統(tǒng)的零狀態(tài)響應(yīng)。解:yt3yt2ytft2ft令ftt,那么ht3ht2htt2th0h00h1t3h1t2h1tt假設(shè)設(shè)h10h100方程右端含有t利用系數(shù)平衡法可知,h1t中含有t,h1t中含有t,那么h1t在t0處不連續(xù),即h10h10;h1t在t0處連續(xù),h10h1000h103h100又0tdt0tdt02h1tdt0tdt0h10h103h10h102h1tdt10h101h101對t0時,有h1t3h1t2h1t0,故沖激響應(yīng)為其次解2320,11,22,h1tc1etc2e2th10c1c20c11h10c12c21c21h1tete2tt,h1tete2ttet2e2ttet2e2tthth1t2h1tet2e2t2ete2ttettword文檔精品文檔分享yzstf t hte3t t ettword文檔精品文檔分享e3ette3etd0te2etd0et1e2t20et1e2t2et1e2ttd1ttword文檔精品文檔分享2.8如果LTI系統(tǒng)的輸入為f t,如以下圖所示,ht2 tt 2,求其零狀態(tài)響應(yīng)。ft1-2 -101 2-1解:由圖可知:ftt1ttt1t12tt1yzstfthtt12tt12tt2tt12tt1t2tt2tt2t14t2t1t12t2t3tt2t14tt12t2t32t1t14ttt1t12t2t2t3t32.9某LTI系統(tǒng),其輸入ft與輸出yt的關(guān)系為yte2txfx1dx,求t該系統(tǒng)的沖激響應(yīng)ht。word文檔精品文檔分享解:令f tt,那么f x 1x 1,由輸入輸出關(guān)系可得word文檔精品文檔分享hte2txx1dxte2txxtx1dxe2txxtx1e2t11t2.10如以下圖所示的系統(tǒng),它由幾個子系統(tǒng)組合而成,各個子系統(tǒng)的沖擊響應(yīng)分別為hatt 1,hbttt 2求復(fù)合系統(tǒng)的沖激響應(yīng)。+hat+∑hbtftyt+hathat知識要點:此題主要考察沖激響應(yīng)等于輸入ftt時系統(tǒng)的零狀態(tài)響應(yīng),ht T0, t;兩系統(tǒng)級聯(lián)組成的復(fù)合系統(tǒng)的沖激響應(yīng)等于兩系統(tǒng)沖激響應(yīng)的卷積;系統(tǒng)的齊次性和可加性。解題方法:根據(jù)系統(tǒng)的齊次性、可加性寫出加法器的輸出,進而利用系統(tǒng)級聯(lián)的性質(zhì)得出系統(tǒng)復(fù)合后的沖激響應(yīng)。解:設(shè)f(t)(t),那么加法器輸出為y1ttthatthathatthathathattt1t1t1tt1t2yty1thbt[(t)(t1)(t2)]*[(t)(t2)](t)*[(t)(t1)(t2)]*[(t)(t2)](t)*[(t)(t1)(t2)(t2)(t3)(t4)](t)*[(t)(t1)(t3)(t4)](t)(t1)(t3)(t4)word文檔精品文檔分享3.1求下面差分方程y(k)y(k 1) 2y(k 2) f(k), fk1k k,y(1) 3,y(2)0所描述的LTI離散系統(tǒng)的零輸入響應(yīng)、零狀態(tài)響應(yīng)和全響應(yīng)。知識要點:此題主要考察系統(tǒng)的全響應(yīng)為零輸入響應(yīng)和零狀態(tài)響應(yīng)之和,那么有y(k) yzi(k) yzs(k);零狀態(tài)響應(yīng) yzsk 0,k 0,那么有yzikyk,k0。解題方法:由差分方程得到系統(tǒng)的齊次方程,求得含有待定系數(shù)的零輸入響應(yīng),由初始值求得待定系數(shù),對于零狀態(tài)響應(yīng),由yzsk 0,k 0,以及鼓勵 fk可確定零狀態(tài)響應(yīng)的初始值,進而解差分方程求得零狀態(tài)響應(yīng),從而可得到系統(tǒng)的全響應(yīng)。解:對于零輸入響應(yīng)有yzikyzik12yzik20yzi1y13yzi2y20特征方程:220,11,22,y(k)c1kc2k,2zi1代入初始值:yzi(1)c11c21c11c23,221220yzi(2)c11c22c14c2c11,c24,yzi(t)11k0k12k2,k0;42k,k1對于零狀態(tài)響應(yīng)有yzs(k)yzs(k1)2yzs(k2)f(k)(1)yzs(1)yzs(2)0初始值:yzs0yzs12yzs2f01001yzs1yzs02yzs1f11111110特征方程:220,1,2,12其特解為:PkP01kyp(k)代入(1)式得PkP01k[Pk1P0]1k12[Pk2P0]1k21kk,P1,3yzskc11kc22k1kP01k,3word文檔精品文檔分享yzs0c1c2P01,yzs1c12c21P00,c1P05,c24,399yzsk51k42k1k1k,k0;9934401全響應(yīng):ykyzikyzsk1k2kk1k,k09933.2求差分方程yk3yk1fkfk1所描述的離散系統(tǒng)的單位序列響應(yīng)。解:當(dāng)只有k作用時,系統(tǒng)的單位序列響應(yīng)為h1kh1k3h1k1kh11030,3,h1kc13k0特征方程為:,k初始值h03h101,c1301,c11,h1k3kk11hkh1kh1k1kkk1k1333.3求以下圖所示系統(tǒng)的單位序列響應(yīng)和階躍響應(yīng)。ykf k∑DD+-+1/41/8知識要點:此題主要考察對于一階差分方程所描述的LTI離散系統(tǒng)有h10,kgkhi,hk和gk分別為單位序列響應(yīng)和階躍響應(yīng);延遲器的輸入為ixk,那么輸出為xk1。解題方法:根據(jù)系統(tǒng)框圖列寫差分方程,求解系統(tǒng)單位序列響應(yīng)hk,再代入k公式gkhi求階躍響應(yīng)。word文檔精品文檔分享iword文檔精品文檔分享解:ykfk1yk11yk2,yk11yk2fk,48yk1841hk1hk2對于單位序列響應(yīng),令fkk,那么hk1k,且48h1h20,初始值:h01h11h201,h11h01h111,48484kk特征方程為:2110,11,21,hkc11c21,k0484242h0c1c21,h11c11c21,c11,c22,42433單位序列響應(yīng)為:hk[1(1)k2(1)k]k;34321gk1gk2對于階躍響應(yīng),令fkgk,那么gk1k,且48g1g20,初始值:g01g11g201,g11g01g113,48484特征方程為:2110,11,21,4842令特解為:gpkP,那么P1P1P1,P8,11848891183gkkc2(k,c21,g1c1(4)2)9,k0g0c194c12c294,c1c21,1c11c25,c11,c229423699階躍響應(yīng)為:gk[1(1)k2(1)k8]k,94929另解:gkhii1k1)i2k1)i3i(3i(2040[41(1)k42(1)k]k994992[1(1)k2(1)k8]k94929word文檔精品文檔分享k1)i其中,(i04(1)k14144(1)kk11(1)k12(1)k4,()i223213i012word文檔精品文檔分享hkgkgk1[1(1)k2(1)k8]k[1(1)k2(1)k18]k19492994929[1(1)k2(1)k8]k[4(1)k4(1)k8][kk]9492994929[1(1)k2(1)k]k[4(1)04(1)08]k343294929[1(1)k2(1)k]k3432word文檔精品文檔分享第五次3.4各序列的圖形如以下圖所示,求以下各式卷積和。f1kf2kf3k222111-2-1012k-3-2-10123k-2-10123k(a)(b)(c)知識要點:此題主要考察f(k)(k)f(k),f(k)(kk1)f(kk1),f(kk1)(kk2)f(kk1k2)。解題方法:由各序列的波形圖容易得出各序列的表示式,利用卷積的根本性質(zhì)代入公式求解。(1)f1kf2k解:f1kf2kk12k(k1)(k2)(k1)(k1)(k3)2(k2)(k1)(k)2(k1)(k2)(k1)2(k2)(k3)(k3)2(k2)(k1)(k)3(k1)3(k2)(k3)f1k f2k321-4 -3 -2 -101 2 3 4k(2)f2kf1kf3k解:word文檔精品文檔分享f2kf1kf3k[(k2)(k1)(k2)(k1)2(k)(k1)]*[2(k1)(k2)](k2)(k1)2(k)(k2)*[2(k1)(k2)]2(k1)2(k)4(k1)2(k3)(k)(k1)2(k2)(k4)2(k1)(k)5(k1)2(k2)2(k3)(k4)3f2kf1kf3k21-4-3-2-1012345k-1-2-3-4-53.5系統(tǒng)的鼓勵f k和單位序列響應(yīng)hk如下,求系統(tǒng)的零狀態(tài)響應(yīng)yzsk。(1)fkhkk1k4解:yzskfkhk,kkk1kyzskfkhkk1k4k1k4kk1k4kk1k4k1kk2k5k5k8k1kk22k5k8k1k22k4k5k7k8(2)fk0.5kk,hkkk3解:word文檔精品文檔分享yzskfk hkk1kkk32k1kkkk32i1kikk3i2ki1kk3k2k1112kk3k112k1211kkk32k11k2211k21k322k1k321k3k2223.6如下圖的復(fù)合系統(tǒng)由三個子系統(tǒng)組成,它們的單位序列響應(yīng)分別為:h1kk 1,h2kk4,求復(fù)合系統(tǒng)的單位序列響應(yīng)。h1kfk+yk+∑h1k-h2kword文檔精品文檔分享解:令f kk,那么加法器輸出為word文檔精品文檔分享y1kf kkkh11kk1kf kkkfk4kh2kk4word文檔精品文檔分享yky1kh1kk1kk4k1k1k1kk1k4k1kkk2k1kkk5k1kk2k1k1kk5k1k2k1k4k5word文檔精品文檔分享第六次4.1判斷以下信號是否為周期信號,假設(shè)是,求其基波角頻率和周期知識要點:此題主要考察T2。解題方法:周期信號的基波角頻率為信號中各頻率成分中頻率最小的信號的頻率,且其余信號的角頻率均為此角頻率的整數(shù)倍,周期由公式T2求得。(1)costsin2t解:與2不是整數(shù)倍關(guān)系,為非周期信號。(2)costsint24解:cost,24(s),sint,28(s)。8(s),24244.2周期信號ft的雙邊頻譜Fn如下圖,求其三角函數(shù)表達式。word文檔精品文檔分享1Fnword文檔精品文檔分享-3-2-10123-1知識要點:此題主要考察ftFnejnt,F(xiàn)nFnejn,n0,1,2,...;na0ancosntA0Ancosnt,ftbnsinntn2n1n12n1其中An2Fn,anAncosnFnFn,bnAnsinnjFnFn解題方法:根據(jù)頻譜圖列出各頻率分量,帶入三角函數(shù)表達式中即可求解。解:由圖可知1,F(xiàn)00,F(xiàn)11ej0,F(xiàn)11ej0,F(xiàn)1ej,F(xiàn)31ej,3A00,A12F12,A32F32,word文檔精品文檔分享ftAncosntnn1A1cost1A3cos3t32cost2cos3t4.3用直接計算傅里葉系數(shù)的方法,求以下圖所示周期函數(shù)的傅里葉系數(shù)〔三角形式或指數(shù)形式〕。f t1-7 -6 -5 -4 -3 -2 -101 2 3 4 5 6 7tword文檔精品文檔分享2anT2bnTT2T2T2T2ftcosntdt,n0,1,2,f tsinn tdt,n1,2,word文檔精品文檔分享1Ttejntdt,tF2Tf0,1,2,nT2解:由圖可知,T6,22T632Tan2TftcosntdtT213tcosntdt3f33word文檔精品文檔分享1311ntcosdtword文檔精品文檔分享13sinnt113n31nnnsinsin332sinn,n0,1,2,n32San,n0,1,2,33word文檔精品文檔分享2Tftsinntdtbn2TT213tntdt3fsin3311nt3sindt1313cosnt3n311word文檔精品文檔分享1cosncosnn330,n1,2,1TFn2TftejntdtT213ftejntdt63311jnt6e3dt1nt1113ej6n1j3jjnjne3e32njcosnnnn2n3jsincosjsin333jcosnnnn2n3jsincosjsin333j2jsinn2n31sinn,n0,1,2,n34.4利用奇偶性判斷以下圖所示各周期信號的傅里葉級數(shù)中所含的頻率量。word文檔精品文檔分享f1t2??1??4T3T2TT0T2T3T4Tt-1-2(a)f2t32??1??4T3T2TT0T2T3T4Tt-1-2-3(b)知識要點:此題主要考察假設(shè)f(t)f(t),那么有an42tf(t)cos(nt)dt,bn0,n0,1,2...;T0假設(shè)f(t)f(t),那么有an0,bn42tf(t)sin(nt)dt,n0,1,2,...;T0假設(shè)f(t)f(tT),那么有a0a2a4...b2b4b60,只含奇次諧波分量,2不含偶次諧波分量。解題方法:根據(jù)信號波形找出ft滿足的關(guān)系,即可找出其傅里葉級數(shù)中所含有的頻率分量。解:(a)由f1t的波形可知f1tf1tf1Tt24Tan2ftcosntdt,n0,1,2,bn0,a0a2b2b40,T0word文檔精品文檔分享f1t的傅里葉級數(shù)中含有的頻率分量為奇次余弦波;word文檔精品文檔分享(b)由f2t的波形可知f2tf2Tt2a0a2a4b2b40f2t的傅里葉級數(shù)中含有奇次諧波,包括正弦波和余弦波。4.5信號xt16cos20t6cos30t4cos40t463求該周期信號的周期T和基波角頻率,指出其諧波次數(shù);畫出雙邊幅度譜和相位譜圖;計算信號的功率。知識要點:此題主要考察2A01jn;ft2n1Ancosntn;Fn2AneT;PFn2。n解題方法:利用條件觀察求出,并帶入公式計算求出諧波分量;根據(jù)An、n值,帶入公式求出Fn,并計算信號的功率。解:(1)A0Ancosntn16cos20t6cos30t4cos40tft2n146310,T221,諧波次數(shù)為二次,三次,四次;105word文檔精品文檔分享由題可知A216,Fn1Anejn,F(xiàn)22,A36,3,A44,4,46328,F(xiàn)33,F(xiàn)42;可畫出雙邊頻譜圖如下:word文檔精品文檔分享Fn8765432140 30 20 1001020 30 40n346124030201001020304012643nnword文檔精品文檔分享(3)P264942154。Fnn4.6根據(jù)傅里葉變換的對稱性求函數(shù)ftsin2t1t的傅里葉3t1,變換。解:fsin2t1sin2t122Sa2t1tt12t1333gt2Sa,取2,g2t2Sa2Sat2g22g2Satg2,Sa2t11g22ej1g4ej22word文檔精品文檔分享(附注:g21,1211,22)20,g40,othersothersft21gej1gej324344.7求以下信號的傅里葉變換知識要點:此題主要考察傅里葉變換的根本性質(zhì)(包括時移性質(zhì)、頻移性質(zhì)等)以及特殊函數(shù)的傅里葉變換。解題方法:直接利用傅里葉變換的根本性質(zhì)進展求解。(1)ftejtt解法1:t1,ejtt1解法2:ejttt1(2)fte5(t1)t1解:fte5(t1)t1t15t1t15t1t1,tj,ftjej5ej5jej(3)fte4tt1解:word文檔精品文檔分享Fjftejtdtword文檔精品文檔分享e4tt1ejtdtword文檔精品文檔分享e4tejtdt11e 4 j t1j0e4j4je4j4 jword文檔精品文檔分享第七次4.8假設(shè)ftF j,試求以下函數(shù)的頻譜。知識要點:此題主要考察傅里葉變換的根本性質(zhì),包括時移性、微分和積分特性、尺度變換特性等。解題方法:根據(jù)條件,直接利用傅里葉變換的根本性質(zhì)求解。(1)tf3t解法一:jtf(t)dFj,dtf(t)dFj,jd3tf(3t)j1dFj,3d3tf(3t)j1dFj39d解法二:f3t1jF33jtf3t1[Fj]33jtf3t1Fj93tf3t1jFj39(2)4tdftdt解:時域微分特性:dftjFjdt頻域微分特性:(jt)dftdjFjdtdtdftjdjFjjjFjjdF(j)dtddF(j)dF[j]d4tdf(t)4F(j)4dF(j)dtdword文檔精品文檔分享1t2f()dt31tdf131t,解:令f1tfd,那么2f2tFjf1tfdF0jf1t3[F0Fj]ej3F0Fjjjej3word文檔精品文檔分享f131t2df(t)dtd解:dt2[F02Fj2ej6]F02j*1t4ftjFjF 2je6jjword文檔精品文檔分享且sgnt2word文檔精品文檔分享j22sgnjt1jsgnt1jsgn4t4dft*1tjFjjsgnFjsgndt4444.9求以下函數(shù)的傅里葉逆變換。ft1Fjejtd2cosxejxejxejxejx2,sinx2j(1)Fj2cos33sin2解:Fj4word文檔精品文檔分享ft12cos33sin2ejtd21ej3ej33ej23ej2ejtd22j2j1ejt3ejt33ejt23ejt2d22j2jt1,t1ejtd2ftt3t33t2t22j(2)Fj12ej解法一:ft1Fjejtd2112ejejtd2ej1d12t2111jt122jt1e1j211ej2t1ejt1t解法二:Fjg13ej2g1tSa2t2g1Sa21Satg1221tj3t3Sae2g12221Sat1e21g13ejj3t222word文檔精品文檔分享4.10試用以下方法求如下圖信號的頻譜函數(shù)。ft1-4-3-2-10123t知識要點:此題主要考察傅里葉的線性特性和時移特性;時域積分定理,即假設(shè)ftFj,那么有f(1)(t)F(0)()F(j);j時域卷積定理,假設(shè)f(t)F1(j),f(t)F2(j),那么有f1(t)f2(t)F1(j)F2(j)。解題方法:根據(jù)ft的波形特征,直接利用傅里葉變換的相關(guān)性質(zhì)求解。利用延時和線性性質(zhì)(門函數(shù)的頻譜可利用結(jié)果)。解:令2,那么g2t2Sa時移特性:g2t32Saej3,g2t22Saej2g2t3g2t22Saej3ej2(2)將ft看作門函數(shù)g2t與沖激函數(shù)(t3)、t2的卷積之和。解:ftg2t*t3(t2),且g2t2Sa,t1時移特性:j3j2t3e,t2eft2Saej3ej24.11如以下圖所示信號,f1t的傅里葉變換F1j,求信號f2t的傅里葉變換F2j。word文檔精品文檔分享f1tf2t22110t0t0t0t0t0t22解:f2tf1tt0f1tF1jf1tt0ejt0F1jftt0ejt0Fj114.12用傅里葉變換性質(zhì),求以下圖所示函數(shù)的傅里葉逆變換。F jA00t000知識要點:此題主要考察傅里葉逆變換的公式ft1Fjejtdt;傅里葉2變換的對稱性和時移特性。解題方法:由Fj的幅頻圖和相頻圖可得其閉合表達式,再利用傅里葉變換的根本性質(zhì)求解。解:由Fj的幅頻圖和相頻圖可得1A,0A1ejt0,0Fj0,F(xiàn)j00,00,0word文檔精品文檔分享12tt,ft22,令20,2Sa0,4t2ft0Sa20,0Sa20t2f20,0Sa20t1f20,2222A0Sa20tAf20,A0Sa2[0tt0]Af20ejt0Fj,2222ftA0Sa2[0tt0]22word文檔精品文檔分享第八次4.13如下圖信號ft的頻譜函數(shù)為Fj,求以下各值。f t1-101 2t知識要點:此題主要考察傅里葉變換定義Fjftejtdt;傅里葉逆變換1jtd212的定義Fje;能量等式Ef(t)dtd。fttF(j)212解題方法:F0fFjd,直接利用這些等式及能量tdt,f02等式求解。word文檔精品文檔分享F0Fj解:F0 Fj(2)F jd00ftdt121t2101113tdt1dt01222word文檔精品文檔分享解:f0ftt01Fjd,F(xiàn)jd2f02又f00,F(xiàn)jd02Fjd解:t,0t1t2,0t1ft1,1t2,f2t1,1t20,others0,othersFjd2f2tdt2[t2dt1dt]2[1t3101]821201334.14利用能量等式f2tdt1Fjd,計算sin2t2dt22t解:g tSa,令4,word文檔精品文檔分享2word文檔精品文檔分享g41-2-1012g4t4Sa24sin22sin221g4t2Sa2sin22sin2t21g4g4t2sin2t21g4d1242dt2t224.15一個周期為T的周期信號ft,其指數(shù)形式的傅里葉系數(shù)為Fn,求周期信號f1tftt0ftt0的傅里葉系數(shù)。解:ft2nFnnftt0ejt02Fnnejnt02Fnn2ejnt0Fnnnnnftt0ejt02Fnnejnt02Fnn2ejnt0Fnnnnnf1t2ejnt0Fnn2ejnt0Fnn2Fnejnt0ejnt0nnnnf1t的傅里葉系數(shù)為Fnejnt0ejnt02cosnt0Fn4.16穩(wěn)定的因果LTI系統(tǒng)輸入輸出關(guān)系由以下微分方程確定d2ytdyt8yt2ftdt26dt求系統(tǒng)的沖擊響應(yīng)ht;求系統(tǒng)的頻率響應(yīng)函數(shù)Hj;當(dāng)輸入fte2tt時,計算輸出yt。word文檔精品文檔分享知識要點:此題主要考察系統(tǒng)的頻率響應(yīng)H(j)Y(j),式中Yj、FjF(j)分別為系統(tǒng)響應(yīng)與鼓勵的傅里葉變換。解題方法:根據(jù)描述系統(tǒng)的微分方程,兩邊同時進展傅里葉變換,整理求解。解:(1)yt6yt8yt2ftj2Yj6jYj8Yj2FjYj[26j8]2FjHjYj211Fj26j82j4jhte2te4tt(2)Hj2226j84j2j(3)ytfththtfthftde2e4e2ttdt2e4e2t2de0e2t[te2)d](10e2t[tte20t]2e2t[tt1e2t1t]24.17某LTI系統(tǒng)的頻率響應(yīng)為Hj4j,假設(shè)系統(tǒng)輸入ft3cos4t,求4j該系統(tǒng)的輸出yt。解:Fj344word文檔精品文檔分享YjFjHj3444j4j344j444j444j44j44j2442434j44j44j44j44j3132j432j4323j44yt3sin4t4.18某系統(tǒng)的零狀態(tài)響應(yīng)yzst和輸入信號的關(guān)系為yzst1f,dt(1)求該系統(tǒng)的沖擊響應(yīng)ht和頻率響應(yīng)Hj;(2)證明yzst和輸入信號ft的能量相等。知識要點:此題主要考察系統(tǒng)的頻率響應(yīng)H(j)Y(j),式中Yj、FjF(j)分別為系統(tǒng)響應(yīng)與鼓勵的傅里葉變換;f2(t)dt12能量等式EF(j)d。2解題方法:利用條件,直接代入公式求解。解:(1)yftfthtfht1ff1dddt1,又1,1thtjsgnjsgn,Hjjsgn(2)Eftttdt1Fjt,Eytyzs2tdt1Yzsjd,tf2d2222YzsjFjHjjsgnFjEy1Yzsj2t2d1Fj2jsgn22d1Fj22dword文檔精品文檔分享4.19一個LTI系統(tǒng)的頻率響應(yīng)word文檔精品文檔分享je2,4rad/s0word文檔精品文檔分享H je0,j2, 04rad/sothersword文檔精品文檔分享假設(shè)輸入ftsin3tcos5t,求該系統(tǒng)的輸出yt。t知識要點:此題主要考察時域卷積定理和頻域卷積定理、傅里葉變換對稱性;YjFjHj。解題方法:由頻域卷積定理求出yt的傅里葉變換Fj,代入公式求出Yj,再求Yj的傅里葉逆變換即得系統(tǒng)的輸出yt。解:gtsa,令6,g6t6sa36sin32sin3,231g6tsin3,sin3tg6,2tcos5t[55],F(xiàn)j1g6[55]T[g65g65]22Fj/Hj1-8-7-6-5-4-3-2-1012345678YjFjHj[jg23jg23]21g2j[33]21[g2]j[33]2又令2,g2t2sa2sin,1g2tsin,sintg2,2t再j[33]sin3tword文檔精品文檔分享sintytsin3ttword文檔精品文檔分享第九次4.20以下圖所示系統(tǒng)中,鼓勵信號的傅里葉變換為F j,畫出該系統(tǒng)A點和B點的頻譜圖。F120020ftHA1Byt30030cos30t知識要點:此題主要考察系統(tǒng)的頻率響應(yīng)H(j)Y(j),式中Yj、FjF(j)分別為系統(tǒng)響應(yīng)與鼓勵的傅里葉變換。解題方法:利用條件,直接代入公式求解。解:cos30t[3030],fAtftcos30t,F(xiàn)Aj1[3030]2Fj1Fj[3030]21F[j30]1F[j30]22ytfAtht,YjFAjHjFAj11/250300003050word文檔精品文檔分享4.21某線性時不變系統(tǒng)的輸入為如下圖的周期信號ft,系統(tǒng)的沖擊響應(yīng)為word文檔精品文檔分享htsin4t,求:12cos8t,ttf t1-1-1/41/41t系統(tǒng)的頻率響應(yīng)Hj;ft的復(fù)傅里葉系數(shù)Fn和系統(tǒng)的輸出yt;(3)假設(shè)輸入信號的單位為伏,求該輸出信號yt的平均功率P。知識要點:此題主要考察此題主要考察系統(tǒng)的頻率響應(yīng)H(j)Y(j),式中F(j)Yj、Fj分別為系統(tǒng)響應(yīng)與鼓勵的傅里葉變換;一般周期函數(shù)的傅里葉變f2(t)dt12d換fTt2Fnn;能量等式EF(j)。n2解題方法:利用條件,直接代入公式求解。解:(1)由sin4t4sin4t4Sa4t,那么gtSa,g8t8Sa4,t4t28Sa4t2g8,4Sa4tg8,htsin4t12cos8t4Sa4t12cos8ttHjg8{22[818]}2g8g88g88g24word文檔精品文檔分享H j-12-8-404812(2)f0tg1t,那么gtSa,g1t1,又T1,Sa22224Fn1F0jn1F0jnF0jnTT1Sa4n21San,2224TnSa2Fj2Fnnn21n2nSan22San2n2nYjFjHjSan2ng242n2San2ng242n2[Sa0Sa22Sa2]222[22]12,1,2cos0t[00],cos2t[22]yt212cos2t2cos2t22212(3)P222224word文檔精品文檔分享4.22如圖(a)的系統(tǒng),帶通濾波器的頻率響應(yīng)如圖(b)所示,其相頻特性0,sinttcos1000t,求輸出信號yt。假設(shè)輸入ft,stftftstyt帶通濾波器stHj01-1001-99909991000 1001解:gtSa,令2,2g2t2Sa1g2tSa2Satg2Fjg2又stcos1000t,Sj10001000故,乘法器輸出信號的傅里葉變換為Fftst1FjSj2110001000g22g21000g210002word文檔精品文檔分享YjFftstHjg21000g21000g21000g210002g21000g210002g21000100021g21000100021g2100010002ytSatcos1000t4.23對以下信號求奈奎斯特采樣速率。帶限信號ft的最高頻率為200Hz。知識要點:此題主要考察傅里葉變換的根本性質(zhì);時域取樣定理。解題方法:根據(jù)傅里葉變換的根本性質(zhì)可以求得各信號的傅里葉變換,從而可以確定信號的最高頻率,根據(jù)時域取樣定理可以確定最小取樣頻率fs。(1)f4t解:ftFjFj2f,fm200Hz,f4t1Fj1Fj2f,fmfm,44444fm4fm4200800Hz,fs2fm28001600Hz(2)f3tf2t解:f3t1Fj1Fj2f,fmfm,fm3fm600Hz,33333f2t1Fj1Fj2f,fmfm,fm2fm400Hz22222f3tf2t1Fj2f1Fj2f3322所以最高頻率應(yīng)為400Hz,fs2fm2400800Hzword文檔精品文檔分享(3)Sa100tSa50tword文檔精品文檔分享解:gtSa,Sat2g,22令200,那么200Sa100t2g200,Sa100t100g200,令100,那么100Sa50t2g100,Sa50t50g100,F(xiàn)j1-100-50050100fm100Hz,fs2fm100Hz2(4)Sa100tSa260t解:Sa100t100g200,TritSa22,Sa2t2Tri,2Trit1t令120,那么120Sa260t2Tri120,Sa260tTri120,60Fj1-120-100-50050100120fm12012060Hz,fs2fmHzHz22word文檔精品文檔分享第十次5.1求以下函數(shù)的單邊拉普拉斯變換,并注明收斂域。(1)21te解:22,Re[s]0,s又11,Re[s]0,(t)1d112,Re[s]0,t12,Re[s]0,sdsssstet12Re[s]1(s1)21F(s)s(s1)2,Re[s]0(2)2(t)'(t)e1f(t)SF(s)f(0)解:(t)1,Re[s],2(t)2,Re[s],又11,Re[s]0,et1,Re[s]1,ss1又s(t)s1(0)s,Re[s]F(s)2s1,Re[s]1s15.2求以下圖所示信號拉普拉斯變換,并注明收斂域。ft (2)11 2t-11, 0 t1解法一:令 f1t1,1 t 2,那么f(t) f1(t) 2(t2)0,其它word文檔精品文檔分享F1(s)0f1(t)estdt1st1(1st2e0e1)ss1(es1)[1(e2ses)]ss1esese2sss(1es)2s又(t)1,Re[s],(t2)e2s,Re[s],2(t2)2e2s,Re[s]F(s)(1es)22es,Re[s]s解法二:f(t)[(t)(t1)][(t1)(t2)]2(t2)(t)2(t1)(t2)2(t2)(t)1,Re[s]0,2(t1)2es1,Re[s]0,(t2)e2s1,Re[s]0sss2(t2)2e2s,Re[s]0F(s)12es1e2s12e2ssss12ese2s2e2ss(1es)22e2ss12ese2s2e2s,Re[s]0s5.3利用常用函數(shù)的象函數(shù)及拉普拉斯變換的性質(zhì),求以下函數(shù)的拉普拉斯變換。et(t)e1(t1)解:(t)1,Re[s]0,et(t)1,Re[s]1,s1s1e(t1)(t1)es,Re[s]1s1F(s)1ess11e1s11e(s1)s1,Re[s]1s11word文檔精品文檔分享(2)sin(2t)[(t)(t1)]解:sin(2t)[(t)(t1)]sin(2t)(t)sin(2t)(t1)sin(2t)(t)sin[2(t1)](t1)sin(2t)(t)22,Re[s]0,s2(2)sin[2(t1])(t1)es22)2,Re[s]0s(2F(s)s22)2s22)2es,Re[s]0(2(2(3)(4t 2)'(t)f(t)sF(s) f(0),f(t)s2F(s) sf(0) f(0),假設(shè)ft為因果信號,f(n)(t)snF(s)解: (t)1,Re[s],(t 2)e2s,Re[s],11s(4t 2)e2,Re[s],(t)sF(s) f(0)s,s1F(s) se2,Re[s]4(4)cos(2t4)(t)sin(2t)(2t)44解:cos(2t)(t)4[cos2t2sin2t2](t)222cos2t(t)2sin2t(t)2[2s4s22]s2,Re[s]0222s42(s24)sin(t)1,Re[s]0,sin(t)(t)e4s1,Re[s]01s244s21word文檔精品文檔分享sin(2t)(2t)1e442s11s8,Re[s]0e8,Re[s]0s)21s24(2word文檔精品文檔分享Fss22s2(s24)s24e8(5)tx)dxt(t)sin(02,Re[s]t解:sin(t)(t)s20,sin(x)dx22,Re[s]00s(s)(t)1,Re[s]0,(t)(t)d11,t(t)10sdsss2s2,Re[s]F(s)22)12,Re[s]0s(ssdt)(t)]d[cos(t)](6)[sin(dtds0,d[sin(解:sin(t)(t)22,Re[s]t)(t)]s2s2,Re[s]0ssdtcos(t)s2,Re[s]0,2d[cos(t)]s2s212s2s21222,Re[s]0dtss2F(s),Re[s]022s(7)(t2)(t1)解:(t2)(t1)(t)(t1)(t)1,Re[s]0,(t1)1es,Re[s]0s11sF(s)esss(8)te(t3)(t2)解:te(t3)(t2)te(t2)e(t2)ete(t2)(t2)word文檔精品文檔分享1,Re[s]0,et(t)1,Re[s],(t)s1s11e(t2)(t2)e2s,Re[s]1s1(t)e(t2)(t2)de2s2e2s1e2s12dss1s1(s1)2(s1)1e2s(s1)22s23e2s(s1)F(s)2s32s(1)e2e(s1)2s32s1(s2e1)e2s12e2s1(s1)2s15.4如因果函數(shù)f tFs,求以下函數(shù)的象函數(shù)。e3tf(t2)解:e3tf(T2)e6e3(t2)f(t2)e3tf(t)F(s3),e3(t2)f(t2)e2sF(s3)e3tf(t2)e6e2sF(s3)e2(s3)F(s3)df(t2)2dt解:f(t2)e2sF(s),f(t2)2e4sF(2s)2df(t2)22se4sF(2s)dt5.5求象函數(shù)Fss的原函數(shù)的初值f0和終值f1s1解:Fs11F1ss1sf0limftlimsF1slims1t0ss1flimftlimsFslims20ts0s0s1word文檔精品文檔分享5.6求以下圖所示在t0時接入的有始周期信號的象函數(shù)。f tf tword文檔精品文檔分享1-1??1??t136TT3Tt22-1(a)(b)word文檔精品文檔分享解:令第一周期內(nèi)的信號以f0t表示,那么f0t(t),F(xiàn)0(s)1,由圖可知周期為T,F(xiàn)(s)1T,Re[s]2-s1-e2解:令第一周期內(nèi)的信號以f0t表示,那么f0tt-t1t1,Re[s]0,t11es,Re[s]0,ssF0(s)11es1(1es)T3sssF(s)1[1es]11se3s5.7求以下各象函數(shù)的拉普拉斯變換。word文檔精品文檔分享(1)1word文檔精品文檔分享s(s4)解:1k1k2s(s4)ss4k1s1s01,k21s41,44s4word文檔精品文檔分享原式=(t)s(s2s2111(s)4s41[(t)e4t(t)]1(1e4t)(t)444s5)3s2word文檔精品文檔分享解:s(s24s5)ss(s3)ss(s3)s1k1k2s23s2s23s2(s1)(s2)s1s+2k1s(s3)2,k2s(s3)2s2s1s1s2word文檔精品文檔分享原式s1-22word文檔精品文檔分享s 1 s2f(t)(t) 2et(t) 2e2t(t)(t)2s(3)(s 1)(s21)word文檔精品文檔分享解:2sk1k21k22(s1)(s21)s1sjsjk12s1s11s2k212s111j2j2(s1)(sj)sj1j22e4e2k12,3,0,1,A1,B1242234word文檔精品文檔分享f(t)et(t)22e0cos(t3)(t)234[et2cos(t)](t)(et4sintcost)(t)(4)1s2(s1)解:1k11k22k221)2ss1s(ssk11s2F(s)s01d2d11k12ds[sF(s)]s0dss1s0(s1)2s01k21s11s2原式111s2ss1word文檔精品文檔分享f(t)t(t)(t)et(t)(ett1)(t)(5)s3s(s22s3)解:s3s31s12s3)s(s1)22s(s1)22s(s2f(t)(t)cos2tet(t)(1etcos2t)(t)2s21e2ss解:2s1e2s212ss2(s2)es1(t),1t(t)ss2f(t)2(t2)(t2)(t2)t(t2)5.8求以下各象函數(shù)的拉普拉斯逆變換,并粗略畫出它們的波形圖。2eTss2解:(t)1,e2t(t)s1,e2(tT)(tT)eTs1s2s2F(s)2eTs2eTss2s2s2f(t)2e2t(t)e2(tT)(tT)(2)e2(s3)s4解:(t)1,(t2)e2s14t(t2)e2(s4)1e2(s+3)e2s,es4s4se4te2(t2)e2(s3)14sf(t)e2e4t(t2)e(24t)(t2)(3)(1es)s(1e2s)s22s22解:sin(t)(t)22,sin[(t1)](t1)s22essword文檔精品文檔分享cos(t)(t)ss2F(s)s2s22f(t)sin(t)(t)sin(t)(t)sin(t)[(t)2,cos[(t2)](t2)s2s2e2sss2ess2222e2sssin[(t1)](t1)cos(t)(t)cos[(t2)](t2)sin(t)(t1)cos(t)(t)cos(t)(t2)(t1)]cos(t)[(t)(t2)]word文檔精品文檔分享sin(t)g1(t1)cos(t)g2(t1)25.9象函數(shù)es的原函數(shù)是t0接入的有始周期信號,求周期T并寫出其第一es1個周期的時間表達式f0t。有始周期函數(shù)可寫為ftf0ttnT,t為在第一周期內(nèi)的表示式,n0f0FsF0s1eTs解:F(s)eses(1es)ese2ses(1es)(1es)1e2s1T2,F(xiàn)0(s)ese2s(t)1,(t1)es,(t2)e2sf0(t)(t1)(t2)word文檔精品文檔分享第十一次5.10描述某LTI系統(tǒng)的微分方程為yt3yt2ytft4ft,ftt,y00,y01,求系統(tǒng)的零輸入響應(yīng)和零狀態(tài)響應(yīng)。解:s2Yssy0y03sYsy02YssFs4Fss23s2Yssy0y03y0s4FsYssy0y03y0s4FsYzisYzsss23s2s23s2Yzis111s23s2s1s2Yzsss41s234s3s2s21s1s2s23s2yzitete2ttyzstt4e2t3ett5.11求微分方程yt5yt6ytft3ft所描述的LTI系統(tǒng)的沖激響應(yīng)ht和階躍響應(yīng)gt。htHs,gt1sHs解:s2Yzss5sYzss6YzsssFs3Fss25s6Yzsss3FsHYzsss3s3k1k2sFss25s6s2s3s2s3word文檔精品文檔分享k1s2Hsk2s3Hs2s356word文檔精品文檔分享Hs562s3sht5e2tt6e3tt5e2t6e3ttword文檔精品文檔分享gs1Hs1s3k1k2k3sss2s3ss2s3k1sgss0125k2s 2gss22k3s3gss32gs11512132s2s2sgt1t5e2tt2e3tt2215e2t2e3tt225.12描述某LTI系統(tǒng)的微分方程為yt3yt2ytft4ft,初始條件為y01,y03,輸入信號fte2tt,求系統(tǒng)的零輸入響應(yīng)和零狀態(tài)響應(yīng)。yi0yzii0yzsi0yzii0yi0yzsi0t1s解:s2Yssy0y03sYs3y02YssFs4Fss23s2Yssy0y03y0s4FsYssy0y03y0s4ss23s2s2F3s2Yzsss41k1k21k22s23s2s2s1s22s2k1s1Yzsss13k21s2Yzss22s2k22d233s2Yzsss2s2s2ds1Yzss3223s1ss22word文檔精品文檔分享yzst3et t2e2tt t 3e2t t3et 2e2tt 3e2ttyzs00yzs03ett3ett4e2ttt2e2tt2e2ttt6e2tt3e2ttyzs01y0y0yzs0101y0y0yzs0312Yziss5k1k2s23s2s1s2k1s1Yziss14k2s2Yziss23yzit4ett3e2tt4et3e2tt5.13系統(tǒng)函數(shù)Hss3,初始狀態(tài)為y01,y00,求系s23s2統(tǒng)的零輸入響應(yīng)yzit。解法一:Ass23s2零輸入響應(yīng)滿足方程:yzit3yzit2yzit0s2Yzissyzi0yzi03sYzis3yzi02Yzis0Yzissyzi0yzi03yzi0s23s2s3s23s2k1k2s1s2word文檔精品文檔分享k1s1Yzisk2s2Yzis1s221word文檔精品文檔分享Yzis21s1s2yzit2ette2tt2ete2tt解法二:Hs的極點即為齊次方程的特征根,即11,22yzitcetce2t,t0,yzitc1et2c2e2t,t012y0c1c21c12y0c12c20c21yzit2ete2tt5.14某LTI系統(tǒng)的階躍響應(yīng)gt1ett,欲使系統(tǒng)的零狀態(tài)響應(yīng)yzstete2t3e3tt,求系統(tǒng)的輸入信號ft。解:gt1ettgs1111ssss1yzstete2t3e3ttYs1133s210s9zss1s2s3s1s2s3gsHs1sHssgs11s1ss1sYzssHsFsFsYzss3s210s9s13s210s935s93k1k2Hss1s2s31s25s6s25s6s2s3k1s25s91s25s6s2k2s35s96s25s6s3Fs316s2s3ft3te2tt6e3tt5.15描述某LTI連續(xù)系統(tǒng)的框圖如下圖,當(dāng)輸入ft31ett時,word文檔精品文檔分享系統(tǒng)的全響應(yīng)yt4e2t3e3t1t,(1)列寫系統(tǒng)的輸入輸出方程;(2)求系統(tǒng)的零輸入響應(yīng)。13++Fs+∑s2Xs11∑YssXsXs+--ss56解:Yss2Xs3sXs2Xss23s2Xss2XsFs6Xs5sXsFss25s6XsHsYss23s2Fss25s6yt5yt6ytft3ft2ftFs3332s1ss1ss1YzssHsFs32s1s1s232s115ss1s2s3ss3ss3yzst15e3ttyzitytyzst4e2t2e3tt5.16如下圖的復(fù)合系統(tǒng),由4個子系統(tǒng)連接組成,假設(shè)各個子系統(tǒng)的系統(tǒng)函數(shù)或沖激響應(yīng)分別為:H1s1,H2ss1,h3tt,求復(fù)合系統(tǒng)的s12沖激響應(yīng)ht。H2sft+ytH1s∑+word文檔精品文檔分享h3tword文檔精品文檔分享解:th1th2tth1th3tyththth1th2th1th3th1th2th3tHsH1sH2sH3s111s1s2s11s1s2ss11111s1s2ss11ss2ht1e2tt5.17如下圖系統(tǒng),當(dāng)ftett時,系統(tǒng)的零狀態(tài)響應(yīng)yzst1ete2tt,求系統(tǒng)a、b、c。14++Fs+∑11∑Yss2XssXsXsc+-ss+ab解:Fs1s1Yzss111ss1s2s1s2ss2ss1ss1s2s24s2ss1s2s2XsFsbXsasXss2asbXsFsword文檔精品文檔分享Xs1Fsass2bYscXs4sXss2Xsc4ss2Xss24scs2asFsbs24sc1s2asbs1s24scs1s2asbs24s2ss1s2s24s2s1s22sa2b0c25.18根據(jù)函數(shù)fte2ttt2的象函數(shù)Fs,求ft的傅里葉變換。解:Fss1s1e2s2,Res222020word文檔精品文檔分享FjFssj11e2s2sjs211e22jj2word文檔精品文檔分享5.19某因果信號的拉普拉斯變換為2,求該信號的傅里葉變換。Fsss2解:Fs11ss2ftte2ttFj11jj25.20設(shè)某LTI連續(xù)系統(tǒng)的初始狀態(tài)一定,當(dāng)鼓勵f1tt時,其全響應(yīng)y1t3ett;當(dāng)鼓勵f2tt時,其全響應(yīng)y2t1ett;當(dāng)word文檔精品文檔分享f3ttt時,求系統(tǒng)的全響應(yīng)。解:f1ttF1s1,y1t3ettY1s31sf2ttF2s1,y2t1ettY2s112s1sss1ss1f3tttF3s1s2YsYzisYzssYzisHsFsY1sYzisHs13s1Y2sYzisH12s1sss1sYzis21yzit2ettsHs1s1YzssHsFs11k1k21k22s1s2s1s2sk1s1Yzsss11k21s2Yzsss01k22ds2Yzsss012s01dss1Yzss111s1s2syzstetttttett1tytyzityzst2etett1t3ett1tword文檔精品文檔分享第十二次6.1求序列f(k)[(1)k(1)k](k)的z變換,并注明收斂域53解:(1)k(k)z,z1,(1)k(k)3k(k)zz,z35z15335F(z)zz5zz1z35z1z3z55z(z3)z(5z1)(5z1)(z3)5z215z5z2z(5z1)(z3)10z216z,z3(5z1)(z3)6.2根據(jù)以下象函數(shù)及所標注的收斂域,求其所對應(yīng)的原序列。(1)F(z)z,z2z-2解:z2為因果序列,f(k)2k(k)(2)F(z)-z,z3z-3解:z3為反因果序列,f(k)3k(-k-1)(3)F(z)zz,2z3z3z2解:2z3為雙邊序列,〔fk〕-3k(-k-1)2k(k)6.3k1,akkz,k(k)z,試利用z變換的性質(zhì)求za(z1)2以下序列的z變換并注明收斂域。(1)1[2(1)k](k)2解:1[2(1)k](k)(k)1(1)k(k)2z2z(k),z1,(1)k(k),z1z1z1z1z2zF(z)23z1z1z12z2,z12(2)(1)kk(k)word文檔精品文檔分享3word文檔精品文檔分享zzzk1解:k(k)(z1)2,z1,(1)k(k)z1)2(z1)2,z1(1F(z)1z3(z1)2(3)k(k1)(k)解:k(k1)(k)k2(k)k(k)k(k)z,z1(z1)2k2(k)zd[(zz]z[(z1)2z(2)(z1)3]dt1)2z[12z3]2(z(z1)1)z1z3,z1(z1)F(z)z2zz(z1)3(z1)2z2zz2z

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論